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Abstract. Human activity recognition (HAR) has a wide range of applications in the fields of intelligent security and
health monitoring. Identification based on WiFi channel state information (CSI) can avoid the high deployment cost and
privacy violation of traditional identity recognition methods (such as sensors, cameras, etc.), but its model still has
insufficient generalization performance when recognizing different CSI data. Therefore, this paper proposes a bimodal
transfer learning system such as CNN-BiLSTM to improve the generalization ability while ensuring recognition
accuracy. Through experiments on the NTU-Fi HAR and NTU-Fi HumanID datasets, the performance of CNN-BiLSTM
is verified, and a horizontal comparison is made with a variety of single-mode models and bimodal models. The
experimental results show that the system is superior in feature extraction of HAR datasets, with an accuracy of 76.61%.
Compared with single-mode models such as BILSTM, the number of parameters is reduced while ensuring accuracy, and
the effect is better than bimodal models such as CNN-LSTM, which can better adapt to transfer learning. However, its
complex floating-point operations have high requirements on computer performance. For this reason, the experiment
provides an improved method to reduce the amount of calculation and provides a new idea for the lightweight research of
the model.

INTRODUCTION

Human activity recognition (HAR) technology is widely used in the field of identity recognition, including smart
home and security monitoring scenarios. Traditional recognition methods mainly rely on cameras, wearable devices,
or infrared sensors, but these methods are often susceptible to light changes, environmental interference, and
inconvenience in wearing equipment. In recent years, the technology of using WiFi channel state information (CSI)
for human activity recognition has gradually emerged. This method does not require additional equipment to be
worn, has the advantages of low deployment cost and high privacy protection, and has opened up a new path for the
commercial application of identity recognition.

However, due to the obvious multipath effect of WiFi signals in indoor environments, signal propagation is
unstable, resulting in insufficient generalization ability of WiFi CSI-based identity recognition methods in different
scenarios. In addition, this method currently requires high hardware computing power and is difficult to meet actual
market needs. In response to the above challenges, a large number of research works have been devoted to
developing new models and data preprocessing methods to enhance the generalization ability of different HAR
datasets. LiWi-HAR [1] extracts key features in the process of compressing CSI data to achieve data lightweight and
improves recognition performance through a double hidden layer BPNN classifier based on particle swarm
optimization (PSO), but this model may easily fall into local minima or experience gradient vanishing. AutoFi[2]
proposes a geometric self-supervised learning algorithm that effectively utilizes low-quality CSI samples by
introducing Gaussian noise without destroying the internal information of CSI data, and uses a convolutional neural
network-multilayer perceptron (CNN-MLP) model to achieve gait recognition. EfficientFi[3] proposed a
quantitative feature algorithm to extract and compress CSI data at the WiFi router end, and then transmit it to the
cloud for recovery and classification through CNN, thereby significantly reducing communication overhead, but it
has high hardware requirements. SenseFi[4] built a benchmark library containing multiple models and data sets and
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evaluated the performance of 12 models in supervised learning, unsupervised learning, and transfer learning tasks,
providing a reference for model selection and scene adaptation. AFEE-MatNet[5] proposed an activity-related
feature extraction, enhancement, and matching network, which reduces training complexity through data cleaning
and enhancement and uses a confusion matrix to verify and correct coarse-grained action prediction. However, this
algorithm can only be applied to "continuous action" CSI data, otherwise it will have a serious impact on the
accuracy.

Based on the above research, this paper proposes a transfer learning method based on CNN and a bidirectional
long short-term memory network (biLSTM). This method extracts spatial features from WiFi CSI data through CNN
and combines biLSTM to effectively model temporal features, thereby improving the accuracy and generalization
ability of feature extraction of the bimodal model and reducing the requirements for hardware. Subsequently, this
paper evaluates from four dimensions and proposes corresponding improvement plans based on the evaluation
results.

DATA AND METHODS

Dataset analysis

Table 1 shows that this study used two public CSI datasets (Data - Google Drive) for experiments. The NTU-Fi
HAR dataset [3] has 6 labels, including 6 types of actions (walking, running, falling, boxing, circling arms, and
cleaning the floor), completed by 20 subjects; the NTU-Fi HumanID [6] dataset has 14 categories, including the
above 6 types of gait data of 14 subjects, for identity recognition. The CSI samples of these two datasets have a high
degree of fit and are suitable for transfer learning [4].

TABLE 1. Statistics of two CSI datasets

NTU-FI-HAR NTU-Fi-HumanID
Collection Platform Atheros CSI Tool Atheros CSI Tool
Number of Categories 6 14
Category Name 20 subjects (13 males/7 Gait of 14 subjects

females) box, circle, clean,
fall, run, walk actions

Data Size (3,114,500) (Antenna, (3,114,500) (Antenna,
Subcarrier, Sampling Subcarrier, Sampling
frequency) frequency)
Number of Training Samples 936 546
Number of Test Samples 264 294
Training Epochs 30 30
Methods

CNN-BiLSTM Transfer Learning Model

This study uses a convolutional neural network-bidirectional long short-term memory network (CNN-biLSTM)
model for identity recognition. First, the spatial features are obtained through a feature extraction layer with two
layers of convolution and ReLU activation function, and the pooling operation is used to reduce the amount of
calculation and enhance the feature expression ability. Subsequently, the biLSTM network is used to model the
bidirectional dependency of the time series data, and the dynamic characteristics of the CSI signal are captured by
the time step; then, the spatiotemporal features are mapped to the identity classification label through the fully
connected layer, and finally, the Softmax classifier is used to output the recognition result. To improve the
generalization performance, this study adopts a transfer learning strategy: first pre-train the CNN-biLSTM on the
NTU-Fi HAR dataset, input the obtained feature weights into the CNN, then freeze the CNN layer parameters, and
fine-tune the biLSTM and fully connected layers on the NTU-Fi HumanID dataset to further improve the
generalization ability of identity recognition. The overall architecture is shown in Figure 1:
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FIGURE 1. CNN-BIiLSTM Transfer Learning Architecture (Photocredit : Original)
Experimental Procedures

Since WiFi CSI signals are greatly affected by noise, data preprocessing is required. The following four methods
are summarized for learning-based CSI data cleaning:

First, denoise the data. The denoising process removes irrelevant noise and retains only CSI amplitude
information to improve the stability and quality of the signal [2]. Second, perform a Doppler analysis. First,
calculate the rate of change of the CSI amplitude to extract the human motion speed characteristics, and then use the
short-time Fourier transform (STFT) to generate a time-frequency spectrogram to capture the dynamic changes of
the motion pattern [7-9]. In addition, the one-dimensional linear interpolation method is used to fill in the missing
data points to ensure the integrity and continuity of the CSI data stream [1, 10]. Finally, principal component
analysis (PCA) is used to reduce the dimensionality of high-dimensional data, extract the main feature components,
and reduce redundant information, thereby improving the computational efficiency and robustness of the model [9].
This study mainly uses the denoising method for the two data sets in Table 1.

Next, the overall experimental process is divided into two stages: pre-training and fine-tuning. The pre-training
stage is conducted on the NTU-Fi_HAR dataset, using the CNN-BiLSTM model for preliminary learning. In the
model, the CNN module is responsible for preliminary feature extraction, while the core BiLSTM part is used to
capture time series information. Its bidirectional structure can process both forward and reverse time series features,
thereby better modeling the time dependency within the data. The hyperparameter settings used in pre-training
include a learning rate of 1x10”(-3), a training batch size of 16, and a training round of 100. The optimizer uses the
Adam algorithm to ensure that the training loss converges quickly [4]. At the same time, the cross-entropy loss
function is used for supervised learning, and the hyperparameters are continuously adjusted to obtain the best
accuracy. After the pre-training is completed, the model parameters are saved in a path. Subsequently, the fine-
tuning stage is entered, and task migration is performed on the NTU-Fi-HumanID dataset. At this time, the pre-
training weights are loaded and the classifier part is removed, while the parameters of the CNN part are frozen, and
only the BiLSTM and subsequent classification layers are updated to better adapt to the new data distribution. A
lower learning rate (5x10"(-4)) was used in the fine-tuning phase, and the number of training rounds was reduced to
75, with the same optimizer and loss function. In the result evaluation, a test module was also provided to calculate
the accuracy, loss, number of parameters, and floating-point operations of the model on the test set, ensuring that the
performance of the model at each stage was fully monitored.
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Evaluation Criteria

The experiment includes four reference standards, including accuracy, cross-entropy loss, number of parameters,
and number of floating-point operations. Among them, accuracy measures the proportion of correctly classified
samples to the total number of samples, which is used to evaluate the classification performance of the model; cross-
entropy loss is used to measure the difference between the predicted distribution and the true label distribution. The
smaller the value, the closer the prediction is to the true label; the number of parameters reflects the total number of
weights and biases in the neural network. The fewer the parameters, the less storage the model requires; the number
of floating-point operations per second is used to quantify the scale of operations performed by the model during
forward propagation or training. The higher the FLOPs, the greater the computational complexity and execution
time.

RESULT

Transfer learning effects of different models

Figure 2 shows the evaluation results of the CNN LSTM BiLSTM single-mode model and their bimodal
combination. It can be seen that CNN performs best with an accuracy of 96.35%, but its parameter count is also high,
at 0.478M; in contrast, the accuracy of CNN-BiLSTM is 76.61%, which is nearly 15% higher than that of CNN-
LSTM, which also uses bimodal, and the parameter count is only 0.17M, but the required computational effort is
significantly increased, with FLOPs of about 522M, which is almost 18 times that of CNN (30.22M FLOPs). This
shows that the fusion of convolutional spatial feature extraction and bidirectional temporal modeling can
significantly enhance the performance of dual-modal feature extraction, but it is also accompanied by higher
computational overhead.

Model Accuracy Comparison Model Parameters Comparison Model FLOPs Comparison
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FIGURE 2. Evaluation of CNN LSTM BiLSTM single-mode models and their bimodal combinations (Photocredit : Original)
The impact of different training rounds on model performance

Figure 3 shows the changes in the accuracy and training loss of the model as the number of training epochs
increases when the learning rate is 1073, It can be seen that the model has achieved overall convergence in Figure 3.
As the training continues, the accuracy and loss tend to be stable, and the volatility continues to decrease. Figure 4
also uses accuracy and training loss to describe the performance changes of the model in different epochs. Although
the overall changes are volatile, it can still be seen that the best performance period (the best performance is
determined by high accuracy and low loss here) often occurs between 125 and 150 training epochs, rather than
above 150.
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FIGURE 3. Accuracy and training loss at different training epochs (Photocredit : Original)
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FIGURE 4. Mean of model accuracy and training loss at different training epochs (Photocredit : Original)
The role of fine-tuning

Figure 5 shows the accuracy and loss curves of the CNN-BiLSTM transfer learning process. When the learning
rate was 5 X 10™* and the training was performed for 150 rounds, the model achieved the best pre-training effect.
Subsequently, by fixing the CNN parameters and fine-tuning, an accuracy of 76.61% was finally achieved on the
test set. The accuracy and loss of the CNN-BiLSTM model show a smoother curve in Figure 6 with smaller
fluctuations. This shows that the feature extractor of the model can be transferred between similar tasks (such as
NTU-Fi HAR and NTU-Fi Human-ID), and can reduce the volatility of the training loss and the convergence speed.
The volatility of the training loss is caused by the feature extractor, so the transfer learning that only trains the
classifier performs more smoothly. This is the same result obtained in [4].
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FIGURE 5. CNN-BIiLSTM transfer learning process accuracy and loss curve (Photocredit : Original)
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FIGURE 6. Performance curves of the CNN-BiLSTM model and two other single-mode models (Photocredit : Original)

Exploring the reasons for excessive floating point operations

The computational complexity of CNN-BiLSTM shown in Figure 2 is very large. The researchers summarized

the following reasons, as shown in Table 2:

TABLE 2. The main factors affecting FLOPs growth

Influencing factors Impact on FLOPs
Number of CNN layers (L) Linear growth O(L)
CNN convolution kernel size (K) Quadratic growth O(K ?)
Number of CNN channels (C) Quadratic growth O(C?)
Number of LSTM hidden units (H) Quadratic growth O(H?)
Number of LSTM layers (L) Linear growth O(L)
Bidirectionality FLOPs x 2

Batch Size (B) Linear growth O(B)
Since this experiment uses a pre-trained model and a fixed dataset, the number of layers, convolution kernel size,

number of channels of the CNN part, and the bidirectionality of the BiLSTM have been determined; while the
number of hidden units of the LSTM, the number of LSTM layers, and the batch size can be adjusted according to
demand. Although the FLOPs of CNN (e.g. 28.23M) and the FLOPs of BIiLSTM (e.g. 105.81M) are relatively fixed
in terms of their respective computational load, in the combined model, the total FLOPs are much greater than the
result of simply adding the two together. This is mainly due to the influence of the nonlinear superposition effect:
after data rearrangement and preprocessing, the output of the CNN will be converted into a longer or higher-
dimensional sequence, so that the BILSTM needs to perform calculations on more time steps, and the bidirectional
mechanism further multiplies the amount of calculation, thereby significantly increasing the FLOPs of the entire
model.
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The transfer effect of the bimodal model on NTU-Fi-HumanID

As can be seen from Table 3, CNN-BiLSTM is significantly better than other models in terms of accuracy
(76.61%), but its parameter count is as high as 525.81M, much higher than CNN-LSTM (144.04M) and
Convolutional Neural Network-Gated Recurrent Unit (CNN-GRU) (48.39M), and its FLOPs is 0.056M; in contrast,
although CNN-LSTM has an accuracy of only 62.32%, its parameter count and FLOPs are lower; CNN-GRU's
accuracy (53.88%) is relatively low in this result, and its parameter count and FLOPs are 48.39M and 0.059M
respectively; ResNet-GRU's accuracy reaches 71.79%, its parameter count is 206.41M, and its FLOPs is relatively
high (3.265M). In the transfer learning of bimodal tasks, CNN-BIiLSTM can effectively extract spatiotemporal
features: CNN is responsible for capturing local spatial patterns, and BiLSTM can learn bidirectional temporal
dependencies, thereby achieving higher accuracy in scenarios similar to the source domain or with sufficient data.
The low number of parameters allows it to reduce the requirements for hardware resources and data size. However,
compared with other bimodal models, the extremely high floating-point operations lead to a significant increase in
its computational workload, resulting in longer output time.

TABLE 3. Effect of transfer learning of bimodal model on NTU-Fi-HumanID

Model Accuracy (%) Params (M) FLOPs (M) Computation time
(s/test sample)
CNN-BIiLSTM 76.61 525.81 0.056 0.68
CNN-LSTM 62.32 144.04 0.030 0.17
CNN-GRU 53.88 48.39 0.059 0.07
ResNet18-GRU 71.79 206.41 3.265 0.69

Bimodal model pre-training loss

Although the four models in Figure 7 eventually converge, there are slight differences in their convergence
behaviors. Overall, the loss of the CNN-BiLSTM model decreases most stably, while the GRU-based models exhibit
less fluctuation in loss compared to the LSTM-based models. This can be attributed to the fact that GRU generally
has fewer parameters and a simpler gating structure than LSTM, which results in smoother gradient updates during
backpropagation. Moreover, within the GRU series, the CNN-GRU converges faster than the ResNetl18-GRU,
possibly because the CNN architecture is typically simpler, shallower, and contains fewer parameters, allowing the
training loss to drop more quickly. In contrast, ResNet18, being a deeper network with a more complex structure and
a larger number of parameters, may experience a relatively slower convergence process. Therefore, in training, a
deeper network does not necessarily yield better performance.
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FIGURE 7. Pre-training loss for bimodal models (Photocredit : Original)
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CONCLUSION

This paper investigates methods for human activity and identity recognition based on WiFi CSI data, proposing
and implementing a transfer learning model that integrates CNN and bidirectional LSTM. The following
conclusions were drawn from the study:

a) The performance of the model does not necessarily improve with deeper architectures. The CNN-BiLSTM
model achieves the best generalization performance among the bimodal models and is highly hardware-friendly. The
only drawback is its larger computational cost, which may lead to longer training times.

b) In comparison, unimodal models such as CNN and BiLSTM are more recommended in the transfer learning
setting. This is because, in terms of computational cost, hardware requirements, accuracy, and generalization on
other models, they outperform the bimodal models.

Due to the inherent complexity of bimodal models like CNN-BiLSTM, achieving model lightweight by only
adjusting hyperparameters yields minimal improvements. Therefore, a more in-depth research is needed for
lightweight bimodal models. Possible directions include introducing algorithms to replace the hidden layers of the
model or reducing the feature extraction burden by cleaning the CSI data.
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