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Abstract. The advent of 5G and AI technologies has precipitated an exponential surge in data volume, which has rendered 

optical communication systems dependent on the efficacious utilization of digital signal processing (DSP) technologies. In 

this paper, we address the core challenges of coherent optical communication and study digital modulation identification, 

nonlinearity compensation, dynamic equalization and forward error correction coding (FEC) optimization. The 

experimental results demonstrate that deep learning can achieve 99.99% modulation recognition accuracy under complex 

channels, that a joint symbol rate optimization and perturbation compensation strategy (SRO-PB-NLC) can improve system 

performance, and that triple correlation compensation (TC-PNC) can significantly reduce computation. Furthermore, 

parallel photoelectric reservoir computation (RC) and the lightweight time-frequency network (CBV-TFNet) can achieve 

low-complexity equalization, and FEC can combine probabilistic shaping (PS) and fast coding (FTN) to improve gain and 

rate. The study emphasizes the pivotal function of algorithm-hardware synergy and intelligent optimization. In the future, 

there is a necessity to integrate quantum computing and edge intelligence in order to overcome the limitations of real-time 

and complexity. This will provide the technical foundation for 6G optical networks. 

INTRODUCTION 

With the rapid development of technologies like 5G, cloud computing, AI, blockchain, and big data, the amount 

of information generated by human society is growing exponentially. According to IDC's predictions, the volume of 

data produced in 2025 will reach 175 zettabytes (ZB), and by 2035, this figure is expected to rise to 2,142 ZB, with a 

compound annual growth rate (CAGR) of 28.46% [1]. The generation of such vast amounts of data inevitably leads 

to challenges in data transmission and processing. This not only poses a tremendous demand for computing power but 

also presents a significant challenge to information transmission and processing systems. 

In modern communication systems, over 95% of information transmission relies on coherent optical fiber 

communication. With its high bandwidth, long-distance transmission capability, and strong resistance to interference, 

coherent optical communication can effectively address these challenges. A coherent optical communication system 

consists of three main components: the transmitter, the channel, and the receiver. After the receiver captures the optical 

signal, a digital signal processing (DSP) system is required to mitigate issues arising during transmission. This system 

plays a critical role in enhancing the transmission performance and reliability of coherent optical communication 

systems, making it indispensable. 

This paper focuses on digital signal processing (DSP) technologies in optical communication systems, conducting 

research on core issues including digital modulation format identification, fiber nonlinearity compensation, dynamic 

channel equalization, and forward error correction (FEC) optimization. In terms of digital modulation format 

identification, we compare traditional methods (such as pilot-aided, likelihood-based, and feature-based approaches) 

with intelligent recognition techniques based on deep learning and machine learning, analyzing their performance 



differences and applicable scenarios. For fiber nonlinear effects, we explore joint optimization strategies combining 

multi-carrier cooperative algorithms (e.g., PM-DSCM-WDM) and hardware computational flow restructuring (e.g., 

TC-PNC architecture). In dynamic channel equalization, we investigate neural network-based approaches, including 

parallel optoelectronic reservoir computing (RC), time-frequency analysis fusion (CBV-TFNet), and low-complexity 

real-time adaptation (SkipNet). Through algorithm-hardware co-innovation and intelligent feature extraction, this 

research aims to enhance system transmission efficiency and reliability, providing technical support for future high-

speed optical networks. 

 

MODULATION FORMAT RECOGNITION 

Traditional Methods 

Traditional modulation format identification (MFI) approaches can generally be categorized into three types: pilot-

aided, likelihood-based, and feature-based. 

Pilot-aided methods rely on specific additional operations, such as radio frequency pilots [2], pilot symbols [3], or 

artificial frequency offsets [4]. While these methods have low computational complexity, they increase receiver design 

difficulty and sacrifice spectral efficiency. 

Likelihood-based methods extract modulation format information directly from received signals at the cost of 

requiring prior knowledge of the channel’s mathematical model and complex likelihood function calculations [5,6]. 

Feature-based methods employ well-validated signal characteristics, such as density peaks [7], intensity profile 

features [8], and peak-to-average ratio [9]. These classifiers rely on decision trees with predefined thresholds, which 

may introduce errors even under ideal channel conditions and require strong prior knowledge [10]. 

Deep Learning-Based Methods 

Deep learning-based MFI techniques leverage deep neural networks (DNNs) and convolutional neural networks 

(CNNs) to automatically extract features and classify modulation formats. These methods offer high accuracy, strong 

adaptability to various modulation schemes and channel conditions, and reduced manual intervention in feature design. 

However, they suffer from high computational complexity, requiring extensive training data and significant computing 

resources for both training and inference. 

The CNN is employed to automatically extract features from constellation diagram data of received signals, while 

a fully connected network is utilized to approximate the value function. Fangxu Yang et al. used 128-pixel square 

image data with three RGB channels as input, with all three convolutional layers employing 8-pixel square kernels. 

Normalization and activation processing are applied to the data after each network layer. Finally, the resulting five-

dimensional vector is multiplied by a one-hot action space vector to obtain its corresponding value function. They 

established a 32Gbaud 1000km coherent optical transmission experimental system and collected transmission data for 

five modulation formats: PDM QPSK/8PSK/16QAM/32QAM/64QAM [11]. 

For instance, Latifa Guesmi et al. proposed using artificial neural networks (ANNs) to extract asynchronous 

amplitude histogram features. Their experiments, based on the IEEE 802.11ad standard, evaluated four modulation 

formats under multiple optical impairments. The results demonstrated a 99.99% identification accuracy even in highly 

complex conditions [12].  

Machine Learning-Based Methods  

Machine learning (ML) algorithms—such as support vector machines (SVMs), random forests, and K-nearest 

neighbors (KNN)—extract features from received signals for classification without requiring predefined parameters 

or channel models. Compared to deep learning, ML-based approaches have lower computational demands and are 

easier to implement and deploy due to their mature algorithms. However, they exhibit poorer accuracy when handling 

complex modulation formats and channel conditions. Similar to likelihood-based methods, their performance heavily 

depends on empirical feature design, demanding strong domain expertise from designers. Figure 1 demonstrates the 

basic workflow of MFR (Modulation Format Recognition) technology. 



 
FIGURE 1. Flowchart of Digital Modulation Format Recognition Technology 

FIBER NONLINEAR COMPENSATION 

Traditional Methods 

Traditional optical fiber nonlinear compensation employs multiple methods. Two mainstream nonlinear 

compensation methods are listed below: 

Perturbative Nonlinearity Compensation (PNC): PNC utilizes first-order perturbation theory to model 

nonlinear distortion as triplet interactions. The nonlinear perturbation term is computed and subtracted from the 

received signal to diminish nonlinear effects. Degenerated PNC (DPNC) reduces computational complexity by 

symbol degeneration. However, the degeneration process in PNC causes information loss, leading to significant 

performance degradation for high-order modulation formats. 

Volterra Series Equalize: Volterra Series Equalize models the optical fiber’s nonlinear response using a 

Volterra series, approximating nonlinear distortion via high-order kernel functions. However, the high-order 

kernel functions result in extremely high computational complexity, making real-time processing of high-baud-

rate signals impractical. Additionally, it requires high-precision ADC/DAC and high-speed DSP chips, resulting 

in higher hardware costs. 

Joint Symbol Rate Optimization with Partitioned Perturbation-Based Nonlinear 

Compensation (SRO-PB-NLC) 

The Selvakumar research team proposed PM-DSCM-WDM joint algorithm. Integrates symbol rate optimization 

(SRO) and pre-dispersion compensation (pre-CDC) to mitigate nonlinear effects, combined with partitioned 

perturbation-based nonlinear compensation (PB-NLC) for better performance. The approach demonstrates two main 

advantages: 

Optimal Subcarrier Symbol Rate Balancing: The algorithm selects the optimal subcarrier symbol rate to 

balance self-phase modulation (SPM) and inter-channel cross-phase modulation (iXPM) effects. By integrating 

SRO with nonlinear compensation, the subcarrier symbol rate is adjusted to proactively reduce nonlinear 

impairments (e.g., suppressing iXPM and inter-channel four-wave mixing (iFWM)) in the transmission link, 

followed by targeted compensation of residual distortions. 

Split PB-NLC Architecture: The iXPM compensation is divided into transmitter-side pre-compensation and 

receiver-side post-compensation. This partitioned implementation leverages prior knowledge of transmitted 

symbols to improve compensation accuracy while reducing computational complexity at the receiver [13]. 

Comparing to traditional methods ,with 50% pre-dispersion compensation, the amount of iXPM perturbation is 

reduced by threefold. The joint SRO-PB-NLC framework achieves a 0.25 dB Q²-factor improvement and decreases 

computational complexity by sixfold. Traditional methods apply uniform compensation to the full bandwidth signal, 

resulting in high computational overhead and limited adaptability to symbol rate variations. In contrast, SRO-PB-NLC 

optimizes the symbol rate to suppress nonlinear distortions at the source, enabling efficient and targeted residual 

compensation. 



Triple-Correlation Perturbation Compensation (TC-PNC) 

Mengfan Fu and his team developed the TC-PNC architecture to reduce the computational complexity of 

perturbation term calculations through shared intermediate computations and semi-degeneration methods. The 

framework includes three key innovations. First, The Perturbation Term Merging: Using the symmetry of perturbation 

coefficients, the number of independent perturbation terms is reduced, minimizing redundant calculations. Second, 

The Product Sharing: Intermediate product results are shared across consecutive symbols to eliminate repetitive 

computations. This optimization reduces computational load by over 94.73%, decreases memory requirements to less 

than 5% of traditional PNC, and significantly lowers hardware demands. Third, The Semi-Degeneration Processing: 

High-order modulation symbols are degenerated to QPSK equivalents, replacing complex multiplications with logic 

operations. This reduces the bit count per symbol from 4 bits to 2 bits, cutting memory usage for symbol sequence 

storage by 50% [14].  

Compared to traditional PNC methods, TC-PNC achieves a 94.73% reduction in complex multiplications while 

increasing logic operations. The simplified logic operations incur lower hardware implementation costs.TC-PNC 

sacrifices marginal performance (due to partial information loss) to achieve substantial savings in memory and 

computational resources. Experimental results demonstrate a 0.77 dB SNR improvement over Degenerated PNC 

(DPNC) in a 2,000 km transmission scenario. 

 

DYNAMIC CHANNEL EQUALIZATION 

Comparison of Traditional Equalization Techniques 

Traditional dynamic channel equalization techniques employ linear/nonlinear filtering, blind equalization, or 

hybrid approaches to mitigate distortions in varying channel conditions. However, their performance is constrained 

by inherent trade-offs among computational complexity, convergence speed, and dynamic range. The table below 

compares mainstream dynamic equalization methods. 

Table 1. Comparison of Traditional Equalization Techniques: Complexity, Dynamic Range, Application Scenarios, 

and Limitations 

Technique Computational 

Complexity 

Dynamic Range Application 

Scenarios 

Limitations 

LMS(Least Mean 

Squares) 

𝑂(𝑁) Low(<15dB) Low-speed, stable 

channels 

Slow convergence 

speed,Poor noise 

robustness 

RLS(Recursive 

Least Squares) 
𝑂(𝑁2) Moderate(~20dB) High-speed mobile 

communications 

Excessive hardware 

resource consumption 

DFE(Decision 

Feedback 

Equalizer) 

𝑂(𝑁𝑓 + 𝑁𝑏) Moderate(~18dB) Channels with 

moderate ISI(Inter-

Symbol Interference) 

Error propagation-

induced performance 

degradation 

Volterra 𝑂(𝑁𝑝) High(>25dB) Strong nonlinear 

systems 

Exponentially growing 

computational 

complexity for high-

order terms; 

impractical for real-

time implementation 

CMA(Constant 

Modulus 

Algorithm) 

𝑂(𝑁) Moderate(~16dB) Burst-mode 

communications 

Unstable convergence 

behavior; dependency 

on constant signal 

modulus 

TurboEqualization 𝑂(𝑁𝑖𝑡𝑒𝑟 ⋅ 𝑁) VeryHigh(>30dB) Low-SNR channels High iterative 

processing latency; 

incompatible with real-

time systems 



Parallel Photonic-Electronic Reservoir Computing (RC) 

The Feng research team proposed a parallel photonic-electronic reservoir computing (RC) framework, leveraging 

the dynamical properties of nonlinear delayed feedback systems to implicitly learn channel characteristics. This 

approach generates rich virtual node states through the transient responses of hybrid photonic-electronic reservoirs 

(e.g., dual-polarization Mach-Zehnder modulators, MZMs), enabling direct mapping of input-output relationships. 

Advantages over Conventional Methods: 

Full-Order Nonlinear Modeling: The RC architecture utilizes the nonlinear transfer functions of photonic devices 

(e.g., MZMs) and dual-loop feedback mechanisms to achieve full-order nonlinear compensation. In contrast, 

traditional methods like feed-forward equalization (FFE) are limited to linear or low-order nonlinear mitigation and 

fail under strong nonlinear regimes. 

Low-Power Photonic Computation: The photonic implementation of RC significantly reduces power consumption, 

making it suitable for edge computing and high-speed long-haul transmission. Conventional digital electronic 

solutions suffer from higher power dissipation [15]. 

Channel Estimation-Based Time-Frequency Neural Network (CBV-TFNet) 

The research team led by Zhang proposed CBV-TFNet, a lightweight post-equalizer combining time-frequency 

analysis with channel estimation. This method employs a bandwidth-variable order loss function (BV Loss) to guide 

the neural network toward critical frequency bands, alongside a channel estimation mask generated from pilot signals 

for pre-equalizing the input spectrum. The mask suppresses interference in non-critical frequency regions, reducing 

computational load by 38.15% and significantly accelerating convergence. 

Compared to traditional approaches, CBV-TFNet models complex nonlinear relationships through multi-layer 

nonlinear activation functions and end-to-end time-frequency joint mapping. The integration of channel estimation 

mask-based pre-equalization and BV Loss guidance enables 30% faster adaptive training than conventional methods, 

achieving rapid adaptation to dynamic channel conditions. Experimental results demonstrate a 0.5 dB improvement 

in error vector magnitude (EVM) for 64QAM signals under frequency-selective fading, alongside reduced hardware 

resource demands [16]. 

SkipNet 

The research team led by Stephen L. Murphy developed SkipNet, an adaptive equalization architecture featuring 

a decoupled structure with a pre-trained kernel and a separated adaptive output layer. By integrating skip connections, 

the framework enables accelerated LMS-based training and supports packet-level adaptation for burst-mode passive 

optical networks (PONs), achieving convergence within 250 symbols—a 60% reduction compared to conventional 

adaptive filters. 

Unlike traditional approaches, SkipNet decouples nonlinear channel modeling (handled by the pre-trained kernel) 

from linear adaptive compensation (managed by the output layer). This separation allows the system to deliver neural 

network-level performance at computational complexity comparable to traditional feed-forward equalizers (FFE). 

Experimental validations demonstrate 1.2 dB SNR improvement over FFE in burst-mode PONs with hybrid 

impairments (e.g., chromatic dispersion, nonlinear phase noise), while maintaining real-time processing latency below 

1 μs. The architecture’s dual-stage design also eliminates error propagation risks inherent in decision-directed 

methods, ensuring robust operation under dynamic channel conditions [17]. 

 

FORWARD ERROR CORRECTION CODING (FEC) OPTIMIZATION 

Forward Error Correction Coding (FEC) represents a pivotal technology for the establishment of reliable 

transmission in high-speed optical communication systems. Its performance exerts a direct influence on the Net 

Coding Gain (NCG) and spectral efficiency of the system. As the fiber channel capacity approaches the nonlinear 

Shannon limit, FEC technology is undergoing a transition from independent module design to a more integrated 

approach involving co-optimization with modulation format and channel impairment compensation algorithms. This 



section reviews the research progress of FEC techniques in terms of classical coding schemes, joint optimization 

strategies and novel coding architectures. 

Performance comparison of classical coding schemes 

Low-density parity-check code (LDPC): The LDPC is based on a sparse parity-check matrix and an iterative belief 

propagation (BP) decoding algorithm. It has become the mainstream scheme for long-distance fiber optic 

communication by virtue of its error-correcting capability, which approaches Shannon's limit. The Quasi-Cyclic (QC) 

structure of its check matrix enables hardware-friendly parallel decoding and supports Tb/s-level throughput. 

However, the Error Floor phenomenon of LDPC codes is significant in low BER (<10-12) scenarios, which is mainly 

attributed to the presence of a Trapping Set. The Error Floor can be suppressed to below 10-15 by concatenating 

external codes (e.g., BCH or RS codes) or by Trapping Set Enumeration-Elimination algorithms, but with a 

corresponding increase in hardware complexity [18]. 

Polar Codes: In scenarios where the code length is less than 1024 bits, polar codes offer a coding gain of 1.5 dB 

over LDPC codes due to their channel polarization property and a compiled code complexity of O(N log N) [19]. 

However, the long code construction relies on complex Gaussian approximation or density evolution algorithms, 

resulting in limited real-time adaptability. The Segmented Polar Codes (SPC) architecture, proposed in recent studies, 

employs sub-code cascading to reduce the complexity of long code construction and demonstrates potential in 400G 

ZR+ coherent modules. 

The Turbo Codes and Cascading Scheme: Turbo codes achieve high coding gain through parallel cascaded 

convolutional codes (PCCC) and iterative decoding, but their decoding delay and power consumption limit their 

application in high-speed systems. The ITU-T G.975.1 standard advocates the use of serial cascaded codes (e.g., RS+ 

product codes) to achieve a balanced performance and complexity ratio through hard verdict iterative decoding, 

thereby attaining a Q² factor gain of up to 10 dB. 

Joint Coding-Modulation Optimization Strategies 

Probabilistic Shaping (PS): Through the optimization of signal spatial distribution via non-uniform constellation 

mapping (e.g., Maxwell-Boltzmann distribution), the PS-256QAM scheme has been shown to enhance the optical 

signal-to-noise ratio (OSNR) tolerance by 2 dB and the net coding gain by up to 13 dB. The primary challenge resides 

in the concurrent design of Probability Distribution Matching (PDM) and LDPC decoding. The crux of the issue 

pertains to the collaborative design of probability distribution matching (PDM) and LDPC decoding, a challenge that 

the Layered BP algorithm seeks to address by dynamically adjusting the LLR weights [18]. 

The FTN scheme, through the active introduction of inter-symbol interference (ISI) and the suppression of 

nonlinear impairments by constrained coding, can achieve a 50%-100% information rate enhancement in pseudo-

linear transmission systems [18]. To illustrate this point, consider the FTN architecture based on (2,∞) travel-limiting 

codes, which attains 100% rate gain over a distance of 2000 km with a low power consumption of 2.25 mW. This is 

achieved by compressing the pulse interval at a triple symbol rate and suppressing the four-wave mixing (IFWM) 

effect in combination with alternating mark inversion (AMI) [18]. 

Bit Interleaved Coded Modulation (BICM) involves the combination of LDPC coding with higher-order 

modulation (e.g., 64QAM), achieving a balanced difference in mutual information of each bit layer through the 

utilization of a pseudo-random interleaver. The distortion of the likelihood ratio (LLR) distribution due to fiber 

nonlinearity is addressed by the adaptive log-likelihood ratio (LLR) reweighting algorithm, which enhances the 

convergence speed of iterative decoding. This results in a spectral efficiency of 11.2 b/s/Hz in a C-band 80 km system. 

Novel Coding Architectures and Future Directions 

Graph Code Extensions and Hardware Optimization: Elevated graph codes (e.g., Protograph LDPC) have been 

shown to reduce decoding complexity through basemap loop extensions, and support Multi-Edge Type (MET) design 

for error floor suppression. Accumulate-Repeat-Accumulate (ARA) codes have been shown to reduce the number of 

iterations through a serial cascade structure, achieving 5 Tb/s throughput and 0.15 pJ/bit energy efficiency in a 28 nm 

ASIC. 

Nonlinear channel adaptation coding: In the context of fiber nonlinear phase noise and amplitude distortion, non-

binary LDPC codes (e.g., GF(4)-LDPC) have been shown to enhance nonlinear impairments robustness through 



multivariate symbol mapping. The Turbo equalization architecture, which combines Volterra equalization and LDPC 

decoding models, has been shown through experimental testing to improve the OSNR tolerance by an additional 0.8 

dB in PM-16QAM systems. 

The intelligent FEC system: The system utilizes deep learning to optimize the FEC parameters (e.g., dynamic 

allocation of redundancy rate, LLR quantization strategy), thereby real-time adjusting the coding scheme via online 

channel estimation. The federated learning framework supports multi-node co-training to achieve optimal 

configuration of FEC strategies across links in elastic optical networks. 

CONCLUSION 

This paper presents a systematic review of digital signal processing (DSP) technology advances for optical 

communications, focusing on key technologies such as digital modulation identification, nonlinear compensation, 

dynamic equalization, and forward error correction (FEC) optimization. A comparison of traditional and machine 

learning schemes is made, highlighting the recognition advantages of deep learning in complex scenarios. The role of 

algorithm-hardware co-design in improving the efficiency of nonlinear compensation and equalization is emphasized. 

The study demonstrates that intelligent feature extraction, cross-layer optimization, and computational complexity 

control enhance system reliability and spectral efficiency, providing a technical foundation for the advancement of 

6G optical networks. However, the study acknowledges certain limitations in the current research. For instance, the 

training of deep learning models is dependent on a substantial amount of labelled data, and the cost of data acquisition 

and labelling is high in practical deployment. Additionally, some of the optimization algorithms face the challenge of 

balancing real-time and complexity in hardware implementation. Further exploration of lightweight design and edge 

computing convergence schemes is therefore required. In the future, it is anticipated that optical communication DSP 

technology will continue to explore the potential of quantum computing in nonlinear modelling, with the aim of 

overcoming the complexity limitations of traditional computing architectures. In combination with edge intelligence, 

the objective is to achieve low-latency dynamic equalization to meet the ultra-high real-time demands of 6G networks. 

Furthermore, the co-design of novel photonic integrated devices and DSP algorithms is anticipated to enhance the 

arithmetic energy efficiency ratio substantially, thereby accelerating the process of technology industrialization. 
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