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Abstract. This paper first summarizes the fundamental principles of magnetic resonance imaging (MRI). It then reviews 

the recent technological advancements of MRI by analyzing the advantages and disadvantages of four types of MRI. The 

review begins with high-field MRI, analyzing how increased magnetic field strength yields superior image resolution. This 

enhancement is pivotal for applications such as Alzheimer’s research; concurrently, the technology faces technical 

challenges, including field inhomogeneity. It then discusses real-time functional magnetic resonance imaging (rt-fMRI), a 

technique offering novel capabilities for studying psychology (e.g., happiness parameters) and neuroscience (e.g., 

Parkinson's disease). A key limitation, however, is its susceptibility to motion artifacts and interference. The third section 

delves into the integration of AI with MRI, highlighting its power to reduce the misdiagnosis rate and enhance operational 

efficiency, while also stressing the critical need for physician oversight, as AI-generated results are not infallible. Finally, 

the paper examines portable low-field MRI. Due to its low magnetic field and small form factor, it can be equipped in 

ambulances to save the golden hour for patients. But it has a low signal-to-noise ratio (SNR) problem that needs to be 

addressed urgently. 

INTRODUCTION 

MRI is a cornerstone of modern medical diagnostics, utilizing powerful magnetic fields, radio frequency (RF) 

pulses, and gradient magnetic fields to generate detailed internal images of the body. Initially, MRI presented several 

key advantages, including safety (as it does not rely on ionizing radiation), non-invasiveness, and superior soft-tissue 

contrast compared to CT scans. However, early iterations of the technology faced significant challenges, such as low 

image resolution (making it challenging to display complex structures like the hippocampus), slow imaging speed, 

limited data processing capabilities, and restricted clinical application due to its large size. To address these limitations, 

a series of pivotal advancements have been developed in succession, each targeting specific shortcomings. 

Specifically, high-field MRI enhances the SNR for higher imaging quality. Rt-fMRI, integrating computer technology 

and algorithms, enables real-time imaging. The integration of AI with MRI leverages deep learning to radically 

improve data processing capabilities. Through continuous learning from vast amounts of MRI data, AI can be 

progressively optimized, thereby enhancing diagnostic efficiency and reducing the misdiagnosis rate. For instance, 

studies have shown that this can increase the efficiency of film reading by about 26% and the detection rate of lung 

nodules by about 32%. Meanwhile, portable low-field MRI, with its smaller form factor and lower magnetic field 

strength compared to conventional MRI, has significantly broadened the scope of MRI’s application, even enabling 

simultaneous on-site diagnosis and initial treatment in mobile settings like ambulances, gaining precious time for 

subsequent intervention.  

Since its emergence, MRI has undergone continuous optimization to improve its application value and technical 

level in medical imaging and other fields. In the 1970s, Mansfield and Lauterbur established the fundamental theory 

of MRI, paving the way for its subsequent development. This was materialized in 1977 when Raymond Damadian 

and his team invented the world's first MRI, “Indomitable”. The following decades brought rapid innovation: humans 

created high-field MRI in the late 1980s and early 1990s, followed by the invention of rt-fMRI in the late 1990s, 



pioneered by Seiji Ogawa. With the swift advancement of information technology, the integration of AI with MRI 

was realized in the late 2010s, and by 2020, Hyperfine Research successfully applied portable MRI to clinical practice.  

Building upon this context, this article is structured as follows: first, it summarizes the basic principles of MRI. 

Then, it describes the latest progress in high-field MRI, rt-fMRI, the integration of artificial intelligence with MRI, 

and portable low-field MRI. Lastly, based on an analysis of the current advantages and disadvantages of MRI, this 

article provides specific guidance for its future development, supported by relevant examples and data. 

BASIC PRINCIPLES OF MRI 

The Phenomenon of Magnetic Resonance 

Nuclear magnetic resonance (NMR) is a physical phenomenon in which atomic nuclei, when placed within a strong, 

static magnetic field 𝑩𝟎, absorb energy from a precisely tuned radiofrequency (RF) pulse. This absorption causes the 

nuclear spin system to transition between discrete, quantized energy levels.  

According to quantum mechanics, the energy difference Δ𝐸  between nuclear spin energy levels is directly 

proportional to the Larmor frequency 𝜔0, as described by the equation Δ𝐸 = ℏ𝜔0, where ℏ is the reduced Planck's 

constant. For a nucleus to transition from a lower to a higher energy state (a process known as excitation), it must 

absorb a photon whose energy precisely matches this energy gap. The energy of the incoming RF radiation is given 

by 𝐸 = ℏ𝜔, where 𝜔 is the frequency of the applied RF field.  

Therefore, the fundamental condition for resonance is met only when the frequency of the RF pulse 𝜔 is identical 

to the Larmor frequency of the nucleus 𝜔0. The Larmor frequency itself is determined by the external static magnetic 

field 𝑩𝟎 and an intrinsic property of the nucleus, its gyromagnetic ratio 𝛾, according to the formula 𝝎𝟎 = 𝛾𝑩𝟎. 

The process of MRI 

According to quantum mechanics, the intrinsic spin of an atomic nucleus generates a magnetic moment 𝝁 (𝝁 =

𝛾𝑺, where 𝑺 is the spin angular momentum), causing the nucleus to behave like a microscopic magnet. MRI primarily 

detects the hydrogen protons H 
1 , which are abundant in the human body. In the absence of an external magnetic field, 

the magnetic moments of these protons are randomly oriented, resulting in zero net magnetization. When these nuclei 

are placed in a strong, static external magnetic field 𝑩𝟎 , their spin energy levels split (a phenomenon known as 

Zeeman splitting). For spin-
1

2
 nuclei like protons, the splitting results in two discrete energy levels: a lower-energy 

“spin-up” state, aligned with 𝑩𝟎 , and a higher-energy “spin-down” state, anti-aligned with 𝑩𝟎 . In addition to 

occupying one of these energy states, each magnetic moment also precesses around the 𝑩𝟎 axis at a characteristic 

Larmor frequency.  

According to the Boltzmann distribution (
𝑁𝑑𝑜𝑤𝑛

𝑁𝑢𝑝
= exp (−

Δ𝐸

𝑘𝑇
), where 𝑘 is Boltzmann constant, 𝑇 is absolute 

temperature), the population of the high-energy state (𝑁𝑑𝑜𝑤𝑛) is slightly less than that of low-energy state (𝑁𝑢𝑝). This 

slight population imbalance creates a small but crucial net macroscopic magnetization 𝑴 (𝑴 =
∑ 𝝁𝑖

Δ𝑉
, where Δ𝑉 is 

volume element, ∑ 𝝁𝑖 is the total magnetic moment in Δ𝑉) aligned with 𝐵0.  

However, this longitudinal magnetization 𝑴  is challenging to detect directly, as the magnetic field 𝑩′  it 

generates is orders of magnitude weaker than 𝑩𝟎. To overcome this, a radiofrequency (RF) pulse, tuned precisely to 

the Larmor frequency, is applied to perturb the spin system. This pulse tips the net magnetization vector away from 

the 𝑩𝟎 axis, creating a transverse magnetization component. This new component precesses in the transverse plane 

and, by Faraday's law of induction, induces a measurable, time-varying electrical signal in a receiver coil. 

To form an image, gradient magnetic fields spatially encode the signal by making its Larmor frequency or phase 

dependent on location. After collecting the resulting composite signal, whose amplitude and decay characteristics are 

determined by tissue properties such as T1 and T2 relaxation times, a Fourier transformation is applied to reconstruct 

the spatial signal distribution by mapping the amplitude of each encoded frequency component back to its 

corresponding spatial origin. This process yields a cross-sectional image where the contrast reflects these underlying 

tissue property differences. 



RECENT ADVANCES IN MRI TECHNOLOGY 

Overview of high-field MRI 

As the magnetic field strength continues to increase, the SNR is fundamentally boosted, enabling the improvement 

of MRI image resolution. For instance, while routine clinical scans at 1.5T and 3T can achieve resolutions around 

1mm, ultra-high-field systems like 7T can push the in-vivo resolution to the sub-millimeter range, for example, 

0.2~0.3mm). High-field MRI, especially ultra-high-field (UHF) MRI, provides clinicians and researchers with more 

anatomical details and significantly reduces partial volume effect (PVE) in certain areas, thus enhancing the precision 

of numerous neuroimaging post-processing tasks, such as tissue segmentation and cortical surface reconstruction. 

High-field MRI can also reveal subtle pathological changes that are invisible to low-field scanners [1]. The 

improvement of resolution further enhances high-field MRI’s application value in research and clinical diagnosis. For 

example, UHF MRI can be used for observing complex human structures such as the hippocampus, aiding in disease 

diagnosis and the evaluation of treatment efficacy [1].  

The common MRI field strengths used in clinical practice are mainly 1.5T and 3T, with 3T being widely considered 

the standard for clinical high-field MRI. For research purposes, even higher field strengths, known as UHF MRI, are 

utilized, such as 7T, 9.4T, and even beyond 10T. However, the widespread adoption of UHF MRI is hindered by 

significant challenges, including prohibitive costs, complex maintenance, and heightened safety concerns like 

increased specific absorption rate (SAR). Consequently, the use of UHF MRI is predominantly confined to 

neuroscience research or specific clinical investigations. 

Although high-field MRI provides extremely high SNR and spatial resolution, it still faces two major technical 

challenges. The first is the inhomogeneity of the main magnetic field (𝐁𝟎) (more critically at UHF MRI) and the 

transmit RF field (𝐁𝟏), which can lead to signal voids and artifacts [2]. The second is the stronger interaction with the 

metallic implant, especially the UHF MRI [2]. This interaction can cause significant magnetic susceptibility artifacts, 

which distort the image, and can also lead to tissue heating around the implant, potentially causing unnecessary harm 

due to RF-induced heating. To address these challenges, a range of solutions are being explored. On the hardware and 

acquisition front, strategies include advanced shimming techniques to improve field uniformity and sophisticated pulse 

sequence design (e.g., adjusting the timing, shape, and strength of applied gradient magnetic fields and RF pulses). 

On the other hand, computational methods are gaining prominence. Researching image processing and deep learning 

for tasks like artifact correction and image synthesis from low-field to high-field data is also a promising direction to 

improve imaging quality. In this way, images from lower-field scanners can be computationally enhanced to emulate 

the quality of images from UHF MRI [1]. 

Real-time Functional Magnetic Resonance Imaging  

Functional magnetic resonance imaging (fMRI) is a non-invasive technique used to evaluate cerebral activity by 

detecting hemodynamic changes. This method relies on neurovascular coupling: when neuronal activity in a specific 

brain region increases, there is a corresponding increase in local blood flow. The underlying principle of fMRI is the 

blood-oxygen-level-dependent (BOLD) contrast, which arises from the magnetic differences between oxygen-rich 

arterial blood and oxygen-poor venous blood. However, conventional fMRI faces limitations: its data is typically 

processed offline, leading to significant delays in analysis, and it inherently suffers from a low SNR [3]. Furthermore, 

the complexity of its acquisition and processing steps can be a barrier for non-experts attempting to make clinical 

diagnoses [3].  

To overcome the limitation of delayed feedback, rt-fMRI was introduced. Rt-fMRI integrates advanced data 

analysis and statistical capabilities (such as t-tests, the general linear model (GLM), and independent component 

analysis) directly into the acquisition pipeline, enabling online data processing [3]. This significantly shortens the 

preoperative examination process for patients. During surgery, it provides surgeons with real-time visualization of 

brain functional areas, allowing for the monitoring of the impact of surgical procedures on surrounding tissue. 



Crucially, rt-fMRI offers real-time functional localization, which is vital for addressing brain shift (the displacement 

of brain tissue during an operation). While these capabilities offer immense advantages, this method is limited for 

tasks involving patients with motor impairments like hemiplegia, as their inability to execute specific movements 

prevents the mapping of corresponding motor areas [3]. Nevertheless, it remains a valuable direction for development. 

Furthermore, rt-fMRI is a powerful tool for neurofeedback training. Through rt-fMRI neurofeedback, the 

behavioral effects of locally self-regulated brain activity can be studied, which in turn enables its application in fields 

such as the treatment of Parkinson's disease, the study of happiness-related parameters, and the interaction between 

automatic and controlled processes. Ultimately, it provides a powerful method for probing the causal links between 

brain activity and behavior, as well as exploring brain plasticity. [3-6] 

To reduce data processing time, denoising in rt-fMRI has fewer steps than in conventional offline MRI, which 

could potentially lead to less effective noise removal. However, this is often compensated for by advanced algorithms. 

Even with sophisticated algorithms, rt-fMRI places high demands on subjects, as the slightest head shaking can cause 

artifacts, including image ghosting. Therefore, customized head fixation equipment is often used to reduce patient 

shaking. Additionally, rt-fMRI allows for the dynamic optimization of scanning parameters (such as k-space trajectory 

adjustments) to compensate for motion and improve image quality [3]. This principle is further advanced by 

integrating deep learning algorithms, which build neural network models from massive clinical data to predict a 

patient's motion trajectory accurately [10]. Beyond these computational corrections, shortening the time required for 

a single acquisition can reduce the displacement size of head shaking, thereby mitigating its impact. 

The integration of artificial intelligence with MRI 

Professionals operating MRI (such as MRI technicians and radiologists) must undergo considerable professional 

training to analyze and interpret MRI images correctly. This results in a shortage of MRI professionals in certain areas, 

especially where dual-reading systems are employed or medical resources are scarce. In addition, with the growth of 

the population and the increase in the detection frequency of certain diseases (such as prostate cancer detection), it is 

imperative to find a low-cost and user-friendly MRI solution [7]. Integration of AI with MRI, enabling AI to process 

and analyze images, represents a promising approach. With the help of AI's deep learning and automatic segmentation 

technology, it can significantly improve image quality and diagnostic efficiency. At present, the average performance 

of AI has surpassed that of some radiologists in specific, repetitive tasks. However, it is still inferior to the consensus 

of expert radiologists working in MDT or dual reading used in population screening [7,8]. This highlights its potential 

as a powerful assistive tool rather than a replacement. As shown in Table 1, Suhad Al-Shoukry and Zalili Binti Musa 

collated representative work from the last 10 years related to the use of AI in integration with MRI for the diagnosis 

of neurological disorders. They focused on studies that used different AI models and methods and reported clear 

performance metrics. The finding shows that MRI, when integrated with certain AI models, demonstrated good 

accuracy in detection. While these models are not inherently infallible, their key advantage is their immunity to human-

specific factors, such as fatigue. This inherent consistency makes them highly trustworthy, providing reliable 

assistance to clinicians in detection and decision-making [8]. 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE 1. More in-depth examination of the review of the literature. [9] 

 

 

Title Year 
Methods & 

models 
Performance 

Discussion of methodology and its 

implications 

Diagnosing Alzheimer’s 

disease using MRI with 

deep and hybrid 

learning 

2022 
ResNet-18, 

Alex Net 

Accuracy: 

99.8%, 

Precision: 

99.99%, 

AUC: 

99.94% 

Both Alex Net and ResNet-18 are 

employed, with the former offering 

simplicity and the latter enabling deeper 

feature extraction, leading to high precision. 

The integration of these models enhances 

diagnostic performance, though evaluation 

across diverse datasets is necessary to 

further confirm the method’s effectiveness. 

Deep sequence 

modeling on MRI for 

Alzheimer’s diagnosis 

2021 

CNN (ResNet-

18), Temporal 

Convolutional 

Network 

(TCN) 

Accuracy: 

91.78%, 

Sensitivity: 

91.56%, 

Specificity: 

92% 

 

Employs TCN to model MRI sequences. 

Nonetheless, its accuracy is suboptimal, 

suggesting a necessity for enhanced 

temporal feature extraction. The 

methodology exhibits potential but may be 

improved by the integration of multi-modal 

data. 

Hybrid deep learning 

and traditional methods 

for early detection of 

Alzheimer’s 

2021 

Alex Net + 

SVM, ResNet-

50 + SVM 

Accuracy: 

94.8%, 

AUC:  

99.7% 

A hybrid methodology that integrates 

deep learning for feature extraction with 

support vector machines (SVM) for 

classification.  This equilibrium illustrates 

how hybrid models improve predicted 

precision and resilience, particularly in 

medical imaging. 

Alzheimer’s disease 

stage prediction using 

CNN 

2020 CNN 

Accuracy: 

90.91%, 

F1 Score: 

89.07% 

 

CNN attains moderate accuracy, indicating 

that additional tuning or ensemble methods 

may be necessary.  Emphasizes the 

difficulty of class imbalance in illness stage 

classification. 

Brain tumour detection 

in MRI scans with 

hybrid CNN models 

2020 

ResNet-50, 

DenseNet201, 

VGG16 

Accuracy: 

97.2% 

 

Integrates several CNNs, demonstrating that 

model amalgamation can enhance MRI 

analysis. The methodology possesses 

applicability beyond cerebral neoplasms, 

rendering it versatile for additional medical 

diagnoses. 

Alzheimer’s diagnosis 

via deep feature 

extraction and 

traditional models 

2019 

Random Forest 

(RF), SVM, K-

Nearest 

Neighbors 

(KNN) 

SVM 

Accuracy: 

95.08%, 

RF 

Accuracy: 

88%, 

KNN 

Accuracy: 

85.12% 

The SVM surpassed other classifiers in 

managing extracted features, demonstrating 

that conventional classifiers may greatly 

benefit from the feature extraction 

capabilities of deep learning.  The 

implications indicate a wider application of 

this hybrid methodology in diagnostics. 

AI for dementia and 

mild cognitive 

impairment diagnosis 

2017 
Google Net, 

ResNet 

Accuracy:  

99.7% (with 

transfer 

learning) 

 

Demonstrates the efficacy of transfer 

learning in improving diagnostic precision 

with little data.  This approach is optimal 

for medical applications characterized by 

limited data, delivering near-perfect 

accuracy when utilizing pre-trained models. 



In addition, AI can detect details that radiologists may have missed during diagnosis. It can also automatically 

generate relevant images and perform processing to reduce image noise and artifacts, thereby improving image quality 

[10]. This enhances work efficiency and creates positive interaction with MRI operators [8]. Moreover, MRI integrated 

with AI is easier to use than traditional MRI and can be used to train novices, helping them get started quickly [8]. 

However, when the AI algorithm is inaccurate, it may misclassify information and produce results that contradict 

human judgment, thus generating a negative interaction with the operator [8]. Currently, the operator needs to make 

judgments based on personal experience while critically evaluating the AI’s output, rather than unquestioningly 

trusting it, as either approach can lead to misjudgments [8]. 

To promote the development of the integration of AI with MRI, the focus should be on two aspects. First, future 

work should explore the integration of multiple, diverse AI models (ensemble methods) for deep learning to improve 

instrument accuracy and operating efficiency. Lastly, enriching the database resources is crucial. This should not be 

limited solely to past medical data. In the future, when using MRI integrated with AI, the focus should be on promptly 

comparing and analyzing AI-generated data with the operator's data. This process includes modifying any 

unreasonable parts of the AI’s output. Additionally, AI should be allowed to learn in real time to improve its database 

continuously. This approach will enable the AI to perform daily tasks with both high efficiency and perfect accuracy, 

leading to improved overall work efficiency. 

Portable low-field MRI 

Portable MRI, also known as bedside MRI, is a type of simplified, low-cost imaging modality. Compared to 

conventional high-field MRI, it is substantially smaller and more economical, weighing approximately 
1

10
 as much, 

consuming 
1

35
 the energy, and costing as little as 

1

20
 the price. This portability allows it to be deployed almost 

anywhere in a facility for on-demand scanning and processing [11]. For instance, installing it in an ambulance could 

enable pre-hospital diagnosis and intervention for the patient’s condition, saving critical time by providing vital patient 

information before hospital arrival and allowing for more targeted life-saving treatments [11]. At the same time, this 

provides an alternative examination method for patients in remote or rural areas, those without insurance, or unwilling 

to visit regular medical institutions, broadening the accessibility of medical imaging examinations and overcoming 

traditional spatial limitations [12]. Furthermore, the patient experience is significantly improved, especially for 

patients with mental illness. Some participants reported that portable MRI’s open design and flexibility create a more 

comfortable and less intimidating examination experience compared to conventional scans, partly by enabling scans 

in more familiar or convenient environments (Figure 1) [12]. 

 

 



FIGURE 1. Participant experiences and comfort assessments for low-field and standard magnetic resonance imaging. 

Participants evaluated their overall experience with LF-MRI, comfort in the LF-MRI machine, and comfort in standard MRI 

machines using a 10-point Likert scale (1 signifying extremely low and 10 denoting very high). [12]  

Note: Data for this study were collected from a cohort of adult multiple sclerosis (MS) patients who met the study criteria. This 

group included individuals aged 18 years and older with a confirmed diagnosis of MS and excluded subjects with 

contraindications to MRI, recent relapses, or active infections. [12] 

 

The primary trade-off for the convenience of portable MRI is a significantly lower magnetic field strength. Some 

systems operate at fields as low as 0.064T, which inevitably reduces the resolution and quality of the image. However, 

this characteristic offers distinct advantages: reduced susceptibility to metallic artifacts. A compelling example is 

found in the work of Munhall et al., who studied the imaging of cochlear implants [13]. They compared scans from a 

portable 0.064T MRI with a conventional 3T MRI and identified a critical trade-off. Although the high-field 3T system 

provided superior overall image resolution, their analysis showed that the low-field 0.064T scanner generated 

markedly fewer artifacts and less image distortion around the metallic implant [13]. This reduction in artifacts is a key 

factor that lessens operators' concern about metallic objects, enabling the safe use of portable MRI in environments 

like emergency rooms, intensive care units, and mobile units like ambulances. Furthermore, it allows these systems to 

be used in conjunction with various medical instruments, facilitating rapid diagnosis at the point of care. 

This diagnostic utility is further supported by other studies. For instance, in scans of progressive multifocal 

leukoencephalopathy (PML), a portable ultra-low-field MRI (pULF-MRI) was able to detect all T2-FLAIR lesions 

that were also identified by conventional high-field MRI [14]. This suggests that for certain pathologies, the accuracy 

of low-field MRI is not inferior to high-field systems, highlighting it as a promising direction for development.  

Despite these advantages, portable low-field systems face two major challenges: low SNR and a high degree of 

𝐁𝟎 field inhomogeneity [15]. To address the above problems, several strategies are being explored. On the hardware 

level, solutions include modifying coil geometry (e.g., to an elliptical shape) and designing multi-layered shielding 

systems to reduce external electromagnetic interference (EMI) [15]. Concurrently, on the software and signal 

processing levels, approaches involve designing advanced digital filters and developing software algorithms to 

compensate for 𝐁𝟎  inhomogeneity. These combined efforts aim to ensure magnetic field uniformity, thereby 

improving the imaging quality of low-field MRI. 

CONCLUSION 

The article first summarizes the basic principles of MRI from the perspectives of the magnetic resonance 

phenomenon and the MRI imaging process. The article then describes the four latest developments in MRI in 

chronological order. The first is high-field MRI. Under the action of a high magnetic field, the SNR of MRI signals is 

improved. This enhancement increases the resolution of the image generated, allowing for imaging at the sub-

millimeter level. This advancement provides technical support for studying brain structure and related diseases. For 

example, detailed imaging data of the hippocampus can be used to evaluate the effectiveness of medications for 

treating Alzheimer's disease. Next is rt-fMRI, which conducts real-time cerebral activity imaging by identifying blood 

flow-related alterations. The detected neural feedback can provide neural activity data for neurological diseases such 

as Parkinson's, helping doctors conduct research and analysis. Then there is the integration of AI with MRI. AI can 

reduce the difficulty of users getting started and help MRI workers identify omissions, which can assist in lowering 

the misdiagnosis rate. In addition, AI's deep learning and automatic processing can improve image clarity by reducing 

noise and artifacts. Finally, the portable low-field MRI overcomes the space limitation due to its small size. Its 

portability provides a new means of examination for people in remote areas. They do not have to travel to large 

hospitals for relevant diagnoses. This feature broadens the application scope of MRI.  

Despite their distinct advantage, these technologies also present a series of notable challenges. A primary concern 

is their susceptibility to interference and artifacts that degrade image quality. For instance, motion artifacts from even 

slight subject movements pose a significant challenge for rt-fMRI, while high-field systems are prone to magnetic 

susceptibility artifacts that distort images around metallic implants. Beyond artifacts, performance is constrained by 



other technical hurdles. Magnetic field inhomogeneity remains a persistent issue for both high-field and portable low-

field MRI. Concurrently, a low SNR fundamentally limits the image quality of rt-fMRI and portable systems. Finally, 

a critical safety concern, especially for high-field MRI, is the potential for RF-induced tissue heating, which is 

quantified by the SAR. While perfect solutions are not yet available, concerted efforts are focused on mitigating these 

impacts through innovations in both hardware and software. 

For the future, two suggestions can be made. The first approach is algorithmic. The foundation of this approach is 

the establishment of a shared medical imaging database. This database enables the development of AI-integrated 

algorithms for real-time motion tracking compensation. It also supports artifact elimination and image reconstruction 

algorithms. These algorithms can then be optimized for specific clinical applications to enhance their anti-interference 

capabilities. Lastly, the development of acquisition technology should focus on rapid acquisition techniques to reduce 

scan time and minimize susceptibility to external influences. 
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