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Abstract. This paper first summarizes the fundamental principles of magnetic resonance imaging (MRI). It then reviews
the recent technological advancements of MRI by analyzing the advantages and disadvantages of four types of MRI. The
review begins with high-field MRI, analyzing how increased magnetic field strength yields superior image resolution. This
enhancement is pivotal for applications such as Alzheimer’s research; concurrently, the technology faces technical
challenges, including field inhomogeneity. It then discusses real-time functional magnetic resonance imaging (rt-fMRI), a
technique offering novel capabilities for studying psychology (e.g., happiness parameters) and neuroscience (e.g.,
Parkinson's disease). A key limitation, however, is its susceptibility to motion artifacts and interference. The third section
delves into the integration of Al with MRI, highlighting its power to reduce the misdiagnosis rate and enhance operational
efficiency, while also stressing the critical need for physician oversight, as Al-generated results are not infallible. Finally,
the paper examines portable low-field MRI. Due to its low magnetic field and small form factor, it can be equipped in
ambulances to save the golden hour for patients. But it has a low signal-to-noise ratio (SNR) problem that needs to be
addressed urgently.

INTRODUCTION

MRI is a cornerstone of modern medical diagnostics, utilizing powerful magnetic fields, radio frequency (RF)
pulses, and gradient magnetic fields to generate detailed internal images of the body. Initially, MRI presented several
key advantages, including safety (as it does not rely on ionizing radiation), non-invasiveness, and superior soft-tissue
contrast compared to CT scans. However, early iterations of the technology faced significant challenges, such as low
image resolution (making it challenging to display complex structures like the hippocampus), slow imaging speed,
limited data processing capabilities, and restricted clinical application due to its large size. To address these limitations,
a series of pivotal advancements have been developed in succession, each targeting specific shortcomings.
Specifically, high-field MRI enhances the SNR for higher imaging quality. Rt-fMRI, integrating computer technology
and algorithms, enables real-time imaging. The integration of AI with MRI leverages deep learning to radically
improve data processing capabilities. Through continuous learning from vast amounts of MRI data, Al can be
progressively optimized, thereby enhancing diagnostic efficiency and reducing the misdiagnosis rate. For instance,
studies have shown that this can increase the efficiency of film reading by about 26% and the detection rate of lung
nodules by about 32%. Meanwhile, portable low-field MRI, with its smaller form factor and lower magnetic field
strength compared to conventional MRI, has significantly broadened the scope of MRI’s application, even enabling
simultaneous on-site diagnosis and initial treatment in mobile settings like ambulances, gaining precious time for
subsequent intervention.

Since its emergence, MRI has undergone continuous optimization to improve its application value and technical
level in medical imaging and other fields. In the 1970s, Mansfield and Lauterbur established the fundamental theory
of MRI, paving the way for its subsequent development. This was materialized in 1977 when Raymond Damadian
and his team invented the world's first MRI, “Indomitable”. The following decades brought rapid innovation: humans
created high-field MRI in the late 1980s and early 1990s, followed by the invention of rt-fMRI in the late 1990s,



pioneered by Seiji Ogawa. With the swift advancement of information technology, the integration of Al with MRI
was realized in the late 2010s, and by 2020, Hyperfine Research successfully applied portable MRI to clinical practice.

Building upon this context, this article is structured as follows: first, it summarizes the basic principles of MRI.
Then, it describes the latest progress in high-field MRI, rt-fMRI, the integration of artificial intelligence with MRI,
and portable low-field MRI. Lastly, based on an analysis of the current advantages and disadvantages of MRI, this
article provides specific guidance for its future development, supported by relevant examples and data.

BASIC PRINCIPLES OF MRI
The Phenomenon of Magnetic Resonance

Nuclear magnetic resonance (NMR) is a physical phenomenon in which atomic nuclei, when placed within a strong,
static magnetic field B, absorb energy from a precisely tuned radiofrequency (RF) pulse. This absorption causes the
nuclear spin system to transition between discrete, quantized energy levels.

According to quantum mechanics, the energy difference AE between nuclear spin energy levels is directly
proportional to the Larmor frequency w,, as described by the equation AE = Aw,, where 7 is the reduced Planck's
constant. For a nucleus to transition from a lower to a higher energy state (a process known as excitation), it must
absorb a photon whose energy precisely matches this energy gap. The energy of the incoming RF radiation is given
by E = hw, where w is the frequency of the applied RF field.

Therefore, the fundamental condition for resonance is met only when the frequency of the RF pulse w is identical
to the Larmor frequency of the nucleus w,. The Larmor frequency itself is determined by the external static magnetic
field By and an intrinsic property of the nucleus, its gyromagnetic ratio y, according to the formula wy = yB,.

The process of MRI

According to quantum mechanics, the intrinsic spin of an atomic nucleus generates a magnetic moment g (U =
yS, where § is the spin angular momentum), causing the nucleus to behave like a microscopic magnet. MRI primarily
detects the hydrogen protons *H, which are abundant in the human body. In the absence of an external magnetic field,
the magnetic moments of these protons are randomly oriented, resulting in zero net magnetization. When these nuclei
are placed in a strong, static external magnetic field By, their spin energy levels split (a phenomenon known as
Zeeman splitting). For spin—% nuclei like protons, the splitting results in two discrete energy levels: a lower-energy
“spin-up” state, aligned with By, and a higher-energy “spin-down” state, anti-aligned with By. In addition to
occupying one of these energy states, each magnetic moment also precesses around the B axis at a characteristic
Larmor frequency.

According to the Boltzmann distribution (% =exp (— i—:), where k is Boltzmann constant, T is absolute
temperature), the population of the high-energy state (Ngown) is slightly less than that of low-energy state (V). This
slight population imbalance creates a small but crucial net macroscopic magnetization M (M = A—';i, where AV is
volume element, ), y; is the total magnetic moment in AV) aligned with B,,.

However, this longitudinal magnetization M is challenging to detect directly, as the magnetic field B’ it
generates is orders of magnitude weaker than B,. To overcome this, a radiofrequency (RF) pulse, tuned precisely to
the Larmor frequency, is applied to perturb the spin system. This pulse tips the net magnetization vector away from
the By axis, creating a transverse magnetization component. This new component precesses in the transverse plane
and, by Faraday's law of induction, induces a measurable, time-varying electrical signal in a receiver coil.

To form an image, gradient magnetic fields spatially encode the signal by making its Larmor frequency or phase
dependent on location. After collecting the resulting composite signal, whose amplitude and decay characteristics are
determined by tissue properties such as T1 and T2 relaxation times, a Fourier transformation is applied to reconstruct
the spatial signal distribution by mapping the amplitude of each encoded frequency component back to its
corresponding spatial origin. This process yields a cross-sectional image where the contrast reflects these underlying
tissue property differences.



RECENT ADVANCES IN MRI TECHNOLOGY
Overview of high-field MRI

As the magnetic field strength continues to increase, the SNR is fundamentally boosted, enabling the improvement
of MRI image resolution. For instance, while routine clinical scans at 1.5T and 3T can achieve resolutions around
Imm, ultra-high-field systems like 7T can push the in-vivo resolution to the sub-millimeter range, for example,
0.2~0.3mm). High-field MRI, especially ultra-high-field (UHF) MRI, provides clinicians and researchers with more
anatomical details and significantly reduces partial volume effect (PVE) in certain areas, thus enhancing the precision
of numerous neuroimaging post-processing tasks, such as tissue segmentation and cortical surface reconstruction.
High-field MRI can also reveal subtle pathological changes that are invisible to low-field scanners [1]. The
improvement of resolution further enhances high-field MRI’s application value in research and clinical diagnosis. For
example, UHF MRI can be used for observing complex human structures such as the hippocampus, aiding in disease
diagnosis and the evaluation of treatment efficacy [1].

The common MRI field strengths used in clinical practice are mainly 1.5T and 3T, with 3T being widely considered
the standard for clinical high-field MRI. For research purposes, even higher field strengths, known as UHF MRI, are
utilized, such as 7T, 9.4T, and even beyond 10T. However, the widespread adoption of UHF MRI is hindered by
significant challenges, including prohibitive costs, complex maintenance, and heightened safety concerns like
increased specific absorption rate (SAR). Consequently, the use of UHF MRI is predominantly confined to
neuroscience research or specific clinical investigations.

Although high-field MRI provides extremely high SNR and spatial resolution, it still faces two major technical
challenges. The first is the inhomogeneity of the main magnetic field (By) (more critically at UHF MRI) and the
transmit RF field (B4), which can lead to signal voids and artifacts [2]. The second is the stronger interaction with the
metallic implant, especially the UHF MRI [2]. This interaction can cause significant magnetic susceptibility artifacts,
which distort the image, and can also lead to tissue heating around the implant, potentially causing unnecessary harm
due to RF-induced heating. To address these challenges, a range of solutions are being explored. On the hardware and
acquisition front, strategies include advanced shimming techniques to improve field uniformity and sophisticated pulse
sequence design (e.g., adjusting the timing, shape, and strength of applied gradient magnetic fields and RF pulses).
On the other hand, computational methods are gaining prominence. Researching image processing and deep learning
for tasks like artifact correction and image synthesis from low-field to high-field data is also a promising direction to
improve imaging quality. In this way, images from lower-field scanners can be computationally enhanced to emulate
the quality of images from UHF MRI [1].

Real-time Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) is a non-invasive technique used to evaluate cerebral activity by
detecting hemodynamic changes. This method relies on neurovascular coupling: when neuronal activity in a specific
brain region increases, there is a corresponding increase in local blood flow. The underlying principle of fMRI is the
blood-oxygen-level-dependent (BOLD) contrast, which arises from the magnetic differences between oxygen-rich
arterial blood and oxygen-poor venous blood. However, conventional fMRI faces limitations: its data is typically
processed offline, leading to significant delays in analysis, and it inherently suffers from a low SNR [3]. Furthermore,
the complexity of its acquisition and processing steps can be a barrier for non-experts attempting to make clinical
diagnoses [3].

To overcome the limitation of delayed feedback, rt-fMRI was introduced. Rt-fMRI integrates advanced data
analysis and statistical capabilities (such as t-tests, the general linear model (GLM), and independent component
analysis) directly into the acquisition pipeline, enabling online data processing [3]. This significantly shortens the
preoperative examination process for patients. During surgery, it provides surgeons with real-time visualization of
brain functional areas, allowing for the monitoring of the impact of surgical procedures on surrounding tissue.



Crucially, rt-fMRI offers real-time functional localization, which is vital for addressing brain shift (the displacement
of brain tissue during an operation). While these capabilities offer immense advantages, this method is limited for
tasks involving patients with motor impairments like hemiplegia, as their inability to execute specific movements
prevents the mapping of corresponding motor areas [3]. Nevertheless, it remains a valuable direction for development.

Furthermore, rt-fMRI is a powerful tool for neurofeedback training. Through rt-fMRI neurofeedback, the
behavioral effects of locally self-regulated brain activity can be studied, which in turn enables its application in fields
such as the treatment of Parkinson's disease, the study of happiness-related parameters, and the interaction between
automatic and controlled processes. Ultimately, it provides a powerful method for probing the causal links between
brain activity and behavior, as well as exploring brain plasticity. [3-6]

To reduce data processing time, denoising in rt-fMRI has fewer steps than in conventional offline MRI, which
could potentially lead to less effective noise removal. However, this is often compensated for by advanced algorithms.
Even with sophisticated algorithms, rt-fMRI places high demands on subjects, as the slightest head shaking can cause
artifacts, including image ghosting. Therefore, customized head fixation equipment is often used to reduce patient
shaking. Additionally, rt-fMRI allows for the dynamic optimization of scanning parameters (such as k-space trajectory
adjustments) to compensate for motion and improve image quality [3]. This principle is further advanced by
integrating deep learning algorithms, which build neural network models from massive clinical data to predict a
patient's motion trajectory accurately [10]. Beyond these computational corrections, shortening the time required for
a single acquisition can reduce the displacement size of head shaking, thereby mitigating its impact.

The integration of artificial intelligence with MRI

Professionals operating MRI (such as MRI technicians and radiologists) must undergo considerable professional
training to analyze and interpret MRI images correctly. This results in a shortage of MRI professionals in certain areas,
especially where dual-reading systems are employed or medical resources are scarce. In addition, with the growth of
the population and the increase in the detection frequency of certain diseases (such as prostate cancer detection), it is
imperative to find a low-cost and user-friendly MRI solution [7]. Integration of Al with MRI, enabling Al to process
and analyze images, represents a promising approach. With the help of Al's deep learning and automatic segmentation
technology, it can significantly improve image quality and diagnostic efficiency. At present, the average performance
of Al has surpassed that of some radiologists in specific, repetitive tasks. However, it is still inferior to the consensus
of expert radiologists working in MDT or dual reading used in population screening [7,8]. This highlights its potential
as a powerful assistive tool rather than a replacement. As shown in Table 1, Suhad Al-Shoukry and Zalili Binti Musa
collated representative work from the last 10 years related to the use of Al in integration with MRI for the diagnosis
of neurological disorders. They focused on studies that used different Al models and methods and reported clear
performance metrics. The finding shows that MRI, when integrated with certain Al models, demonstrated good
accuracy in detection. While these models are not inherently infallible, their key advantage is their immunity to human-
specific factors, such as fatigue. This inherent consistency makes them highly trustworthy, providing reliable
assistance to clinicians in detection and decision-making [8].



TABLE 1. More in-depth examination of the review of the literature. [9]

Methods &

Discussion of methodology and its

Title Year Performance R
models implications
Both Alex Net and ResNet-18 are
Accuracy: employed, with the former offering
Diagnosing Alzheimer’s 99.8%, simplicity and the latter enabling deeper
disease using MRI with 2022 ResNet-18, Precision: feature extraction, leading to high precision.
deep and hybrid Alex Net 99.99%, The integration of these models enhances
learning AUC: diagnostic performance, though evaluation
99.949%, across diverse datasets is necessary to
further confirm the method's effectiveness.
Employs TCN to model MRI sequences.
Accuoracy: Nonetheless, its accuracy is suboptimal,
CNN (ResNet- 91'73 4”, suggesting a necessity for enhanced
Deep sequence 18), Temporal Sensitivity: A | feat traction. Th
modeling on MRI for 2021 | Convolutional 91.56%, empora ea_ u_re ex aC.IOIl. ¢
Alzheimer’s diagnosis Network Specificity: | methodology exhibits potential but may be
(TCN) 92% improved by the integration of multi-modal
data.
A hybrid methodology that integrates
deep learning for feature extraction with
Hybrid deep learning Accuracy: support vector machines (SVM) for
. Alex Net + o . . . e
and traditional methods 94.8%, classification. This equilibrium illustrates
. 2021 | SVM, ResNet- . . . .
for early detection of 50 + SVM AUC: how hybrid models improve predicted
Alzheimer’s 99.7% precision and resilience, particularly in
medical imaging.
Accuracy: CNN attains moderate accuracy, indicating
Alzheimer’s disease 90.91%, that additional tuning or ensemble methods
stage prediction using 2020 CNN F1 Score: may be necessary. Emphasizes the
CNN 89.07% difficulty of class imbalance in illness stage
classification.
Integrates several CNNs, demonstrating that
model amalgamation can enhance MRI
Brain tumour detection ResNet-50, Accuracy: analysis. The methodology possesses
in MRI scans with 2020 | DenseNet201, 97.2% applicability beyond cerebral neoplasms,
hybrid CNN models VGGl6 rendering it versatile for additional medical
diagnoses.
SVM The SVM surpassed other classifiers in
Accuraocy: managing extracted features, demonstrating
Alzheimer’s diagnosis ngdo;i/ I;/(l)r?ft 95'0%” that conventional classifiers may greatly
via deep feature (RF), P . benefit from the feature extraction
. 2019 Nearest Accuracy: . i
extraction and Neighbors 88% capabilities of deep learning. The
traditional models ’ TR o : ——
(KNN) KNN implications indicate a wider application of
Accuracy: this hybrid methodology in diagnostics.
85.12%
Demonstrates the efficacy of transfer
Accuracy: learning in improving diagnostic precision
Al for dementia and 99.7% (with with little data. This approach is optimal
. . Google Net, . . .
mild cognitive 2017 ResNet transfer for medical applications characterized by
impairment diagnosis learning) limited data, delivering near-perfect

accuracy when utilizing pre-trained models.




In addition, AI can detect details that radiologists may have missed during diagnosis. It can also automatically
generate relevant images and perform processing to reduce image noise and artifacts, thereby improving image quality
[10]. This enhances work efficiency and creates positive interaction with MRI operators [8]. Moreover, MRI integrated
with Al is easier to use than traditional MRI and can be used to train novices, helping them get started quickly [8].
However, when the Al algorithm is inaccurate, it may misclassify information and produce results that contradict
human judgment, thus generating a negative interaction with the operator [8]. Currently, the operator needs to make
judgments based on personal experience while critically evaluating the AI’s output, rather than unquestioningly
trusting it, as either approach can lead to misjudgments [8].

To promote the development of the integration of Al with MRI, the focus should be on two aspects. First, future
work should explore the integration of multiple, diverse Al models (ensemble methods) for deep learning to improve
instrument accuracy and operating efficiency. Lastly, enriching the database resources is crucial. This should not be
limited solely to past medical data. In the future, when using MRI integrated with Al the focus should be on promptly
comparing and analyzing Al-generated data with the operator's data. This process includes modifying any
unreasonable parts of the AI’s output. Additionally, Al should be allowed to learn in real time to improve its database
continuously. This approach will enable the Al to perform daily tasks with both high efficiency and perfect accuracy,
leading to improved overall work efficiency.

Portable low-field MRI

Portable MRI, also known as bedside MRI, is a type of simplified, low-cost imaging modality. Compared to
conventionallhigh-ﬁeld MR, it is substantially smallﬁr and more economical, weighing approximately 5 s much,
consuming = the energy, and costing as little as % the price. This portability allows it to be deployed almost
anywhere in a facility for on-demand scanning and processing [11]. For instance, installing it in an ambulance could
enable pre-hospital diagnosis and intervention for the patient’s condition, saving critical time by providing vital patient
information before hospital arrival and allowing for more targeted life-saving treatments [11]. At the same time, this
provides an alternative examination method for patients in remote or rural areas, those without insurance, or unwilling
to visit regular medical institutions, broadening the accessibility of medical imaging examinations and overcoming
traditional spatial limitations [12]. Furthermore, the patient experience is significantly improved, especially for
patients with mental illness. Some participants reported that portable MRI’s open design and flexibility create a more
comfortable and less intimidating examination experience compared to conventional scans, partly by enabling scans
in more familiar or convenient environments (Figure 1) [12].
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FIGURE 1. Participant experiences and comfort assessments for low-field and standard magnetic resonance imaging.
Participants evaluated their overall experience with LF-MRI, comfort in the LF-MRI machine, and comfort in standard MRI
machines using a 10-point Likert scale (1 signifying extremely low and 10 denoting very high). [12]

Note: Data for this study were collected from a cohort of adult multiple sclerosis (MS) patients who met the study criteria. This
group included individuals aged 18 years and older with a confirmed diagnosis of MS and excluded subjects with
contraindications to MRI, recent relapses, or active infections. [12]

The primary trade-off for the convenience of portable MRI is a significantly lower magnetic field strength. Some
systems operate at fields as low as 0.064T, which inevitably reduces the resolution and quality of the image. However,
this characteristic offers distinct advantages: reduced susceptibility to metallic artifacts. A compelling example is
found in the work of Munhall et al., who studied the imaging of cochlear implants [13]. They compared scans from a
portable 0.064T MRI with a conventional 3T MRI and identified a critical trade-off. Although the high-field 3T system
provided superior overall image resolution, their analysis showed that the low-field 0.064T scanner generated
markedly fewer artifacts and less image distortion around the metallic implant [13]. This reduction in artifacts is a key
factor that lessens operators' concern about metallic objects, enabling the safe use of portable MRI in environments
like emergency rooms, intensive care units, and mobile units like ambulances. Furthermore, it allows these systems to
be used in conjunction with various medical instruments, facilitating rapid diagnosis at the point of care.

This diagnostic utility is further supported by other studies. For instance, in scans of progressive multifocal
leukoencephalopathy (PML), a portable ultra-low-field MRI (pULF-MRI) was able to detect all T2-FLAIR lesions
that were also identified by conventional high-field MRI [14]. This suggests that for certain pathologies, the accuracy
of low-field MRI is not inferior to high-field systems, highlighting it as a promising direction for development.

Despite these advantages, portable low-field systems face two major challenges: low SNR and a high degree of
B, field inhomogeneity [15]. To address the above problems, several strategies are being explored. On the hardware
level, solutions include modifying coil geometry (e.g., to an elliptical shape) and designing multi-layered shielding
systems to reduce external electromagnetic interference (EMI) [15]. Concurrently, on the software and signal
processing levels, approaches involve designing advanced digital filters and developing software algorithms to
compensate for By inhomogeneity. These combined efforts aim to ensure magnetic field uniformity, thereby
improving the imaging quality of low-field MRI.

CONCLUSION

The article first summarizes the basic principles of MRI from the perspectives of the magnetic resonance
phenomenon and the MRI imaging process. The article then describes the four latest developments in MRI in
chronological order. The first is high-field MRI. Under the action of a high magnetic field, the SNR of MRI signals is
improved. This enhancement increases the resolution of the image generated, allowing for imaging at the sub-
millimeter level. This advancement provides technical support for studying brain structure and related diseases. For
example, detailed imaging data of the hippocampus can be used to evaluate the effectiveness of medications for
treating Alzheimer's disease. Next is rt-fMRI, which conducts real-time cerebral activity imaging by identifying blood
flow-related alterations. The detected neural feedback can provide neural activity data for neurological diseases such
as Parkinson's, helping doctors conduct research and analysis. Then there is the integration of Al with MRI. Al can
reduce the difficulty of users getting started and help MRI workers identify omissions, which can assist in lowering
the misdiagnosis rate. In addition, Al's deep learning and automatic processing can improve image clarity by reducing
noise and artifacts. Finally, the portable low-field MRI overcomes the space limitation due to its small size. Its
portability provides a new means of examination for people in remote areas. They do not have to travel to large
hospitals for relevant diagnoses. This feature broadens the application scope of MRI.

Despite their distinct advantage, these technologies also present a series of notable challenges. A primary concern
is their susceptibility to interference and artifacts that degrade image quality. For instance, motion artifacts from even
slight subject movements pose a significant challenge for rt-fMRI, while high-field systems are prone to magnetic
susceptibility artifacts that distort images around metallic implants. Beyond artifacts, performance is constrained by



other technical hurdles. Magnetic field inhomogeneity remains a persistent issue for both high-field and portable low-
field MRI. Concurrently, a low SNR fundamentally limits the image quality of rt-fMRI and portable systems. Finally,
a critical safety concern, especially for high-field MRI, is the potential for RF-induced tissue heating, which is
quantified by the SAR. While perfect solutions are not yet available, concerted efforts are focused on mitigating these
impacts through innovations in both hardware and software.

For the future, two suggestions can be made. The first approach is algorithmic. The foundation of this approach is
the establishment of a shared medical imaging database. This database enables the development of Al-integrated
algorithms for real-time motion tracking compensation. It also supports artifact elimination and image reconstruction
algorithms. These algorithms can then be optimized for specific clinical applications to enhance their anti-interference
capabilities. Lastly, the development of acquisition technology should focus on rapid acquisition techniques to reduce
scan time and minimize susceptibility to external influences.
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