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Abstract. In the era of the Internet of Everything, optical network fault detection plays a pivotal role in maintaining high
service quality. Traditional machine learning methods for optical performance monitoring require extensive data quality
and quantity, often resulting in limited interpretability and low efficiency. This study introduces an innovative fault
detection and migration training approach based on a Fast Fourier Transform and Kolmogorov-Arnold Network (FFT-
KAN) model. The proposed method employs the FFT algorithm for effective feature extraction from 16QAM constellation
diagrams, capturing frequency domain characteristics and image-based features such as edge density, contrast, and
correlation. These features are subsequently processed by the KAN model, which combines the advantages of multilayer
perceptrons and splines to simplify network structure and enhance interpretability while maintaining computational
efficiency. Experimental results demonstrate that the FFT-KAN model achieves perfect performance in binary
classification tasks, with accuracy, precision, recall, and F1 scores reaching 100%. Moreover, in five-class fault detection,
the model attains an overall accuracy of 99%, outperforming conventional techniques such as support vector machines and
isolation forests. The integration of FFT and KAN offers a robust solution for fault mode detection in optical networks.
Future work will explore the incorporation of big data analytics, cloud computing, and dynamic model optimization to
further enhance the applicability of the proposed approach in intelligent maintenance and network management. These
results confirm the FFT-KAN model’s potential as a tool for diagnostics.

INTRODUCTION

With the advent of the Internet of Everything and the rapid deployment of 5G networks, the complexity and data
volume within optical networks have significantly increased. These developments have brought about new challenges
in maintaining high service quality, where optical network fault detection plays a pivotal role in ensuring reliable data
transmission [1]. As the backbone infrastructure for modern communication, optical networks require robust fault
detection and diagnostic techniques to promptly identify and address performance degradations that could lead to
service disruptions.

Traditional fault detection approaches in optical performance monitoring (OPM) have predominantly relied on
classical machine learning methods such as support vector machines (SVM), ridge regression (RR), and artificial
neural networks (ANN) [2—4]. While these methods have contributed to early advancements in fault identification and
localization, they typically demand large volumes of high-quality data and often exhibit limited interpretability and
efficiency. The inherent complexity of optical networks, combined with the dynamic behavior of network components,
necessitates more sophisticated approaches that can extract critical features from noisy signals while simplifying the
model structure for enhanced interpretability.

In recent years, advances in machine learning have opened new avenues for addressing these challenges. In 2024,
Liu Ziming and Max Tegmark introduced the Kolmogorov-Arnold Network (KAN), a computational model derived



from the Kolmogorov-Arnold theorem, which promises improved interpretability by reconstructing complex
multivariable functions through finite layers of univariate computations [5]. The KAN model, when combined with
efficient feature extraction methods, offers a promising solution for optical network fault detection.

This paper proposes an innovative fault detection and migration training approach based on the integration of the
Fast Fourier Transform (FFT) and the KAN model, herein referred to as the FFT-KAN model. The FFT algorithm is
utilized for the extraction of frequency-domain features from 16QAM constellation diagrams, capturing both signal
frequency characteristics and image-based properties such as edge density, contrast, and correlation. By processing
these features through the KAN model—which synergistically combines the strengths of multilayer perceptrons and
splines—the proposed approach simplifies network structure while achieving high computational efficiency and
interpretability.

The following sections summarize previous work in optical performance monitoring using FFT, KAN, and
traditional machine learning techniques, and then provide a detailed comparison of OPM performance using KAN
versus multilayer perceptrons (MLPs). This work not only highlights the superior performance of the FFT-KAN model
in both binary and multi-class fault detection tasks but also discusses its potential for future integration with advanced
technologies such as big data analytics, cloud computing, and fog computing to further enhance intelligent
maintenance and network management [6-7].

RESEARCH METHODS

FFT algorithm

Fast Fourier Transform (FFT) is an efficient Discrete Fourier Transform (DFT) algorithm widely used in signal
processing, image processing, communication systems, etc. The core idea of the FFT algorithm is to use the symmetry
and periodicity of the Discrete Fourier Transform (DFT) to decompose a long DFT sequence into multiple shorter
DFT sequences, thereby reducing the computational complexity and improving the efficiency of machine learning.

The FFT algorithm is used for feature extraction. It transforms the signal from the time domain to the frequency
domain, which allows for the extraction of the signal's frequency characteristics. In this experiment, the FFT algorithm
is employed for image feature extraction, and the frequency characteristics are utilized to describe the image's edges,
shapes, and other features.

Kolmogorov-Arnold Network

Derived from the Kolmogorov-Arnold theorem—a mathematical contribution by Kolmogorov and Arnold in the
1950s—KANs exemplify a neural network design that operationalizes the theorem's key insight: complex
multivariable functions can be reconstructed through finite layers of single-variable computations. Although the
mathematical explanation of KANs is elegant, they are nothing more than a combination of splines and multilayer
perceptrons (MLPs), taking advantage of their respective strengths and avoiding their respective weaknesses [5]. To
accurately learn functions, the model should not only learn the combinatorial structure (external degrees of freedom)
but also approximate the single-variable functions (internal degrees of freedom) well [5]. KANs are such models
because they have MLPs on the outside and splines on the inside. Therefore, KAN can not only learn features (due to
their external similarity to MLP) but also optimize these learned features very accurately (due to their internal
similarity to splines) [5]. Based on this theory, KAN significantly simplifies the network structure. The model
enhances its interpretability and computational efficiency by breaking down intricate high-dimensional functions into
combinations of simpler univariate functions.

EXPERIMENTAL PROCEDURE

Feature Extraction

The laser within the optical transponder might malfunction or be improperly configured, leading to signal power
that exceeds expectations and causing the channel center frequency to drift. These failures can cause additional
interference to adjacent channels, affecting the overall performance of the optical network. This paper proposes using
constellation diagrams to detect anomalies in optical transponder signals, focusing on the 16QAM constellation at the



channel receiver under test (CUT). Dataset is the constellation diagram of the 16QAM receiver at the channel under
test (CUT), including both normal operation and failure (Figures 1, Figures 2 ) [6]. A binary label system is introduced
during fault detection: 0 represents normal data, and 1 represents failure data. A five-level label system is constructed
to distinguish the degree of failure during data classification, with 0, 1, 2, 3, and 4 corresponding to the five progressive
levels from normal operation to failure, thereby achieving an accurate characterization of the data status.
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FIGURE 1. Legend of normal and abnormal signals in a dataset (Picture credit: Original).
Image Label Distribution

Anomalous Normal
Label

FIGURE 2. The number of normal signals and abnormal signals in the dataset (Picture credit: Original).

First, read the image, convert it to a grayscale image, and normalize it for subsequent feature extraction. Then, the
FFT algorithm is used to calculate the Fourier transform of the constellation image and flatten the spectrum into one-
dimensional data. Using the processed data, calculate Mean Frequency, Std Frequency, Frequency Variance, Mean
Frequency row, and Mean Frequency col (as shown in Figure 3 and Figure 4). Next, re-read the image, obtain the
Edge Density of the data, and use the Gray Level Co-occurrence Matrix (GLCM) to extract the image's Contrast,
Correlation, Energy, and Homogeneity features. Finally, save the extracted features to a CSV file. Figure 5 shows the
Feature Extraction Flow [7,8].

Normal Normal Fourier Mean Variance Skewness
rYY Y] o 10 10 10
50{ ¥R GS 250 o5 i 5
seee g . .
501 SO ® 500
0.0 0.0 0.0
0 500 0 500 0 200 400 600 0 200 400 600 0 200 400 600
Normal Normal Fourier Mean Variance Skewness
0 o 1.0 10 10
see ’ ’ }
250 ..': 250 05 05 s
see ’ ’ ’
s00{ MWRS 500
0.0 0.0 0.0
0 500 0 500 0 200 400 600 0 200 400 600 0 200 400 600

Anomalous

Anomalous Fourier Mean Variance Skewness
o 10

»07; 20 05 05 05

g
>
)

500 500

0.0 0.0 0.0

0 500
Anomalous

o 500 200 400 600 200 400 600 200 400 600

Aonomalous Fourier Mean Variance Skewness
10 10

°
°
)

250 250

05 05 0.5

500 500

>
2
)

0.0 0.0 0.0

0 500 0 500 0 200 400 600 0 200 400 600 0 200 400 600
Anomalous Anomalous Fourier Mean Variance Skewness
o T YY) o 10 10 10
230 : » : 250 05 05 05
s00 | GBS 500
0.0 . 0.0 . 0.0 ,
0 500 0 500 0 200 400 600 0 200 400 600 0 200 400 600

FIGURE 3. Visualization of features extracted from constellation images by FFT algorithm (Part 1) (Picture credit: Original).
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FIGURE 4. Visual image of features extracted from constellation image by FFT algorithm (Part 2) (Picture credit: Original).
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FIGURE 5. Feature Extraction Flow Chart (Picture credit: Original).
Fault Detection and Classification

Firstly, the data sample is divided into training set, verification set and test set according to 7:1.5:1.5. Then, feature
selection is performed by minimizing the loss function containing multiple regularization terms. A represents the
opposing hyperparameter, t represents the domain value that determines feature selection, and [A,t] represents the
opposing important feature selection. Finally, eight eigenvalues are selected to describe the data. Then, the
hyperparameters of KANs are adjusted, including the grid G and the grid adaptation factor g, (0<g, <1), and the
function model G = g,G, + (1 — g.)G,, G, is a pure uniform grid parameter, and Ga is a pure adaptive grid
parameter) is established to make each layer of grid adapt to the basic data structure of the input to improve the
performance of the model. The KAN model is trained in the range of grid resolution (8-50) and adaptability parameter
(0-1.0), combined with a dynamic grid update strategy (adjusting the B-spline distribution every 10 steps), and the
optimal combination of balancing accuracy and complexity (such as G=15, g,=0.2) is selected through Pareto analysis



(as shown in Figure 6). The model undergoes refinement via symbolic fitting, with its predictive performance
quantified by the determination coefficient R%. The model's explanatory power improves as the coefficient of
determination (R?) nears 1.0. The cost function is defined as C(c, R*) = exp(ac) + BIn(1 — R?), where c represents
the specified complexity,a is the factor that regulates the complexity, and B is the parameter that influences the quality
of the fit. This objective function measures the deviation of the model’s outputs from ground truth data. A lower
magnitude of this metric corresponds to improved alignment between predictions and observations, reflecting
enhanced model efficacy. Parameter optimization during training is achieved by iteratively reducing this function.
After selecting several sets of model parameters, each trained model is evaluated on the training set to determine the
most important features and the best model parameters. The KAN model is used to traverse 25 sets of thresholds (0.01-
0.2) and regularization coefficients (0.001-0.02) to evaluate feature importance and generate the Pareto frontier (as
shown in Figure 7). Finally, <4 key features and the optimal regularization parameter (such as A=0.005, 1=0.156)
were screened out, and the high-contribution features were retained for subsequent modeling. Finally, eight important
features were determined: Contrast, Correlation, Energy, Homogeneity, Edge Density, Mean Frequency, Std
Frequency, and Frequency Variance. Then, the training and validation sets were merged to train the final model
parameters. The symbolic expression of KAN was extracted by the auto_symbolic method, and the threshold of R*> =
0 was set to retain valid items (such as 0.12 * tanh(1.5x)). The F1 score of the symbolic model in the test set was
verified to be close to that of the original model, ensuring interpretability and no significant loss of accuracy. Finally,
the debugged KAN model was evaluated on an independent test set, including accuracy, precision, recall, and F1
score, and the evaluation results of binary tags and quintuple tags were output, respectively.
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FIGURE 6. (a) Grid Size vs. Grid Adaptability for KAN F1-Score (b) Grid Size vs. Grid Adaptability for Interpolated Symbolic
F1-Score (Picture credit: Original).

By analyzing the two heatmaps, researchers can avoid the red low-performance region and choose a point in the

blue Pareto efficient region (such as G=15, g,=0.2), thereby determining a KAN model structure that is both accurate

and easy to translate into symbolic formulas.
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FIGURE 7. (a) Interpolated F1-Score for A Values vs. T Values (b) Interpolated Number of Features for A Values vs. T Values
(Picture credit: Original).
By analyzing these two heatmaps, researchers can accurately select A and t (such as A=0.005, 1=0.156), so as to
screen out the most core features with the minimum performance cost, which greatly enhances the simplicity and
interpretability of the model.



The identical dataset was independently processed using conventional machine learning models, after which the
precision, accuracy, recall, and F1 scores were compared statistically. The process of fault detection is shown in the
Figure 8.
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FIGURE 8. Fault Detection Flow Chart (Picture credit: Original).
RESULTS

In the ultimate assessment of the model, the KAN-FFT model demonstrated remarkable capability in fault
detection. In the fault detection task for binary labeled data, the accuracy, precision, recall, and F1 score of the KAN
model and the model after transfer learning reached 1.0, indicating that it can identify faults and normal states with
extremely high accuracy. As shown in Table 1 and Figure 9~Figure 12, under the same data set test environment, the
KAN-FFT model performed significantly better than traditional machine learning models, including the support vector
machine (SVM) and isolation forest models [9,10].

TABLE 1. Execution effect of KAN network on data of binary classification label.

precision recall fl-score support
0 1.00 1.00 1.00 46
1 1.00 1.00 1.00 30
accuracy 1.00 76
macro avg 1.00 1.00 1.00 76
weighted avg 1.00 1.00 1.00 76
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FIGURE 9. Execution effect of KAN network on data transfer of binary classification label (Picture credit: Original).



Confusion Matrix for Fault Classification
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FIGURE 10. Execution effect of KAN network after learning of data of binary classification labels (Picture credit: Original).
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FIGURE 11. Results of isolated forest model execution (a) Accuracy (b) Precision (c) Recall (d) F1-Score (Picture credit:
Original).
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FIGURE 12. Results of SVM model execution (a) Accuracy (b) Precision (c) Recall (d) F1-Score (Picture credit: Original).

Figure 11 consists of four subfigures, corresponding to the line charts of the four key indicators of the model in
the binary classification task: Accuracy, Precision, Recall, and F1-Score, show the execution results of the isolation
forest model, and Figure 12, with the same composition as Figure 11, shows the execution results of the SVM model
with respect to the four key indicators.

Through the visualization of Figure 11 and Figure 12, it can be clearly seen that the index curves of the two
traditional models show significant volatility, which is in sharp contrast with the stable performance of the FFT-KAN
model approaching 1.0 (Figure 13, Figure 14), and clearly indicates that in the complex multi-classification task of
optical fiber fault, The performance of the traditional isolation forest and SVM model is unstable and not good enough,
which strongly proves the excellence and advanced of the FFT-KAN model in accuracy, precision and stability.

As shown in Table 2 and Table 3, Figure 13 and Figure 14, both the original and symbolic models classified the
five types of data well, achieving an accuracy rate of 99%. The high accuracy, precision, recall, and F1 score indicate
that the model can accurately classify the sample status.

TABLE 2. Execution effect of KAN network on data of five classification labels.

precision recall fl-score support
0 1.00 0.93 0.97 15
1 0.94 1.00 0.97 15
2 1.00 1.00 1.00 15
3 1.00 1.00 1.00 16
4 1.00 1.00 1.00 15
accuracy 0.99 76
macro avg 0.99 0.99 0.99 76

weighted avg 0.99 0.99 0.99 76
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FIGURE 13. Execution effect of KAN network on data of five classification labels under the original model (Picture credit:

Original).
TABLE 3. Execution effect of KAN network on data of five classification labels.
precision recall fl-score support
0 1.00 0.93 0.97 15
1 0.94 1.00 0.97 15
2 1.00 1.00 1.00 15
accuracy 0.99 76
macro avg 0.99 0.99 0.99 76
weighted avg 0.99 0.99 0.99 76
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FIGURE 14. Implementation effect of KAN network on data with five classification labels under symbolic model (Picture
credit: Original).



CONCLUSION

This research presents a novel approach to optical fiber fault detection and migration training by integrating the
Fast Fourier Transform (FFT) with the Kolmogorov-Arnold Network (KAN), herein referred to as the FFT-KAN
model. The proposed method addresses several challenges inherent in traditional optical performance monitoring
techniques, such as the heavy dependency on high-quality and abundant data, limited model interpretability, and
suboptimal computational efficiency. By leveraging the FFT algorithm for feature extraction, the model effectively
transforms 16QAM constellation diagrams from the time domain into the frequency domain, capturing critical
frequency-domain characteristics and image-based features such as edge density, contrast, and correlation. This
transformation facilitates the accurate identification of fault patterns, which is crucial in detecting subtle anomalies in
optical networks.

The KAN model, derived from the Kolmogorov-Arnold theorem, significantly enhances the interpretability and
efficiency of the diagnostic process. Unlike conventional neural networks, KAN decomposes complex multivariable
functions into simpler univariate functions by combining the strengths of multilayer perceptrons and splines. This
unique combination simplifies the network structure while ensuring that essential features are optimized accurately.
As demonstrated by our experimental results, the FFT-KAN model achieved 100% accuracy, precision, recall, and F1
scores in binary classification tasks, indicating its robust capability in distinguishing between normal and faulty states.
Furthermore, in more complex five-class fault detection scenarios, the model maintained an impressive overall
accuracy of 99%, outperforming established conventional techniques such as support vector machines (SVM) and
isolation forest models.

The integration of FFT and KAN in the proposed model not only provides high diagnostic accuracy but also offers
significant improvements in model interpretability and computational efficiency. The Pareto analysis conducted
during model training ensured that the balance between accuracy and model complexity was optimized, resulting in a
diagnostic tool that is both powerful and practical for real-time fault detection in optical networks. The symbolic fitting
process further validates that the derived symbolic expression of the KAN model retains the performance of the
original model, ensuring that interpretability is not sacrificed for accuracy. In addition to demonstrating superior
performance compared to traditional machine learning models, the FFT-KAN model’s ability to adapt to varying data
distributions and dynamically update its internal parameters positions it as a promising candidate for future integration
with emerging technologies. The potential to incorporate big data analytics, cloud computing, and fog computing into
the framework opens up new avenues for scaling and enhancing the model’s applicability in intelligent network
management and maintenance. This adaptability is critical for addressing the challenges posed by the increasing
complexity and data volume in modern optical networks.
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