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Abstract. The advent of 5G and Al technologies has precipitated an exponential surge in data volume, which has rendered
optical communication systems dependent on the efficacious utilization of digital signal processing (DSP) technologies. In
this paper, we address the core challenges of coherent optical communication and study digital modulation identification,
nonlinearity compensation, dynamic equalization and forward error correction coding (FEC) optimization. The
experimental results demonstrate that deep learning can achieve 99.99% modulation recognition accuracy under complex
channels, that a joint symbol rate optimization and perturbation compensation strategy (SRO-PB-NLC) can improve system
performance, and that triple correlation compensation (TC-PNC) can significantly reduce computation. Furthermore,
parallel photoelectric reservoir computation (RC) and the lightweight time-frequency network (CBV-TFNet) can achieve
low-complexity equalization, and FEC can combine probabilistic shaping (PS) and fast coding (FTN) to improve gain and
rate. The study emphasizes the pivotal function of algorithm-hardware synergy and intelligent optimization. In the future,
there is a necessity to integrate quantum computing and edge intelligence in order to overcome the limitations of real-time
and complexity. This will provide the technical foundation for 6G optical networks.

INTRODUCTION

With the rapid development of technologies like 5G, cloud computing, Al, blockchain, and big data, the amount
of information generated by human society is growing exponentially. According to IDC's predictions, the volume of
data produced in 2025 will reach 175 zettabytes (ZB), and by 2035, this figure is expected to rise to 2,142 ZB, with a
compound annual growth rate (CAGR) of 28.46% [1]. The generation of such vast amounts of data inevitably leads
to challenges in data transmission and processing. This not only poses a tremendous demand for computing power but
also presents a significant challenge to information transmission and processing systems.

In modern communication systems, over 95% of information transmission relies on coherent optical fiber
communication. With its high bandwidth, long-distance transmission capability, and strong resistance to interference,
coherent optical communication can effectively address these challenges. A coherent optical communication system
consists of three main components: the transmitter, the channel, and the receiver. After the receiver captures the optical
signal, a digital signal processing (DSP) system is required to mitigate issues arising during transmission. This system
plays a critical role in enhancing the transmission performance and reliability of coherent optical communication
systems, making it indispensable.

This paper focuses on digital signal processing (DSP) technologies in optical communication systems, conducting
research on core issues including digital modulation format identification, fiber nonlinearity compensation, dynamic
channel equalization, and forward error correction (FEC) optimization. In terms of digital modulation format
identification, we compare traditional methods (such as pilot-aided, likelihood-based, and feature-based approaches)
with intelligent recognition techniques based on deep learning and machine learning, analyzing their performance



differences and applicable scenarios. For fiber nonlinear effects, we explore joint optimization strategies combining
multi-carrier cooperative algorithms (e.g., PM-DSCM-WDM) and hardware computational flow restructuring (e.g.,
TC-PNC architecture). In dynamic channel equalization, we investigate neural network-based approaches, including
parallel optoelectronic reservoir computing (RC), time-frequency analysis fusion (CBV-TFNet), and low-complexity
real-time adaptation (SkipNet). Through algorithm-hardware co-innovation and intelligent feature extraction, this
research aims to enhance system transmission efficiency and reliability, providing technical support for future high-
speed optical networks.

MODULATION FORMAT RECOGNITION

Traditional Methods

Traditional modulation format identification (MFI) approaches can generally be categorized into three types: pilot-
aided, likelihood-based, and feature-based.

Pilot-aided methods rely on specific additional operations, such as radio frequency pilots [2], pilot symbols [3], or
artificial frequency offsets [4]. While these methods have low computational complexity, they increase receiver design
difficulty and sacrifice spectral efficiency.

Likelihood-based methods extract modulation format information directly from received signals at the cost of
requiring prior knowledge of the channel’s mathematical model and complex likelihood function calculations [5,6].

Feature-based methods employ well-validated signal characteristics, such as density peaks [7], intensity profile
features [8], and peak-to-average ratio [9]. These classifiers rely on decision trees with predefined thresholds, which
may introduce errors even under ideal channel conditions and require strong prior knowledge [10].

Deep Learning-Based Methods

Deep learning-based MFI techniques leverage deep neural networks (DNNs) and convolutional neural networks
(CNNs) to automatically extract features and classify modulation formats. These methods offer high accuracy, strong
adaptability to various modulation schemes and channel conditions, and reduced manual intervention in feature design.
However, they suffer from high computational complexity, requiring extensive training data and significant computing
resources for both training and inference.

The CNN is employed to automatically extract features from constellation diagram data of received signals, while
a fully connected network is utilized to approximate the value function. Fangxu Yang et al. used 128-pixel square
image data with three RGB channels as input, with all three convolutional layers employing 8-pixel square kernels.
Normalization and activation processing are applied to the data after each network layer. Finally, the resulting five-
dimensional vector is multiplied by a one-hot action space vector to obtain its corresponding value function. They
established a 32Gbaud 1000km coherent optical transmission experimental system and collected transmission data for
five modulation formats: PDM QPSK/8PSK/16QAM/32QAM/64QAM [11].

For instance, Latifa Guesmi et al. proposed using artificial neural networks (ANNSs) to extract asynchronous
amplitude histogram features. Their experiments, based on the IEEE 802.11ad standard, evaluated four modulation
formats under multiple optical impairments. The results demonstrated a 99.99% identification accuracy even in highly
complex conditions [12].

Machine Learning-Based Methods

Machine learning (ML) algorithms—such as support vector machines (SVMs), random forests, and K-nearest
neighbors (KNN)—extract features from received signals for classification without requiring predefined parameters
or channel models. Compared to deep learning, ML-based approaches have lower computational demands and are
easier to implement and deploy due to their mature algorithms. However, they exhibit poorer accuracy when handling
complex modulation formats and channel conditions. Similar to likelihood-based methods, their performance heavily
depends on empirical feature design, demanding strong domain expertise from designers. Figure 1 demonstrates the
basic workflow of MFR (Modulation Format Recognition) technology.
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FIGURE 1. Flowchart of Digital Modulation Format Recognition Technology
FIBER NONLINEAR COMPENSATION

Traditional Methods

Traditional optical fiber nonlinear compensation employs multiple methods. Two mainstream nonlinear
compensation methods are listed below:

Perturbative Nonlinearity Compensation (PNC): PNC utilizes first-order perturbation theory to model
nonlinear distortion as triplet interactions. The nonlinear perturbation term is computed and subtracted from the
received signal to diminish nonlinear effects. Degenerated PNC (DPNC) reduces computational complexity by
symbol degeneration. However, the degeneration process in PNC causes information loss, leading to significant
performance degradation for high-order modulation formats.
Volterra Series Equalize: Volterra Series Equalize models the optical fiber’s nonlinear response using a
Volterra series, approximating nonlinear distortion via high-order kernel functions. However, the high-order
kernel functions result in extremely high computational complexity, making real-time processing of high-baud-
rate signals impractical. Additionally, it requires high-precision ADC/DAC and high-speed DSP chips, resulting
in higher hardware costs.

Joint Symbol Rate Optimization with Partitioned Perturbation-Based Nonlinear
Compensation (SRO-PB-NLC)

The Selvakumar research team proposed PM-DSCM-WDM joint algorithm. Integrates symbol rate optimization
(SRO) and pre-dispersion compensation (pre-CDC) to mitigate nonlinear effects, combined with partitioned
perturbation-based nonlinear compensation (PB-NLC) for better performance. The approach demonstrates two main
advantages:

Optimal Subcarrier Symbol Rate Balancing: The algorithm selects the optimal subcarrier symbol rate to
balance self-phase modulation (SPM) and inter-channel cross-phase modulation (iXPM) effects. By integrating
SRO with nonlinear compensation, the subcarrier symbol rate is adjusted to proactively reduce nonlinear
impairments (e.g., suppressing iXPM and inter-channel four-wave mixing (iFWM)) in the transmission link,
followed by targeted compensation of residual distortions.

Split PB-NLC Architecture: The iXPM compensation is divided into transmitter-side pre-compensation and
receiver-side post-compensation. This partitioned implementation leverages prior knowledge of transmitted
symbols to improve compensation accuracy while reducing computational complexity at the receiver [13].

Comparing to traditional methods ,with 50% pre-dispersion compensation, the amount of iXPM perturbation is
reduced by threefold. The joint SRO-PB-NLC framework achieves a 0.25 dB Q*-factor improvement and decreases
computational complexity by sixfold. Traditional methods apply uniform compensation to the full bandwidth signal,
resulting in high computational overhead and limited adaptability to symbol rate variations. In contrast, SRO-PB-NLC
optimizes the symbol rate to suppress nonlinear distortions at the source, enabling efficient and targeted residual
compensation.



Triple-Correlation Perturbation Compensation (TC-PNC)

Mengfan Fu and his team developed the TC-PNC architecture to reduce the computational complexity of
perturbation term calculations through shared intermediate computations and semi-degeneration methods. The
framework includes three key innovations. First, The Perturbation Term Merging: Using the symmetry of perturbation
coefficients, the number of independent perturbation terms is reduced, minimizing redundant calculations. Second,
The Product Sharing: Intermediate product results are shared across consecutive symbols to eliminate repetitive
computations. This optimization reduces computational load by over 94.73%, decreases memory requirements to less
than 5% of traditional PNC, and significantly lowers hardware demands. Third, The Semi-Degeneration Processing:
High-order modulation symbols are degenerated to QPSK equivalents, replacing complex multiplications with logic
operations. This reduces the bit count per symbol from 4 bits to 2 bits, cutting memory usage for symbol sequence
storage by 50% [14].

Compared to traditional PNC methods, TC-PNC achieves a 94.73% reduction in complex multiplications while
increasing logic operations. The simplified logic operations incur lower hardware implementation costs.TC-PNC
sacrifices marginal performance (due to partial information loss) to achieve substantial savings in memory and
computational resources. Experimental results demonstrate a 0.77 dB SNR improvement over Degenerated PNC
(DPNC) in a 2,000 km transmission scenario.

DYNAMIC CHANNEL EQUALIZATION

Comparison of Traditional Equalization Techniques

Traditional dynamic channel equalization techniques employ linear/nonlinear filtering, blind equalization, or
hybrid approaches to mitigate distortions in varying channel conditions. However, their performance is constrained
by inherent trade-offs among computational complexity, convergence speed, and dynamic range. The table below
compares mainstream dynamic equalization methods.

Table 1. Comparison of Traditional Equalization Techniques: Complexity, Dynamic Range, Application Scenarios,
and Limitations

Technique Computational Dynamic Range Application Limitations
Complexity Scenarios
LMS(Least Mean O(N) Low(<15dB) Low-speed, stable Slow convergence
Squares) channels speed,Poor noise
robustness
RLS(Recursive O(N?) Moderate(~20dB)  High-speed mobile Excessive hardware
Least Squares) communications resource consumption
DFE(Decision O(Nf+ Np)  Moderate(~18dB) ~ Channels with Error propagation-
Feedback moderate ISI(Inter- induced performance
Equalizer) Symbol Interference)  degradation
Volterra O(NP) High(>25dB) Strong nonlinear Exponentially growing
systems computational
complexity for high-
order terms;
impractical for real-
time implementation
CMA(Constant O(N) Moderate(~16dB)  Burst-mode Unstable convergence
Modulus communications behavior; dependency
Algorithm) on constant signal
modulus
TurboEqualization =~ O(Nye, - N)  VeryHigh(>30dB) Low-SNR channels High iterative

processing latency;
incompatible with real-
time systems




Parallel Photonic-Electronic Reservoir Computing (RC)

The Feng research team proposed a parallel photonic-electronic reservoir computing (RC) framework, leveraging
the dynamical properties of nonlinear delayed feedback systems to implicitly learn channel characteristics. This
approach generates rich virtual node states through the transient responses of hybrid photonic-electronic reservoirs
(e.g., dual-polarization Mach-Zehnder modulators, MZMs), enabling direct mapping of input-output relationships.

Advantages over Conventional Methods:

Full-Order Nonlinear Modeling: The RC architecture utilizes the nonlinear transfer functions of photonic devices
(e.g., MZMs) and dual-loop feedback mechanisms to achieve full-order nonlinear compensation. In contrast,
traditional methods like feed-forward equalization (FFE) are limited to linear or low-order nonlinear mitigation and
fail under strong nonlinear regimes.

Low-Power Photonic Computation: The photonic implementation of RC significantly reduces power consumption,
making it suitable for edge computing and high-speed long-haul transmission. Conventional digital electronic
solutions suffer from higher power dissipation [15].

Channel Estimation-Based Time-Frequency Neural Network (CBV-TFNet)

The research team led by Zhang proposed CBV-TFNet, a lightweight post-equalizer combining time-frequency
analysis with channel estimation. This method employs a bandwidth-variable order loss function (BV Loss) to guide
the neural network toward critical frequency bands, alongside a channel estimation mask generated from pilot signals
for pre-equalizing the input spectrum. The mask suppresses interference in non-critical frequency regions, reducing
computational load by 38.15% and significantly accelerating convergence.

Compared to traditional approaches, CBV-TFNet models complex nonlinear relationships through multi-layer
nonlinear activation functions and end-to-end time-frequency joint mapping. The integration of channel estimation
mask-based pre-equalization and BV Loss guidance enables 30% faster adaptive training than conventional methods,
achieving rapid adaptation to dynamic channel conditions. Experimental results demonstrate a 0.5 dB improvement
in error vector magnitude (EVM) for 64QAM signals under frequency-selective fading, alongside reduced hardware
resource demands [16].

SkipNet

The research team led by Stephen L. Murphy developed SkipNet, an adaptive equalization architecture featuring
a decoupled structure with a pre-trained kernel and a separated adaptive output layer. By integrating skip connections,
the framework enables accelerated LMS-based training and supports packet-level adaptation for burst-mode passive
optical networks (PONSs), achieving convergence within 250 symbols—a 60% reduction compared to conventional
adaptive filters.

Unlike traditional approaches, SkipNet decouples nonlinear channel modeling (handled by the pre-trained kernel)
from linear adaptive compensation (managed by the output layer). This separation allows the system to deliver neural
network-level performance at computational complexity comparable to traditional feed-forward equalizers (FFE).
Experimental validations demonstrate 1.2 dB SNR improvement over FFE in burst-mode PONs with hybrid
impairments (e.g., chromatic dispersion, nonlinear phase noise), while maintaining real-time processing latency below
1 ps. The architecture’s dual-stage design also eliminates error propagation risks inherent in decision-directed
methods, ensuring robust operation under dynamic channel conditions [17].

FORWARD ERROR CORRECTION CODING (FEC) OPTIMIZATION

Forward Error Correction Coding (FEC) represents a pivotal technology for the establishment of reliable
transmission in high-speed optical communication systems. Its performance exerts a direct influence on the Net
Coding Gain (NCQ) and spectral efficiency of the system. As the fiber channel capacity approaches the nonlinear
Shannon limit, FEC technology is undergoing a transition from independent module design to a more integrated
approach involving co-optimization with modulation format and channel impairment compensation algorithms. This



section reviews the research progress of FEC techniques in terms of classical coding schemes, joint optimization
strategies and novel coding architectures.

Performance comparison of classical coding schemes

Low-density parity-check code (LDPC): The LDPC is based on a sparse parity-check matrix and an iterative belief
propagation (BP) decoding algorithm. It has become the mainstream scheme for long-distance fiber optic
communication by virtue of its error-correcting capability, which approaches Shannon's limit. The Quasi-Cyclic (QC)
structure of its check matrix enables hardware-friendly parallel decoding and supports Tb/s-level throughput.
However, the Error Floor phenomenon of LDPC codes is significant in low BER (<10-12) scenarios, which is mainly
attributed to the presence of a Trapping Set. The Error Floor can be suppressed to below 10-15 by concatenating
external codes (e.g., BCH or RS codes) or by Trapping Set Enumeration-Elimination algorithms, but with a
corresponding increase in hardware complexity [18].

Polar Codes: In scenarios where the code length is less than 1024 bits, polar codes offer a coding gain of 1.5 dB
over LDPC codes due to their channel polarization property and a compiled code complexity of O(N log N) [19].
However, the long code construction relies on complex Gaussian approximation or density evolution algorithms,
resulting in limited real-time adaptability. The Segmented Polar Codes (SPC) architecture, proposed in recent studies,
employs sub-code cascading to reduce the complexity of long code construction and demonstrates potential in 400G
ZR+ coherent modules.

The Turbo Codes and Cascading Scheme: Turbo codes achieve high coding gain through parallel cascaded
convolutional codes (PCCC) and iterative decoding, but their decoding delay and power consumption limit their
application in high-speed systems. The ITU-T G.975.1 standard advocates the use of serial cascaded codes (e.g., RS+
product codes) to achieve a balanced performance and complexity ratio through hard verdict iterative decoding,
thereby attaining a Q> factor gain of up to 10 dB.

Joint Coding-Modulation Optimization Strategies

Probabilistic Shaping (PS): Through the optimization of signal spatial distribution via non-uniform constellation
mapping (e.g., Maxwell-Boltzmann distribution), the PS-256QAM scheme has been shown to enhance the optical
signal-to-noise ratio (OSNR) tolerance by 2 dB and the net coding gain by up to 13 dB. The primary challenge resides
in the concurrent design of Probability Distribution Matching (PDM) and LDPC decoding. The crux of the issue
pertains to the collaborative design of probability distribution matching (PDM) and LDPC decoding, a challenge that
the Layered BP algorithm seeks to address by dynamically adjusting the LLR weights [18].

The FTN scheme, through the active introduction of inter-symbol interference (ISI) and the suppression of
nonlinear impairments by constrained coding, can achieve a 50%-100% information rate enhancement in pseudo-
linear transmission systems [18]. To illustrate this point, consider the FTN architecture based on (2, ) travel-limiting
codes, which attains 100% rate gain over a distance of 2000 km with a low power consumption of 2.25 mW. This is
achieved by compressing the pulse interval at a triple symbol rate and suppressing the four-wave mixing (IFWM)
effect in combination with alternating mark inversion (AMI) [18].

Bit Interleaved Coded Modulation (BICM) involves the combination of LDPC coding with higher-order
modulation (e.g., 64QAM), achieving a balanced difference in mutual information of each bit layer through the
utilization of a pseudo-random interleaver. The distortion of the likelihood ratio (LLR) distribution due to fiber
nonlinearity is addressed by the adaptive log-likelihood ratio (LLR) reweighting algorithm, which enhances the
convergence speed of iterative decoding. This results in a spectral efficiency of 11.2 b/s/Hz in a C-band 80 km system.

Novel Coding Architectures and Future Directions

Graph Code Extensions and Hardware Optimization: Elevated graph codes (e.g., Protograph LDPC) have been
shown to reduce decoding complexity through basemap loop extensions, and support Multi-Edge Type (MET) design
for error floor suppression. Accumulate-Repeat-Accumulate (ARA) codes have been shown to reduce the number of
iterations through a serial cascade structure, achieving 5 Tb/s throughput and 0.15 pJ/bit energy efficiency in a 28 nm
ASIC.

Nonlinear channel adaptation coding: In the context of fiber nonlinear phase noise and amplitude distortion, non-
binary LDPC codes (e.g., GF(4)-LDPC) have been shown to enhance nonlinear impairments robustness through



multivariate symbol mapping. The Turbo equalization architecture, which combines Volterra equalization and LDPC
decoding models, has been shown through experimental testing to improve the OSNR tolerance by an additional 0.8
dB in PM-16QAM systems.

The intelligent FEC system: The system utilizes deep learning to optimize the FEC parameters (e.g., dynamic
allocation of redundancy rate, LLR quantization strategy), thereby real-time adjusting the coding scheme via online
channel estimation. The federated learning framework supports multi-node co-training to achieve optimal
configuration of FEC strategies across links in elastic optical networks.

CONCLUSION

This paper presents a systematic review of digital signal processing (DSP) technology advances for optical
communications, focusing on key technologies such as digital modulation identification, nonlinear compensation,
dynamic equalization, and forward error correction (FEC) optimization. A comparison of traditional and machine
learning schemes is made, highlighting the recognition advantages of deep learning in complex scenarios. The role of
algorithm-hardware co-design in improving the efficiency of nonlinear compensation and equalization is emphasized.
The study demonstrates that intelligent feature extraction, cross-layer optimization, and computational complexity
control enhance system reliability and spectral efficiency, providing a technical foundation for the advancement of
6G optical networks. However, the study acknowledges certain limitations in the current research. For instance, the
training of deep learning models is dependent on a substantial amount of labelled data, and the cost of data acquisition
and labelling is high in practical deployment. Additionally, some of the optimization algorithms face the challenge of
balancing real-time and complexity in hardware implementation. Further exploration of lightweight design and edge
computing convergence schemes is therefore required. In the future, it is anticipated that optical communication DSP
technology will continue to explore the potential of quantum computing in nonlinear modelling, with the aim of
overcoming the complexity limitations of traditional computing architectures. In combination with edge intelligence,
the objective is to achieve low-latency dynamic equalization to meet the ultra-high real-time demands of 6G networks.
Furthermore, the co-design of novel photonic integrated devices and DSP algorithms is anticipated to enhance the
arithmetic energy efficiency ratio substantially, thereby accelerating the process of technology industrialization.
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