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Abstract. Aiming at the design problem of minimizing ultraviolet transmission and maximizing visible light transmission 

in building window glass, this study proposes a genetic ant colony combined algorithm to achieve efficient optimization of 

triple-layer glass thickness. First, this paper integrates the AM1.5 solar spectrum data of ASTM G173-03 standard, and 

divides the ultraviolet (280–400nm) and visible-near infrared (400–2000nm) bands through preprocessing. On this basis, 

a multi-layer glass transmission model including reflection and interference effects is constructed based on the Fresnel 

formula to quantify the optical performance of different thickness combinations. Then, a genetic algorithm (GA) global 

search-ant colony algorithm (ACO), and a local optimization two-stage strategy are designed. GA locates the high-quality 

solution area through continuous parameter encoding, weighted fitness function, and genetic operations. ACO takes it as a 

starting point and searches finely in the local neighborhood through pheromone guidance and perturbation strategy, forming 

a collaborative mechanism of global exploration and local development. Comparative experiments show that the algorithm 

has better UV blocking and visible light retention performance than the ant colony algorithm, particle swarm algorithm, 

and genetic algorithm at the same computational efficiency. Spectral intensity analysis directly verifies its optimization 

effect on the target band. The research provides a data-driven intelligent solution for the design of smart building glass. In 

the future, it can be further combined with dynamic parameter adjustment, multi-physics field coupling, and deep learning 

to promote the application of the algorithm in the optimization of new materials. 

INTRODUCTION 

As the core source of indoor natural lighting, the efficient transmission of visible light is crucial to improving 

environmental comfort. However, long-term exposure to ultraviolet (UV) light may cause serious harm to human 

health, such as skin damage, decreased vision, and even an increased risk of cancer. Therefore, the design of building 

window glass thickness needs to achieve a precise balance between minimizing ultraviolet transmission and 

maximizing visible light transmission. Traditional design methods rely on experience or simple models, and it is 

difficult to take into account dual-objective optimization in a complex parameter space. The genetic ant colony 

combined algorithm can efficiently find the optimal solution in the parameter space of three-layer glass thickness (L1, 

L2, L3) by integrating the strong global search capabilities of the genetic algorithm, such as selection, crossover, and 

mutation, with the pheromone-guided local optimization mechanism of the ant colony algorithm. This method breaks 

through the limitations of traditional design, provides theoretical support and technical paths for the functional upgrade 

of intelligent building glass, and has important scientific value and engineering practical significance for promoting 

the development of new low-radiation, high-transmittance building materials and the development of low-energy 

intelligent buildings. 

Scholars have conducted a series of studies on the application of intelligent algorithms in optimization problems. 

Zhu et al. integrated particle swarm and improved ant colony algorithms in AUV path planning, and balanced multi-

objective constraints by dynamically adjusting weights. The results showed that the path-finding ability of the PSO-

ACO algorithm was significantly improved in the early stage of planning. The first complete path could be found after 
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25 iterations, and the final path found was better than that of the ACO algorithm. The effectiveness of the hybrid 

algorithm in dealing with multi-physics field coupling problems was verified [1]. Li et al. proposed an evolutionary 

ant colony algorithm and introduced genetic operators to optimize the initial path of ants [2]. The average running 

time of the optimization algorithm was 1.6765s in a 40x40 grid map, while the average running time of the ant colony 

algorithm was 2.7401s [2]. The optimal path length optimized by the algorithm was 55.7401m, while the optimal path 

length of the ant colony algorithm was 76.8284m, indicating that the evolutionary algorithm significantly improved 

the success rate of mobile robot path planning [2]. In the study of intelligent logistics distribution path optimization, 

Liu used the ant colony algorithm to optimize the input logistics distribution path node data, and used the genetic 

algorithm to obtain the final improved ant colony algorithm calculation results through multiple genetic iterations, 

which significantly reduced the distribution cost and time of logistics vehicles [3]. 

In terms of UV resistance optimization. Yan et al. used a simple sol-gel reaction to prepare a double-shell hollow 

DHTS with controllable size, and incorporated it into the WPU matrix to prepare a WPU/DHTS composite film as a 

glass coating. The results showed that the DHTS composite film has excellent thermal insulation and good UV 

shielding properties [4]. Agumba et al. proposed a bio-based interlayer glass composite material that can enhance the 

bending strength and stiffness of glass as well as UV protection. The laminated glass shows an excellent transparency 

of more than 75% in the visible light range while effectively shielding broadband UV radiation. This study achieves 

strong UV shielding and glass strengthening in a simple and cost-effective way [5]. 

Existing algorithm research focuses on discrete optimization and a single field, and there is still a gap in multi-

objective collaborative optimization for continuous parameter space (such as multi-layer glass thickness). In addition, 

existing research on glass anti-ultraviolet thickness optimization focuses on coating materials, and there is still a gap 

in glass thickness optimization, which provides a starting point for this study. 

On this basis, this study constructs a three-layer glass thickness optimization model based on genetic ant colony 

algorithm, taking 280-2000nm solar spectrum as input, integrating genetic algorithm global search and ant colony 

algorithm local optimization capabilities, and optimizing the glass's anti-ultraviolet ability and visible light 

transmittance by adjusting the thickness of the three-layer glass. 

RESEARCH METHODS 

Acquisition of Real Solar Spectrum Data 

Data Sources and Characteristics 

This study utilized the AM1.5 solar spectrum data according to the ASTM G173-03 standard as the input, covering 

a wavelength range of 280-2000nm, including the spectral irradiance corresponding to each wavelength [6]. As shown 

in Figure 1, the abscissa represents the wavelength, with the unit being nanometers (nm), reflecting different 

wavelength bands, ranging from 280nm to 2000nm, covering the ultraviolet, visible, and near-infrared bands. The 

ordinate is the spectral irradiance, with the unit being W/m²/nm, indicating the solar radiation power received per unit 

area within each wavelength interval, reflecting the distribution of solar radiation energy at different wavelengths. 

 

FIGURE 1. AM1.5 solar spectrum data (original). 



This data serves as the authoritative benchmark for evaluating the optical performance of buildings, accurately 

reflecting the wavelength distribution of solar radiation on the Earth's surface and ensuring that the optimization goals 

are consistent with the actual application scenarios. 

Data Cleaning and Band Division 

Data cleaning aims to remove data with invalid wavelengths or irradiance values, ensuring that the input data is 

complete and valid. The target band division is based on the optimization objective, dividing the spectrum into two 

key regions. The ultraviolet (UV) band (280 - 400nm) needs to minimize its transmittance as much as possible to 

block harmful radiation, while the visible light-near-infrared (Vis - NIR) band (400 - 2000nm) needs to maximize its 

transmittance as much as possible to retain natural lighting. 

Construction of Multi-layer Glass Optical Transmission Model 

Based on the Fresnel formula, an optical model is established. The calculation formula for the transmission rate of 

light is as follows: 

 R = (
n−n0

n+n0
)

2

 (1) 

Here, R represents the reflection rate of light at the air-glass interface, n represents the refractive index of the 

glass, and 𝑛0 represents the refractive index of the air. In the study, to simplify the physical model, it is assumed that 

the incident light enters the three layers of glass perpendicularly, and the air refractive index 𝑛0 is set to 1, and the 

glass refractive index n is set to 1.5. 

Based on the phase difference formula of light, the phase difference is calculated. For the calculation formula of 

the phase difference of light, it is as follows: 

 δ =
4πnlcosθ

λ
 (2) 

Here, δ represents the phase difference,  l represents the geometric distance that light travels in the medium, 

θrepresents the angle between the direction of light propagation and the normal of the interface, and λ represents the 

wavelength of light in a vacuum. 

The transmittance can be calculated using the ratio of transmitted light intensity/incident light intensity. The 

formula is as follows: 
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Here, T represents transmittance, It indicates the intensity of transmitted light, Ii represents the intensity of 

incident light, At indicates the complex amplitude of transmitted light, Aiindicates the complex amplitude of incident 

light, At
∗represents the conjugate complex number of At, and Ai

∗represents the conjugate complex number of Ai. 

The schematic diagram of the model construction is shown in Figure 2: 

 

FIGURE 2. Schematic diagram of three-layer glass model (original). 

 



The total transmittance formula can be obtained as follows: 

 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇1 ∗ 𝑇2 ∗ 𝑇3 (4) 

Here, 𝑇𝑡𝑜𝑡𝑎𝑙  represents the total transmission rate of the three-layer glass, while 𝑇1 , 𝑇2 , and 𝑇3  represent the 

transmission rates of the first, second, and third layers of glass, respectively. 

Calculation of Baseline Integral Value 

For the dual-objective optimization problem of minimizing the ultraviolet transmission and maximizing the visible 

light transmission of the three-layer glass in buildings, this paper quantifies and normalizes the two objectives. 

For the ultraviolet transmission rate (UV Ratio), it is defined as the ratio of the integrated intensity of ultraviolet 

wavelengths (280 - 400 nm) transmitted through the glass to the integrated intensity of the incident light, that is: 

 UV Ratio =
∫ I(λ)UV · Ttotal(λ)dλ

∫ I(λ)UV dλ
 (5) 

Among them, I(λ)represents the spectral irradiance at wavelength, and Ttotal(λ)is the total transmission rate 

of the three-layer glass at wavelength. Similarly, for the visible light transmittance (Vis Ratio), it is defined as the ratio 

of the integral of the transmitted light intensity in the visible light-near-infrared band (400 - 2000 nm) to the integral 

of the incident light intensity: 

 Vis Ratio =
∫ I(λ)Vis−NIR · Ttotal(λ)dλ

∫ I(λ)Vis−NIR dλ
 (6) 

Through this normalization process, the absolute light intensities of different bands are converted into relative 

proportions, enabling the two targets to be comparable on the same scale. 

Design of Genetic Ant Colony Combination Algorithm 

The algorithm flow is shown in Figure 3. 

 

FIGURE 3. Flowchart of genetic ant colony algorithm (original). 



Hybrid Algorithm Collaboration Framework 

The hybrid algorithm adopts a two-stage progressive architecture, as shown in Figure 3. In the first stage, GA 

quickly locates the approximate optimal solution within the global solution space  

(L ∈ [Lmin, Lmax]3，Lmin = 0.003m,Lmax = 0.01m) of the glass thickness. In the second stage, starting from the 

optimal solution of GA, the local development ability of ACO is utilized to finely adjust and improve the accuracy of 

the solution. The two stages share a unified fitness function to ensure the consistency of the optimization objective. 

Design of the Global Search Module of Genetic Algorithm 

The genetic algorithm serves as the core for global exploration, responsible for extensive search within the solution 

space. It uses real number encoding to represent the combinations of three-layer glass thicknesses X = [L1, L2, L3]. 
The initial population is randomly generated within the solution space, and the formula is: 

 Xi
(0)

= Lmin + (Lmax − Lmin) · rand(3), i = 1,2, . . . , NGA (7) 

Here, NGA represents the population size, and rand(3)is a 3-dimensional uniformly distributed random vector 

(with element ranges [0,1]). 

The fitness function is directly related to the optimization objective and is defined as: 

 Fitness(X)  =  ωvis · Tvis(X)  −  ωuv · Tuv(X) (8) 

Here, Tvis(X)represents the normalized transmittance in the visible light band, Tuv(X) represents the normalized 

transmittance in the ultraviolet band (280-400nm); ωvis is the weight for visible light, and ωuv is the weight for 

ultraviolet light. All of these are target-oriented parameters. 

In the genetic operation stage, the 4 individuals with the highest fitness are retained (the number of elite individuals 

to be retained  E = 4 ). The remaining individuals are selected according to their fitness probabilities, and the 

probability formula is: 

 P(Xi) =
Fitness(Xi)

∑ Fitness(Xj)
NGA
j=1

 (9) 

Using arithmetic crossover to generate offspring individuals, for parents Xi and Xj, the following are generated: 

 {
Xi
‘ = α · Xi + (1 − α) · Xj

Xj
’ = (1 − α) · Xi + α · Xj

 (10) 

Here, α ∈ (0,1)  represents the random coefficient and the crossover ratePc = 0.65 . Add perturbations using 

Gaussian variation. The formula is: 

 Xi
′ = Xi + σ(Lmax − Lmin) · Ν(0,1) (11) 

In the formula, σ = 0.01 represents the variation intensity and variation rate Pm = 0.18 , while Ν(0,1)  is a 

random number from the standard normal distribution. When the GA reaches the maximum iteration number TGA =
150, it terminates and outputs the global optimal solution XGA

∗ = [L1
∗ , L2

∗ , L3
∗ ] and the corresponding transmittance 

(Tuv,GA, Tvis,GA). 

Ant Colony Algorithm Local Optimization Module 

The ant colony algorithm starts from the optimal solution of the genetic algorithm and makes fine adjustments 

within a local range. In terms of the initialization of ant positions, the initial positions of the ants are generated around 

XGA
∗  and small perturbations are added. The formula is: 

 Xant,k
(0)

= XGA
∗ + rk · Rsearch · (2u − 1) (12) 

Here, k = 1,2, . . . , NACO ,rk ∈ (0,1) represents a random coefficient, u is a 3-dimensional uniformly distributed 

random vector, and Rsearch = 0.003 is the search radius. During the initial pheromone update, the initial pheromone 

τk,d = 1 (where krepresents the ant index and d = 1,2,3 represents the thickness dimension). 

After each iteration, the pheromone decays according to the ρ = 0.45 evaporation coefficient and is enhanced 

based on the fitness, and the formula is: 



 τk,d
(t+1)

= (1 − ρ) · τk,d
(t)

+ Q · Fitness(Xant,k
(t)

) (13) 

Here, Q = 120 represents the intensity of pheromone enhancement. In terms of position adjustment, the top 30% 

of ants with high fitness are retained as elites, and their positions are directly inherited. The non-elite ants move 

towards the high-pheromone areas and add perturbations that decay with each iteration. The formula is: 

 Xant,k
(t+1)

= Xref + s · (2v − 1) (14) 

Here, Xref represents the reference position of the ant (selected based on the probability of pheromones); s is the 

perturbation scale (decreasing with the number of iterations t  and the fitness of the reference ant); v  is a 3-

dimensional uniformly distributed random vector. When the ant colony algorithm reaches the maximum iteration 

number TACO = 250 , it terminates and outputs the final optimized solution XACO
∗ = [L1

∗∗, L2
∗∗, L3

∗∗]  and the 

corresponding throughput (Tuv,ACO, Tvis,ACO). 

RESULTS AND ANALYSIS 

Comparative Analysis of Algorithm Performance 

TABLE 1. Comparison of results obtained from 100 runs of different algorithms (ΩVIS = 1 ΩUV = 3) 

Algorithm 
Average ultraviolet 

transmission rate 

Average visible light 

transmittance 

Average fitness function 

value 

Average single-run 

duration 

GA+ACO 76.40% 78.69% -1.5015 2.94s 

ACO 76.44% 78.79% -1.5052 3.05s 

PSO 76.39% 78.80% -1.5036 3.07s 

GA 76.40% 78.78% -1.5043 3.09s 

TABLE 2. Comparison of data under the optimal fitness of each algorithm after 100 runs (ΩVIS = 1 ΩUV = 3) 

Algorithm 
Optimal fitness function 

value 

The ultraviolet transmission rate under 

the optimal fitness function value 

The visible light transmittance under 

the optimal fitness function value 

GA+ACO -1.4867 75.83% 78.00% 

ACO -1.4948 76.09% 78.81% 

PSO -1.4881 75.76% 78.46% 

GA -1.4896 75.95% 78.88% 

TABLE 3. Comparison of results obtained from 100 runs of different algorithms (ΩVIS = 1 ΩUV = 10) 

Algorithm 
Average ultraviolet 

transmission rate 

Average visible light 

transmittance 

Average fitness 

function value 

Average single-run 

duration 

GA+ACO -6.8488 76.40% 78.66% 3.04s 

ACO -6.8570 76.43% 78.64% 3.16s 

PSO -6.8495 76.36% 78.70% 3.15s 

GA -6.8542 76.41% 78.64% 3.17s 

 

In the comparison of algorithm performance, the GA+ACO algorithm demonstrates comprehensive advantages. 

As shown in Table 1, its average fitness function value (-1.5015) is the best, and its average single run time (2.94s) is 

the shortest. It also has superior performance in both running efficiency and average performance. In Table 2, the 

optimal fitness function value (-1.4867) still leads, verifying its optimization accuracy. When the parameters are 

adjusted to focus more on reducing the ultraviolet transmission rate (Table 3), the average single run time of GA+ACO 

(3.04s) remains the shortest, and the fitness function still remains the largest. The parameter adaptability and 

robustness are strong. 

By combining the three tables, it can be seen that under different weight configurations, GA+AOC always 

optimizes the average and optimal fitness based on the shortest running time (Tables 1 and 2), and further expands the 

advantage of visible light transmittance in the high ultraviolet weight scenario (Table 3), achieving a triple 

breakthrough in efficiency, accuracy, and adaptability. Its performance comprehensively surpasses single algorithms 

such as ACO, PSO, and GA. Regardless of how the weights are adjusted, it can efficiently balance the computing 

speed and optimization quality, providing a reliable solution with both speed and accuracy for complex optical 

optimization problems. It demonstrates significant comprehensive advantages in multiple performance indicators. 



Spectral Intensity Contrast Analysis 

The graphs showing the variation of incident light intensity and outgoing light intensity with wavelength after 

optimization by GA + ACO algorithm are presented in Figures 4 and 5. Figures 4 and 5 respectively, illustrate the 

changes in irradiance in different wavelength bands before and after optimization. The abscissa represents the 

wavelength (nm), and the ordinate represents the irradiance (W/m²/nm). The blue line represents the original 

irradiance, and the red line represents the irradiance after optimization. 

 

FIGURE 4. UV band (300-400NM) irradiance comparison (original). 

 

FIGURE 5. VIS-NIR band (400-2000NM) irradiance comparison (original). 

 

From Figures 4 and 5, it can be concluded that after optimization by the GA + ACO algorithm, the irradiance can 

be precisely adjusted in the 280-400nm ultraviolet wavelength band and the 400-2000nm visible light-near-infrared 

wavelength band. The maximum visibility transmission rate of 78.42% was successfully achieved, while the 

ultraviolet transmission rate was minimized to 75.30%, fully demonstrating the significant advantages of this 

algorithm in optimizing radiation characteristics and achieving specific transmission rate targets. 

Research Limitations and Improvement Directions 

Although this research has achieved certain results, there is still room for optimization. For instance, at the level 

of algorithm parameter setting, the currently used fixed parameters are difficult to adapt to complex and variable 

optimization scenarios. In the future, dynamic adjustment of algorithm parameters can be carried out, such as 

adaptively adjusting the crossover and mutation probabilities of the genetic algorithm based on the iterative process, 

and the evaporation coefficient of pheromones in the ant colony algorithm [7]. In the early stage of the algorithm, 

appropriately increasing the mutation probability of the genetic algorithm and the evaporation coefficient of 

pheromones in the ant colony algorithm can enhance the global search ability. In the later stage, relevant parameters 

can be reduced to focus on local fine optimization. At the same time, the current research uses a linear weight setting 

method for the fitness function, which makes it difficult to accurately depict the complex nonlinear relationships 

between different objectives, and is sensitive to noise and parameter fluctuations. In the future, non-linear functions 

or neural networks can be introduced to construct a dynamic weight adjustment mechanism to improve the fitting 

accuracy of the fitness function for practical problems [8]. 

From the perspective of optimization objectives, this study mainly focuses on the optimization of glass optical 



properties. In the future, multi-physical field models such as heat conduction can be introduced to comprehensively 

consider the optical, thermal insulation, and strength properties of glass, and conduct multi-objective and multi-

constraint optimization for architectural glass. The multi-objective conflicts can be handled using the Pareto frontier 

method or the target layering method to provide decision-makers with more comprehensive optimization solutions. 

In terms of algorithm integration innovation, it is possible to attempt to combine deep learning with genetic 

algorithms. By leveraging the powerful nonlinear fitting ability of neural networks, the relationship between glass 

thickness and optical performance can be rapidly predicted, replacing the time-consuming numerical simulation 

calculations. This will further enhance the optimization efficiency [9]. At the same time, exploring more hybrid 

strategies of intelligent algorithms, such as combining the simulation annealing algorithm, particle swarm optimization 

algorithm with existing algorithms, can overcome the premature convergence and local optimal problems of 

algorithms, and enhance the adaptability and robustness of algorithms in complex architectural glass optimization 

problems [10]. 

CONCLUSION 

This study proposes a genetic ant colony combined algorithm to optimize the thickness of three layers of glass, 

aiming to balance the anti-ultraviolet performance and the visible light transmittance. A model was constructed based 

on the AM1.5 solar spectrum data, and the algorithm was optimized through a collaborative search of the genetic 

algorithm and the ant colony algorithm. The results show that when ABC is used, the average fitness value of the 

algorithm is -1.5015, and the average single run time is 2.94 seconds. These are superior to the ant colony algorithm, 

particle swarm algorithm, and genetic algorithm. The optimal solution corresponds to an ultraviolet transmittance of 

75.83% and a visible light transmittance of 78.00%. Spectral analysis indicates that the irradiance in the 280-400nm 

ultraviolet wavelength band has significantly decreased, while the irradiance in the 400-2000nm visible light-near-

infrared wavelength band has been effectively retained. This verifies the optimization effect of the algorithm on the 

target wavelength band. The study provides a data-driven solution for the design of intelligent building glass, and has 

important scientific value and engineering practical significance for promoting the research and development of low-

emission, high-transmittance new building materials and the development of low-energy consumption intelligent 

buildings. 

However, this study has limitations in terms of algorithm parameters and the analysis dimensions of the physical 

field. It only uses preset parameters and does not consider the coupling of multiple physical fields, such as heat 

conduction. In the future, the algorithm can be optimized by dynamically adjusting the crossover and mutation 

probabilities of the genetic algorithm, the evaporation coefficient of the pheromone in the ant colony algorithm, and 

by introducing multi-physical field models, expanding application scenarios, and integrating deep learning to improve 

the optimization efficiency and applicability. 
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