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Abstract. Optical communication systems offer properties of high bandwidth and low latency but still face significant 

challenges in managing nonlinear distortion, spectral efficiency, and dynamic channel impairments. Machine learning 

offers promising solutions. This research systematically examines how machine learning techniques address these 

limitations. Supervised learning improves signal demodulation and channel compensation. It demonstrates exceptional 

capability in signal demodulation and impairment compensation. For example, CNN-based receivers reduce nonlinear 

distortion and bit errors. Unsupervised learning enables automated anomaly detection and traffic monitoring that boosts 

efficiency. It emerges as a powerful tool for autonomous network monitoring. Reinforcement shows particular promise in 

areas of learning that optimize resource allocation and fault recovery in dynamic networks. However, some critical 

barriers hinder widespread ML adoption. There are challenges including limited datasets, high computational costs, and 

model interpretability. Future work should focus on hardware acceleration and hybrid modeling to balance performance 

and real-time operation. This approach could drive the broader adoption of machine learning in optical communications. 

INTRODUCTION 

Optical communication systems have become a key technology in modern communication networks. This is due 

to their high bandwidth, low latency, and resistance to interference [1]. However, traditional systems face challenges 

in suppressing nonlinear effects, optimizing spectral resources, and compensating channel impairments. These 

challenges arise from increasing capacity demands and complex application scenarios [2]. For example, nonlinear 

distortion in fiber transmission and dynamic channel variations cause signal distortion. Static resource allocation 

strategies also fail to meet diverse service requirements, limiting system performance improvements [3]. 

Machine learning (ML) offers potential solutions for enhancing optical communication systems. Supervised 

learning with neural networks improves signal demodulation and impairment compensation [2]. Unsupervised 

learning enables network monitoring through clustering and anomaly detection [4]. Reinforcement learning (RL) 

optimizes resource allocation and failure recovery in elastic optical networks [5,6]. However, practical ML 

deployment faces issues such as limited datasets, low computational efficiency, and poor model interpretability [7]. 

This paper reviews ML applications in optical communication systems, compares algorithm performance, and 

explores future directions for hardware-software co-design. The goal is to support the intelligent development of 

optical networks. 
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SUPERVISED LEARNING  

Overview 

Supervised learning is an important branch of machine learning. It uses the "features" and "labels" in the training 

data to let the machine learn the relationship between "features" and "labels" and build a model. Supervised learning 

requires knowing what to teach the machine in advance, and the data training set must be large enough. Only by 

continuous verification and repeated adjustment of optimization parameters can the expected results be obtained [1]. 

The theoretical framework of supervised learning is shown in Figure 1. 

 

FIGURE 1. Supervised learning block diagram[1] 

 

Supervised learning can be roughly divided into two categories of algorithms. The first category is the 

classification algorithm, in which the algorithm learns the relationship between data and labels and builds a model 

during training [8]. The trained model can be used to predict the label of unseen data. The second category is the 

regression algorithm. During the regression algorithm training process, the algorithm builds a model by learning the 

input features and their corresponding labels. It uses the model to predict the continuous output of unfamiliar data 

[8,9]. For example, it is used to predict the rise and fall of housing prices. 

 

Supervised Learning Application Examples 

Modem for optical communication systems 

Multiple-input multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM) visible light 

communication systems have problems such as signal crosstalk, high peak-to-average power ratio, LED bandwidth 

limitation, and nonlinear effects. Currently, an effective method to solve these problems is a VLC receiver based on 

a convolutional neural network (CNN) [2]. It can realize MIMO-OFDM signal demodulation by learning the 

distorted signal at the receiving end and the signal at the transmitting end, which can improve the system's ability to 

suppress nonlinear distortion and have low complexity. 

The CNN receiver is nearly an order of magnitude better than the traditional LS receiver in recovering and 

improving the non-linearity and linear distortion of the signal. Even as the distance between the LED and the APD 

increases, the CNN receiver can still better suppress the crosstalk between signals and maintain a low bit error rate 

(Rbe). Under the same conditions, the bit error rate of the CNN receiver is lower than that of the LSTM receiver and 

the FNN receiver. Compared with the least squares (LS) receiver, the CCN receiver can improve the average bit 
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error rate by more than one order of magnitude, while effectively overcoming the LED bandwidth limitation 

problem and increasing the bit transmission rate by 53% [2].  

Channel impairment compensation based on deep learning 

By using end-to-end bidirectional long short-term memory (BiLSTM) to model the fiber channel of on-off 

keying and pulse amplitude modulation signals, the nonlinear and dispersion problems in channel damage 

compensation can be effectively solved [3]. In addition, BiLSTM contains forward and backward LSTM layers, 

which makes it more efficient in processing time series problems [10]. 

Experimental results show that BiLSTM converges faster than Back Propagation Deep Neural Network (BP-

DNN) and Bidirectional Recurrent Neural Network (BiRNN). BiLSTM calculates faster in the case of long fiber 

length (>50km), high power (>9dBm), and large number (>215). In comparison, the calculation time of traditional 

SSFM is 80% longer. At the same time, it is proved that the calculation time of BiLSTM is independent of fiber 

length and transmission power, and is insensitive to data volume within a certain size, which has obvious advantages 

over SSFM [3].   

Evaluation of optical network transmission quality based on supervised learning 

Supervised learning can be used to evaluate the quality of transmission (QoT) of optical networks. In [11], 

different supervised learning algorithms, including support vector machines (SVM), bagging trees (TREEBAG), 

random forests (RF), classification and regression trees (CART), and Logistic recession, were compared in terms of 

the success rate of lightpath classification and the time required to predict and classify a single lightpath. It was 

demonstrated that all of the above algorithms are effective in solving the Q factor classification problem. In 

particular, RF and TREEBAG can further reduce the time required to classify a single lightpath while achieving a 

classification accuracy of 99.99%, which is 2.75 times faster than SVM [12]. 

UNSUPERVISED LEARNING 

Overview 

Unsupervised learning is a machine learning approach that operates without labeled data. It extracts knowledge 

by analyzing inherent structures and hidden patterns within datasets. Key tasks in unsupervised learning include 

clustering, dimensionality reduction, anomaly detection, and association rule mining. Clustering algorithms form the 

core methodology. These techniques partition data points into groups where intra-group similarity is high and inter-

group similarity is low. They enhance pattern discovery and improve analytical accuracy. 

 

Unsupervised learning application  

Optical network detection based on unsupervised learning 

Conventional anomaly detection algorithms often suffer from high computational complexity and poor 

scalability with increasing monitoring data volumes. Recent studies have proposed a vision-based approach using 

deep unsupervised learning for spectrum anomaly detection, which relies on received signal constellation diagrams 

for optical network monitoring [4]. 

The method employs a convolutional neural network (CNN) coupled with an autoencoder to compress 

constellation diagram images. It extracts key features and reduces data dimensionality. The compressed 

representations are then analyzed using DBSCAN (Density-Based Spatial Clustering of Applications with Noise) for 

anomaly detection [4]. Table 1 compares the performance of different algorithm combinations with various machine 

learning models. 
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TABLE 1. The performance of different algorithm combinations with various machine learning models. 

 

Method 
DBSCAN-AE              

(Autoencoder-assisted DBSCAN) 

DBSCAN-U  

(Unencoded DBSCAN) 

Traditional Method  

(Non-ML) 

Learning Type Unsupervised Learning Unsupervised Learning No Machine Learning 

Accuracy 100%  Fails to detect anomalies Low 

Runtime 

Advantages 

 

Disadvantages 

Fastest  

High accuracy, fast processing, 

fully automated 

Requires autoencoder design 

Slowest  

Fully automated 

 

Cannot handle 

 high- dimension data 

Slow  

No ML required 

 

Low accuracy and 

efficiency 

 

The comparative results demonstrate distinct performance characteristics among the evaluated methods. 

DBSCAN-AE combines an autoencoder with DBSCAN and achieves perfect 100% detection accuracy while 

operating 200 times faster than DBSCAN-U, making it particularly suitable for large-scale optical network 

monitoring applications. In contrast, DBSCAN-U employs unsupervised learning without requiring labeled data. It 

fails to process high-dimensional inputs effectively and results in complete anomaly detection failure with the 

slowest processing speed among all tested methods [7]. Traditional non-machine learning approaches that depend on 

manual analysis show significantly lower accuracy and efficiency, restricting their practical application to only 

small-scale or specific scenarios. These findings clearly highlight the superiority of the DBSCAN-AE approach for 

modern optical network monitoring requirements. 

Real-time user discovery based on unsupervised learning 

Free-space optical communication (FSOC) systems face growing complexity when supporting multiple users 

with heterogeneous transmission requirements. Current implementations lack autonomous, real-time methods to 

detect active user counts and limit adaptability in dynamic environments. 

This work presents an unsupervised machine-learning approach for real-time user detection in shared bandwidth 

scenarios [13]. The method applies clustering analysis to received mixed signals, extracting power level 

characteristics to estimate simultaneous transmissions. 

The experimental results show over 92% detection accuracy under moderate atmospheric turbulence conditions. 

The validated empirical model effectively predicts detectable user counts at given sampling rates, while comparative 

analysis with conventional methods confirms significant performance advantages. Table 2 compares the 

performance metrics of the unsupervised learning model against baseline non-ML methods. 

 

TABLE 2. The performance metrics of the unsupervised learning model against baseline non-ML methods. 

 

Aspect Without Unsupervised Learning With Unsupervised Learning 

Real-time Capability Unable to detect user count in real-

time 

Real-time user detection with 

dynamic environmental 

adaptation 

Detection Accuracy Low accuracy in complex 

environments 

High-precision detection 

System Complexity 

 

Resource Allocation 

 

Requires complex hardware 

 

Static allocation, no dynamic 

adjustment 

Software-based implementation 

reduces hardware dependency 

Dynamic resource allocation 

improves system efficiency 
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REINFORCEMENT LEARNING 

Overview 

Reinforcement learning (RL) trains an agent to learn optimal policies by interacting with an environment. The 

agent aims to maximize cumulative rewards. Unlike other ML methods, RL relies on trial-and-error learning in 

dynamic environments rather than labeled datasets. This makes RL suitable for interactive problems. 

RL shows promise in addressing challenges in optical communications, such as dynamic channel variations (e.g., 

atmospheric turbulence, fiber nonlinearities), diverse service demands (e.g., real-time video vs. IoT), and complex 

network topologies (e.g., elastic optical networks). 

However, RL applications at the physical layer remain limited. Real-time constraints, hardware limitations, and 

cost-performance trade-offs restrict its use. While RL achieves slight performance gains over traditional methods, it 

introduces higher complexity. Current research focuses on network and data link layers, such as improving coding 

efficiency in high-order modulation [14,6]. 

This section analyzes RL algorithms and their applications. 

 

Application Case Analysis of RL 

TABLE 3. Performance of RL algorithms in optical communications. 

 

Table 3 summarizes the latest applications of RL in optical communications. RL improves performance in these 

scenarios, but practical challenges remain. First, networks must guarantee performance under worst-case conditions, 

requiring robust RL algorithms. Second, models trained on specific datasets may not generalize to other scenarios, 

limiting scalability. 

Other issues include poor interpretability of RL models (often seen as "black boxes") and slow convergence 

during early learning phases. Future work should focus on lightweight models, hardware-algorithm co-design, and 

improving interpretability. 

CONCLUSION 

Machine learning technology has shown its powerful power in modern science and technology, and has been 

widely used in many fields, including optical communication systems. With the growing demand for high-capacity 

and high-capacity networks, the application of optical communication technology based on machine learning 

technology has become more and more in-depth. This paper outlines the difficulties and challenges in the current 

traditional optical communication system network, briefly introduces some examples of machine learning 

technology applied to optical communication systems, and summarizes the role of machine learning in solving the 

problems of traditional optical communication systems. It is discussed that compared with the traditional optical 

communication system architecture, the optical communication system after the application of machine learning will 

indeed be greatly improved in some aspects such as reducing channel damage, detecting optical network dynamics, 

optical network resource allocation, and multi-layer network recovery. But at the same time, machine learning also 

faces some challenges in its actual application in optical communication systems. At present, most machine learning 

applications in optical communication systems adopt online simulation methods, which require a large amount of 

data to support model training. Therefore, there is a problem of difficulty in data collection. In addition, due to 

Scenario Algorithm Improvement Limitations 

Spectrum Allocation DQN blocking rate ↓23%[5] Requires large training data 

Multi-core EON 

Allocation 

DDPG spectral 

efficiency↑18%[14,6,15] 

Slow real-time response 

Multi-layer Network 

Recovery 

ARO+DRL 98% recovery success rate 

[16] 

Unverified protocol 

compatibility 

Satellite Wavefront 

Correction 

DQL coupling efficiency↑30%[17] Sensitive to dynamic 

environments 
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external conditions and other changes in actual applications, there are problems such as high real-time requirements 

for algorithms and high hardware requirements. Machine learning models need to find a balance between various 

data, and further optimize them by combining hardware acceleration and hybrid modeling technology, to pursue 

performance as much as possible without sacrificing latency and energy efficiency. Only after solving the current 

problems can machine learning be truly combined with optical communication systems to achieve end-to-end 

adaptive optimization, helping optical communication systems achieve ultra-high bandwidth, low latency, and high 

reliability. 
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