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Abstract. With the acceleration of the popularity of new energy vehicles, battery life, driving range, power output and
safety stability play an absolute role in new energy vehicles. This article mainly analyzes the classification and
characteristics of batteries in new energy vehicles, and reviews four types of heat dissipation technologies for new energy
vehicles. This includes air cooling, liquid cooling, heat pipe cooling and phase change material cooling. At the same
time, the importance of utilizing waste heat in new energy vehicles and the application of improving the overall energy
efficiency of the vehicle are discussed. By rationally utilizing the residual heat from batteries and motors, not only can
the working environment of batteries be improved, but also energy can be provided for other vehicle systems, thereby
enhancing the overall energy utilization efficiency of the vehicle. The research in this paper provides a theoretical basis
for the further development of thermal management and waste heat utilization technologies for new energy vehicle
batteries.

INTRODUCTION

With the increase in oil consumption, and China's traditional energy being extremely dependent on imports,
China began to vigorously support the global automotive industry to accelerate its transformation. New energy
vehicles, by virtue of their environmental protection, energy-saving and other advantages, gradually become the
main force in the automotive market.

Forecasts indicate that the global sales of new energy vehicles (including fuel cell vehicles) are expected to
exceed 12 million units in 2025, accounting for about 50% of the global total, with a compound annual growth rate
(CAGR) of more than 20%, and the penetration rate is expected to be more than 50% (about 35% in 2023). At the
same time, China's electric vehicle ownership will reach more than 50 million by 2029, making it the world's largest
market. Among them, the battery system plays a decisive role in the vehicle's driving range, power output, safety
and stability. It is worth noting that the waste heat generated by the battery is not worthless. If it can be reasonably
utilised, it can not only improve the working environment of the battery, but also provide energy for other systems
of the vehicle to enhance the energy efficiency of the vehicle.

In recent years, domestic and international scholars have carried out a lot of research work based on the waste
heat utilisation of electric vehicles. Among them, Tan Ran etc. carried out a systematic thermodynamic analysis for
the waste heat utilisation method to study the effect of waste heat and ambient temperature changes on the system.
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Han Nankui conducted a performance study on heat pumps for electric vehicles using waste heat and analysed the
effect of changing the waste heat power and other factors. Therefore, it is necessary to deeply study battery
characteristics, on the basis of which to develop advanced waste heat utilisation and heat dissipation technology for
new energy vehicles, which is of great significance in promoting the sustainable development of the vehicle
industry.

This research focuses on three significant areas: classification of batteries for new energy vehicles, thermal
management solutions for power batteries, and effective utilization of waste heat. As for thermal management of
power batteries, this study unfolds in five parts—initially examining the principle behind heat generation in power
batteries and successively exploring multiple cooling technologies, such as air-based cooling, liquid - based cooling,
heat-pipe-based cooling, and phase-change - material-based cooling. In the context of waste heat utilization, two
core elements are explored: waste heat recovery from batteries and motors and a comprehensive study of the heat
pump air-conditioning system, enabling the development of more effective and sustainable solutions for the new
energy vehicle industry [1] [2].

NEW ENERGY VEHICLE BATTERY CLASSIFICATION

New energy vehicles primarily consist of hybrid electric vehicles (HEV), battery electric vehicles (BEV), and
fuel cell electric vehicles (FCEV), among others [3]. As the core component of electric vehicles, the performance of
the power battery directly affects the operational efficiency and safety of the vehicle. Batteries generally comprise
several key components, including a battery pack, a battery management system, a cooling system, high and low-
voltage wiring harnesses, a protective enclosure, and various additional elements. Each battery has its own
advantages based on thermal stability, safety, cost, and battery life. As the main types of power batteries, lithium
iron phosphate (LFP) batteries and lithium nickel cobalt manganese (NCM) batteries. have high energy density,
stable performance, strong safety and long service life, etc., and have become the mainstream batteries widely
circulated in the market and used in electric vehicles [4].

Lithium-ion Batteries

Lithium-ion batteries represent the predominant category of batteries in contemporary usage, characterized by
their high energy density, extended cycle life, and minimal self-discharge rate. The disadvantages of Li-ion batteries
are poor consistency, poor low-temperature performance, and complex management systems. Lithium-ion batteries
encompass both lithium iron phosphate and lithium ternary batteries, with lithium iron phosphate being regarded as
a safer option for the positive electrode.

Ternary Lithium Battery

The single lithium ternary battery has a single energy density of 200-300Wh/kg and a system energy density of
160-200Wh/kg, which has become the mainstream choice for pure electric and hybrid vehicles by virtue of its high
energy density and moderate cost. Li-ion ternary batteries (NCM) have excellent low-temperature discharge
performance and are able to operate normally in environments as low as -30°C. Under the same low-temperature test
conditions, the winter range of Li-ion ternary batteries decreases by less than 15%. For example, the discharge
capacity of a ternary lithium battery at -10°C is only 83.9% of the rated capacity, which indicates that at low
temperatures, the ionic conductivity of the electrolyte exhibits a decline, and the internal reaction of the battery
slows down, leading to a reduction in discharge capacity. The material stability of ternary lithium batteries is poor,
and usually starts to decompose at around 200°C. Under the influence of high temperature, its electrolyte is easy to
burn quickly, and may even lead to spontaneous combustion of the vehicle, thus threatening the safety of people and

property.
Lithium Iron Phosphate Batteries

In contrast, lithium iron phosphate batteries have a monomer energy density of 150-160Wh/kg. Although the
energy density is lower, they have better safety, longer life and more cost advantages, so they are also widely used in
pure electric and hybrid vehicles [5]. In the context of safety, lithium iron phosphate batteries exhibit considerable
advantages when compared to ternary lithium batteries. Specifically, lithium iron phosphate batteries demonstrate
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enhanced thermal stability in elevated temperature conditions. Its peak electrical heating can exceed 350°C, while
the chemical composition does not begin to decompose until temperatures in the range of 500 to 600°C.

Sodium Ion Batteries

Sodium-ion batteries (SIBs) are regarded as formidable alternatives to lithium-ion batteries (LIBs) owing to their
economic advantages, abundant availability of raw materials, and reduced environmental impact. Sodium ion
batteries are secondary batteries that utilize sodium ions to move between the anode and cathode to attain electrical
energy storage and release, and are allowed to discharge to zero volts due to their non-overdischarge characteristics.
As an abundant resource, sodium has far more reserves in the earth's crust than lithium. Therefore, it has the
advantage of lower cost. The operational mechanism of sodium-ion batteries closely resembles that of lithium-ion
batteries, as both systems rely on the intercalation and deintercalation of ions between the anode and cathode to
facilitate energy storage and release. Sodium-ion batteries are moving towards commercialization and practicality as
a potential alternative technology.

Other Types of Batteries

Nickel-metal hydride batteries have nickel-hydrogen oxides at the anode and hydrogen storage alloys at the
cathode, and the energy witnessed is lower than that of lithium-ion batteries. This type of battery has the advantages
of long life, clean and non-polluting, but there are also shortcomings such as low specific energy, high cost of
materials, and poor high-temperature charging and discharging performance, etc., and is currently mainly used in the
field of hybrid vehicles, such as Toyota Prius [3].

Lead-acid batteries represent one of the most established forms of battery technology. Comprising lead dioxide
at the positive electrode and lead at the negative electrode, these batteries are predominantly utilized in low-speed
electric vehicles and electric bicycles. Lead-acid batteries, as an early development of battery technology, have the
advantages of mature technology, low cost, easy maintenance and strong reliability, but there are also short life, low
energy density and environmental pollution and other shortcomings [3].

Fuel cells generate electricity through hydrogen-oxygen reaction, and these cells exhibit the benefits of elevated
energy density and favorable environmental performance, and short charging time, but the technology is not mature
enough and the cost is high. Currently, proton exchange membrane fuel cell (PEMFC) is one of the more mature
fuel cell technologies, which works on the principle of generating protons and electrons through an oxidation
reaction of hydrogen at the anode [5]. Mainly used in Toyota Mirai, Hyundai NEXO and other cars.

Solid State Batteries

Solid-state batteries are an important development direction for power batteries. Solid-state battery performance
has the potential to disrupt current liquid lithium batteries with higher safety, higher energy density, longer low-
temperature range, and longer life. Solid-state electrolytes are non-flammable, thermally stable and more chemically
stable. However, the manufacturing process is complicated, the material is expensive and the production cost is
high.

Semi-solid-state batteries offer significant improvements over traditional liquid batteries by reducing the amount
of liquid electrolytes and introducing oxide and polymer composite electrolytes to enhance battery performance and
safety. Oxide electrolytes are added mainly in the form of diaphragm coating and positive and negative electrode
wrapping, while polymer electrolytes are filled in the battery structure as a framework network [6].In addition, semi-
solid-state batteries have been upgraded in anode materials, shifting from traditional graphite system to pre-lithiated
silicon-based anode and lithium-metal anode; and the anode materials have been upgraded from high-nickel system
to high-nickel+high-voltage system as well as lithium-rich manganese-based anode and so on. The diaphragm
portion remains, but is coated with a solid electrolyte for enhanced performance [6]. At the same time, the lithium
salt has been upgraded from the conventional LiPF6 to the LiTFSI with better performance. These improvements
have enabled semi-solid-state batteries to reach energy densities of more than 350 Wh/kg. However, although semi-
solid batteries reduce the amount of liquid electrolyte, the risk of flammability is not completely eliminated as they
still contain a small amount of liquid content [6].

All-solid-state batteries, on the other hand, are a further revolution of liquid batteries, completely eliminating
liquid electrolytes and using solid electrolytes, such as oxides, sulfides, or polymers, as the ion-conducting medium
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[6]. The solid electrolyte separates the positive and negative electrodes in the configuration of a thin film, replacing
the function of a traditional diaphragm. Currently, the advancement of oxide solid-state electrolytes is progressing at
a fast pace, while sulfide solid-state electrolytes are regarded as possessing significant potential for future
applications, primarily due to their high ionic conductivity. In contrast, polymer solid-state electrolytes face
limitations in their applicability, attributable to their relatively low upper-performance threshold. In terms of anode
materials, all-solid-state batteries also adopt pre-lithiated silicon-based anode and lithium metal anode; cathode
materials are further upgraded to high-performance systems such as ultra-high nickel, lithium nickel manganate and
lithium-rich manganese base [6]. Thanks to these improvements, the energy density of all-solid-state batteries can
reach 500 Wh/kg, far exceeding that of conventional liquid batteries[6].In addition, all-solid-state batteries
significantly improve battery safety by completely removing the liquid electrolyte and fundamentally solving the
flammability problem.

Overall, semi-solid-state batteries, as a transitional technology, have made important progress in energy density
and safety, but there are still certain risks; while all-solid-state batteries represent the direction of the next generation
of battery technology, with higher energy density and safety, and are an important breakthrough point in the future
battery field.

POWER BATTERY HEAT DISSIPATION TECHNOLOGY

During operation, batteries generate a significant amount of heat, particularly under high-power or extreme
conditions. The resultant temperature rise can accelerate battery aging and reduce battery lifespan. To address this
issue, researchers have developed various thermal management technologies aimed at mitigating battery heat
through different cooling methods, thereby extending battery life.

Heat Generation Mechanism of Power Battery

The primary heat generation mechanisms in power batteries consist of electrochemical reaction heat, resistive
(Joule) heating, polarization-induced heat, and heat from parasitic side reactions.[7]. Chemical reaction heat, which
is the main source of heat in power batteries, is generated by the chemical reactions occurring inside the battery.
During charging, significant chemical reaction heat is produced due to the reactions between the positive and
negative electrodes. During operating [7], joule heat is generated when the current passes through the inner
resistance of the battery. The amount of Joule heat is related to the battery's operating conditions; for instance, when
the battery is under a high load, the current flows for a longer duration, resulting in more Joule heat. Polarization
heat arises from the polarization phenomenon of chemical substances within the battery under the influence of an
electric field [7]. The magnitude of this heat depends on factors such as the battery's operating voltage, current, and
ambient temperature. Side reaction heat refers to the heat released by additional side reactions that may occur during
battery usage, apart from the aforementioned mechanisms [7].

Currently, heat dissipation in new energy vehicles (NEVs) may impact battery lifespan, as excessively high
battery temperatures can accelerate aging. Therefore, effective thermal management and heat dissipation
technologies are critical for the development of NEVs. The primary cooling methods for NEVs which includs air
cooling, liquid cooling and direct cooling. Air cooling utilizes airflow to dissipate heat, offering low cost but
relatively low cooling efficiency. Liquid cooling, which involves circulating coolant through internal battery
channels, provides high cooling efficiency and is the predominant cooling technology in NEVs. Direct cooling
employs refrigerants to directly absorb heat through evaporation, offering high cooling efficiency but presenting
significant technical challenges.

Air-cooled Heat Dissipation Technology

The air cooling system is relatively simple, primarily relying on natural or forced convection of air to dissipate
heat, making it cost-effective and suitable for large-scale applications. However, compared to cooling methods, for
instance, liquid cooling or phase change material cooling, air cooling exhibits lower heat dissipation efficiency.
Under high-power discharge or extreme environmental conditions, air cooling may fail to meet the thermal
management requirements of battery packs. Additionally, the performance of air cooling systems is significantly
influenced by external elements, for example, ambient temperature, humidity, and wind speed. In high-temperature
environments, the heat dissipation capacity of air cooling systems can markedly decline.
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Air cooling dissipates heat generated by batteries through airflow, which can be achieved via natural convection
or forced convection. Convective cooling technology involves the use of thermally conductive materials at the
bottom of the battery pack to conduct heat, while utilizing airflow along the sides of the battery pack for heat
dissipation [7]. This technology offers advantages such as high heat transfer efficiency and excellent stability,
effectively reducing the operating temperature of batteries, thereby extending their lifespan and enhancing safety.
Furthermore, convective cooling technology provides isolation and vibration-damping functions, helping to prevent
issues such as short circuits or wear between batteries [7].

Liquid Cooling Technology

Liquid cooling demonstrates superior cooling performance compared to air cooling, as it relies on the continuous
circulation of a heat transfer medium to achieve efficient heat dissipation. Heat transfer media can be categorized
into direct-contact and indirect-contact types. The former includes substances such as mineral oil, which can directly
interact with heat sources to absorb and transfer heat, while the latter encompasses water and specialized coolants.
By circulating coolants (e.g., water or ethylene glycol solutions) through liquid cooling plates or pipes, the high
temperature yielded by the battery is absorbed and removed, thereby reducing the temperature of battery. The
principle of liquid cooling technology involves injecting the coolant into the interior of the battery pack and
dissipating the high temperature transit aluminum cooling tubes [7]. Commonly used coolants include mineral oil,
synthetic oil, and water-based coolants [7]. Among these, mineral oil exhibits excellent thermal conductivity and
high-temperature resistance but poses certain environmental concerns. Synthetic oil, on the other hand, offers better
environmental compatibility and high-temperature stability, while water-based coolants are characterized by their
non-toxicity, harmlessness, and environmental friendliness [7].

Heat Pipe Cooling Technology

Leveraging the high thermal conductivity of heat pipes, the heat manufactured by batteries are rapidly transferred
to a heat sink for dissipation. The heat pipe heat sink is a core component of power battery heat pipe cooling
technology, primarily consisting of heat pipes, fins, and fans [7]. The heat pipes function to transfer the internal heat
of the battery to the heat sink, while the fins serve as critical components to increase the heat dissipation domain and
enhance cooling efficiency. The fans are employed to accelerate airflow, thereby improving the heat dissipation
performance of the heat sink [7]. Heat pipes exhibit strong heat transfer capabilities and enable cyclic heat transfer
processes, making them widely applicable in industrial fields. However, further research is still required in areas
such as cost control, structural optimization, and material selection [8].

Cooling Technology of Phase Change Materials

Utilizing the heat absorption characteristics of phase change materials (PCMs) during their phase transition
process, the temperature of batteries can be effectively controlled. Phase change materials are substances that can
absorb or release large amounts of heat within a specific temperature range. When heat from the battery is
transferred to the PCM, the liquid portion of the PCM absorbs heat and expands, transitioning into a gaseous state,
while the solid portion releases heat and contracts [7]. With advancements in materials science, a wide variety of
phase change materials have been developed, including organic PCMs, inorganic PCMs, and microencapsulated
PCMs, among others [9].

WASTE HEAT UTILIZATION

Waste heat utilization refers to the recycling of waste heat generated by automobiles into effective energy. In
conventional fuel vehicles, the heat mainly comes from the combustion process of the engine. In the process of
converting chemical energy into mechanical energy, an engine generates a large amount of waste heat. This waste
heat is usually lost to the environment through cooling systems and exhaust systems. In new energy vehicles, the
source of heat is more diversified, mainly including batteries, motors and electronic control systems. The effective
utilization of residual thermal energy in new energy vehicles plays a crucial role in enhancing overall energy
conversion efficiency, prolonging operational endurance, and minimizing energy expenditure. Through the
implementation of intelligent thermal management systems and waste heat recovery technologies, the vehicle's
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energy utilization framework can achieve comprehensive optimization. This approach not only improves the
thermodynamic efficiency of power systems but also contributes to sustainable energy conservation in automotive
engineering applications.

Battery Motor Waste Heat Utilization

Battery charging and discharging will generate heat, and heat pumps or hot spot conversion technology can be
used to convert waste heat and lung heat into interior heating or for battery preheating. The waste heat in the electric
drive system can be used to increase the battery temperature in winter to increase the driving range, and the use of
waste heat to provide heating to reduce the heat provided by the battery energy to increase the driving mileage, and
can reduce the battery aging and increase the battery life. New energy vehicles mainly use PTC heating in low-
temperature environments, which requires most of the electricity. Taking 2000kw PTC as an example, the power
consumption for 1 hour of operation is 2 KWH, and the comprehensive energy consumption of new energy vehicles
is 15kWh/100 km, so the PTC will lose 13-14 km of mileage in one hour. Lee's experiments show that due to the
lower efficiency of PTC heaters, the driving range of electric vehicles is reduced by up to 50%[10]. Torregrosa et al.
found that almost all existing pure electric vehicles use PTC electric heaters for heating, and the PTC electric
heating power is generally greater than 2kW, and the efficiency is less than 1, which can lead to a 24% reduction in
the operating range of battery-powered vehicles [11]. According to Farrington and other studies, electric vehicles
can reach a range of more than 300km, but when the heating and cooling system is running, the range is reduced by
about 40 percent [12].

In a temperature environment, the high-temperature auxiliary PTC element of the motor can be used to heat the
crew cabin, which reduces the loss of battery power to a certain extent [13]. The motor will generate a significant
amount of heat during operation., which can reach more than 60°Cat high load or high speed, and the heat of the
motor coolant is transferred to the heating system of the crew cabin through the heat exchanger. Insufficient heat is
provided by the PTC heater as an auxiliary heat source. At the same time, the waste heat emitted by the battery can
also be used to provide heat to the coolant of the battery through the heat switch, taking full advantage of the waste
heat of the motor battery, reducing the power consumption of the PTC heater and improving the energy
consumption of the vehicle. In short-distance driving (such as in the city form), the battery motor waste heat and
PTC heater work together; During long trips, the battery and motor waste heat are sufficient to further reduce the
power of the PTC heater. A multi-heat source collaborative heating system is constructed by combining motor waste
heat with battery waste heat and air conditioning system.

Heat Pump Air Conditioning System

The working principle of a heat pump essentially reverses the refrigeration cycle of an air conditioning system.
In this process, high-pressure refrigerant first undergoes pressure reduction through an expansion valve.
Subsequently, the refrigerant absorbs heat from the ambient air via isothermal evaporation in the evaporator. The
resulting low-temperature, low-pressure gaseous refrigerant then enters a compressor where it is pressurized into a
high-temperature, high-pressure vapor. This heated refrigerant subsequently flows into the condenser, where it
releases thermal energy through condensation, effectively transferring heat into the passenger compartment for
heating purposes [14]. The heat pump system uses ambient heat and vehicle waste heat, and the heat efficiency ratio
(COP) is much higher than that of traditional PTC heating. However, when the ambient temperature is low, due to
the physical properties of the refrigerant or the existing technical capabilities are not perfect, there is insufficient
heating capacity and low energy efficiency ratio. For this situation, the current solutions are mainly: For example,
the use of refrigerants with better heating effect under low temperature environment, such as R744, R32, etc. to
replace the refrigerant with low heating efficiency, or the use of compressor to replenish the air and increase the
enthalpy technology to enhance the work efficiency of the heat pump air conditioning system [14]. For example,
using refrigerants that are better at heating at low temperatures, such as R744, R32, etc., replace the refrigerant with
low heating efficiency, or use the compressor to replenish the air enthalpy technology to improve COP of the heat
pump [14].In addition, the use of waste heat recovery technology to rationally utilize the waste heat generated by the
motor or battery in the vehicle driving process can not only optimize the energy utilization efficiency of the vehicle,
but also has certain advantages in development cost, and is favored by major car companies [14].
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CONCLUSION

In summary, the crucial point of heat dissipation technology and waste heat utilization of new energy vehicles
has become a vital factor in improving the overall vehicle performance. Currently, fluid-based cooling is one of the
mainstream cooling methods. Moreover, ventilation-based cooling, cooling by phase-change materials, and cooling
via heat pipes also have great development potential. In terms of thermal dissipation, different cooling methods play
various roles.

The thermal energy produced by the battery during operation is an important aspect. The heat emitted from the
battery is able to be managed in different ways. For example, in the energy-using efficiency of the vehicle system,
cooling methods can affect how this heat is handled. Under low - low-temperature conditions, waste heat utilization
becomes more significant. Residual heat from the battery and motor can be recovered to effectively improve the
energy-using efficiency, reduce battery loss, extend battery life, and increase the driving range. Especially, using the
unutilized heat from the battery and motor to assist the PTC heater can significantly reduce power consumption and
increase the driving range.

Future research should further explore suitable heat dissipation material solutions and waste heat recovery
technologies to establish a more efficient and environmentally friendly thermal management system for new energy
vehicles. Integrating heat dissipation technologies with waste heat utilization can form an integrated thermal
management solution, which is conducive to enhancing energy efficiency and driving range, and promoting the
popularization and sustainable development of new energy vehicles.
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