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Abstract. With the growing global population of individuals with limb impairments, the value of lower-limb rehabilitation
exoskeletons for training support has become increasingly prominent. However, the precision and real-time performance
of lower-limb movement intention recognition remain major hurdles to the wide adoption of such technology. This study
focuses on lower-limb movement intention recognition methods that leverage both bioelectric and biomechanical signals.
Through a comprehensive review and comparative analysis of relevant literature, it systematically examines the
performance of single- and multi-modal fusion strategies regarding recognition accuracy, real-time capability, and
environmental adaptability. Specifically, it covers data collection and fusion approaches for common signals, including
surface electromyography, electroencephalography, plantar pressure, and joint angles, while also discussing key techniques
involving deep learning and multi-source data integration. The results indicate that multi-modal fusion strategies
significantly enhance the accuracy and responsiveness of lower-limb movement intention recognition and exhibit greater
robustness under complex conditions. Overall, the integrated use of multi-modal signals plays a pivotal role in achieving
effective human—machine interaction and precise rehabilitation with exoskeleton systems.

INTRODUCTION

With the continuous growth of the global disabled population, the development and application of lower-limb
rehabilitation exoskeletons in medical rehabilitation have received widespread attention.

Lee et al. developed a HEXAR-CR35 exoskeleton system based on human-machine interaction (HMI) control.
This system provides precise gait rehabilitation intervention for patients with paraplegia and lower limb motor
dysfunction through real-time electromyographic signal decoding and joint torque prediction algorithms [1]. The
wearable lower limb exoskeleton developed by Israel's Rewalk Robotics Company achieves adaptive adjustment of
walking speed by monitoring the patient's center of gravity displacement in real time [2]. However, the current
exoskeleton technologies face limitations in terms of movement intention recognition accuracy, real-time
performance, and environmental adaptability, which restrict their clinical adoption and effectiveness in patient
rehabilitation.

To address these challenges, this study systematically reviews the latest research progress on motion intention
recognition signals for lower limb rehabilitation exoskeletons. The research focuses on single-modal sensing methods
based on bioelectrical signals and biomechanical signals, as well as multimodal fusion technologies. Through detailed
analysis of different signal characteristics and fusion approaches, it aims to provide researchers, medical practitioners,
and industry experts with systematic research directions and practical methods to enhance the human-robot interaction
performance of lower limb rehabilitation exoskeletons, achieve more efficient and safer rehabilitation training, and
facilitate the widespread application of rehabilitation technologies.



BIOELECTRICITY-BASED INTENTION PERCEPTION SIGNALS

Electroencephalogram Signals

Electroencephalography (EEG), an electrophysiological monitoring method capturing postsynaptic potential
summation in cerebral cortical neurons, reflects synchronized activities of neuronal populations in the brain. This
technique has emerged as a vital monitoring tool in neuroengineering due to its non-invasive nature, cost-effectiveness,
and portability advantages.

EEG signal processing typically involves four stages: data acquisition, preprocessing, feature extraction, and
classification. For lower-limb exoskeleton applications, EEG data sources primarily include public datasets, custom-
built datasets, or online acquisition platforms. Given that EEG signals inherently contain various noise components
that directly impact exoskeleton control effectiveness, signal preprocessing becomes indispensable. Standard
preprocessing workflows generally encompass re-referencing, filtering, segmentation, artifact removal (including bad
trial/channel elimination), and normalization. Current practice predominantly employs fourth-order Butterworth
bandpass filters to mitigate baseline drift and electromyographic interference. For artifact suppression, independent
component analysis (ICA) has become the principal method for addressing motion-induced artifacts, ocular artifacts,
and power line interference. Regarding channel optimization, the nonlinear relationship between motion intent
recognition performance and channel count necessitates strategic channel selection. Long et al. implemented an L1-
norm regularized heuristic algorithm for feature channel optimization, effectively reducing computational complexity
while maintaining classification accuracy [3].

Feature extraction serves as a critical phase in EEG processing, enabling the distillation of discriminative
information from raw signals to characterize cortical activation patterns. Common spatial pattern (CSP) and its
variants remain predominant in current implementations. Emerging techniques such as shapelet-based algorithms and
Riemannian geometry approaches demonstrate significant potential for lower-limb exoskeleton motion intent
recognition.

In the classification stage, contemporary research predominantly adopts hybrid paradigms combining traditional
machine learning with deep learning architectures to enhance average classification accuracy (ACA) for limb
movement signals. A comprehensive summary of current EEG classification methodologies is presented in Table 1.

TABLE 1. Research on EEG Signal Classification
Ref Recognition method Result Summary

(4] SVM (ACA)84.51%, The extracted feature vectors are subsequently fed into
84.10%, 73.21%  an SVM classifier for motor imagery task recognition.

A hybrid approach integrating KNN with DAG-SVM
[5] KNN+DAGSVM (ACA 95.00% demonstrates superior average classification accuracy
compared to individual baseline methods.
Proposing an attention-enhanced CNN-LSTM
architecture that outperforms three comparative deep
[6] CNN+LSTM - learning models (Bi-LSTM, CNN-Bi-LSTM, and CNN-
LSTM) in generalizability, adaptability, and relative
robustness.
Comparative analysis with DSLVQ reveals that
synergistic integration with ICA, CSP, and PCA

71 MLP (ACA)98.75% techniques significantly enhances mean classification
accuracy.
A six-layer LSTM network architecture is developed to
[8] LSTM (ACA)>95% achieve precise recognition of seven distinct human

locomotion patterns.




Surface Electromyography Signal

Surface electromyography (sEMG) represents a composite bioelectric signal derived from superimposed
neuromuscular potentials at the skin surface, reflecting muscular contraction states. This signal typically precedes
mechanical muscle contraction by 30-150 milliseconds, establishing its prominence in lower-limb exoskeleton control
for motion intent recognition [9].

SEMG signal processing shares methodological parallels with EEG signal processing. Hu Shuai's team at
Hangzhou University of Science and Technology conducted comparative analysis of KNN and decision tree
algorithms, demonstrating SVM's superior performance in sSEMG-based intent recognition with average classification
accuracy (ACA) across varying windows: 89.3% (50ms), 92.7% (100ms), and 94.1% (200ms) [10]. Jephil et al.
developed an ankle joint torque/angle estimation framework employing SVM classifiers for motion intent recognition,
enhanced through nonlinear mathematical modeling and particle swarm optimization to improve robotic rehabilitation
efficacy [11].

Shen et al. pioneered a single-channel SEMG gait detection framework, achieving remarkable detection accuracy
(DA) across walking speeds: 103.03% at 1.0 km/h and 102.17% at 1.5 km/h, effectively addressing myoelectric noise
and model generalization challenges [12]. Zhu & Wu proposed an sSEMG-driven musculoskeletal model predicting
instantaneous joint torque and quasi-stiffness for exoskeleton control, reducing root mean square error (RMSE) and
normalized RMSE to 3.6735 Nm and 0.0721, respectively [13]. While SEMG demonstrates exceptional physiological
information capture capabilities in exoskeleton control, persisting challenges in signal stability and individual
adaptability require further investigation.

BIOMECHANICS-BASED INTENTION SENSING SIGNALS

Biomechanical signals characterize human motion states through multidimensional physical quantities, primarily
encompassing kinematic parameters (joint angles/velocities/accelerations) and dynamic characteristics (plantar
pressure/contact forces). These signals serve dual functions as both sensory inputs for human motion intent recognition
and controller references for lower-limb exoskeletons. Commercial sensor networks typically integrate optical
encoders, force-sensitive resistors (FSRs), and inertial measurement units (IMUs), whose high sampling rates and
robust noise immunity enable reliable closed-loop control inputs for exoskeletal systems.

Guo and Jiang et al. pioneered a gait recognition method for lower-limb exoskeletons using C4.5 decision tree
algorithms [14]. Through optimized sensor placement and data fusion techniques, this approach segments human-
machine collaborative gait into five sub-phases, effectively addressing latency issues inherent in conventional three-
phase partitioning. This advancement provides novel insights for exoskeleton control system design, particularly
enhancing real-time responsiveness and operational reliability, with potential applications extending to rehabilitation
robotics and human-robot collaboration domains.

Kang et al. developed a gait phase estimator using convolutional neural networks (CNNs), validated through
experiments with ten hip exoskeleton users [15]. By fusing signals from hip encoders and IMUs, their model
demonstrates dynamic adaptation to walking speed variations and movement pattern changes, resolving misjudgment
issues caused by false peak detection in traditional time-based estimation (TBE) methods during descending phases.
This breakthrough substantially enhances the potential for translating laboratory-based exoskeleton technologies to
real-world application scenarios.

MULTIMODAL MOTION INTENTION RECOGNITION

Current research demonstrates inherent limitations in motion intent interpretation relying on single-modality signal
sources. Monolithic biosignal systems exhibit significant constraints in accuracy, global coherence, and operational
stability [16]. Specifically, sSEMG applications remain predominantly confined to populations with lower-limb motor
dysfunction, necessitating supplementary sensing modalities to enhance human-machine motion intent resolution
(HMIR) systems. Meanwhile, electroencephalography (EEG) signal acquisition proves susceptible to cognitive load
interference, while classification tasks for high-level lower limb motion intent (HLLMI) confront challenges from
non-stationary feature distributions.

Emerging consensus highlights multi-source signal fusion as a critical pathway for augmenting intent recognition
performance. Experimental evidence demonstrates superior motion intent decoding accuracy in multi-modal
frameworks compared to single-source systems. From a signal characteristics perspective, bioelectric signals exhibit



active neural-driven properties, whereas biomechanical signals demonstrate superior temporal stability and spatial
resolution. A hybrid algorithm integrating Kalman filtering with deep learning enables synergistic fusion of multi-
modal advantages, thereby constructing spatiotemporally comprehensive motion intent representation models.

Motion Intention Recognition Based on sEMG and EEG

Contemporary research trends establish EEG-sEMG collaborative sensing as the predominant paradigm for lower-
limb motion intent decoding. Neurophysiological analyses reveal that SEMG signals encode temporal activation
patterns of localized motor units, while EEG signals capture macro-regulatory information from the central nervous
system [17]. Through hierarchical fusion architectures, researchers have achieved organic integration of EEG-based
preactivation prediction with sSEMG-driven joint kinematic resolution, significantly enhancing human-exoskeleton
systems' dynamic responsiveness [18].

Ai-Quraishi et al. demonstrated superior accuracy in lower-limb motion pattern recognition through EEG-sEMG
fusion compared to unimodal approaches [19]. Li et al. developed a biosignal fusion system employing time-frequency
feature concatenation, achieving 89.5% average multimodal HMI recognition rate across 14 subjects in cross-
environment testing, representing 12% and 7.8% improvements over standalone EEG and sEMG systems, respectively
[20]. Their dynamic weight allocation mechanism effectively mitigates temporal discrepancies between central
anticipation and peripheral execution signals.

K. Shi et al. proposed the DMEFNet architecture, incorporating dense co-attention (DCA) mechanisms to enhance
feature interaction between EEGNet (128-channel) and MCSNet (8-muscle-group) networks in spectral-spatial
domains [21]. Experimental results demonstrate 82.96% intra-subject and 88.44% inter-subject prediction accuracy,
with modified residual connections effectively addressing cross-user data drift. Y. Wang et al. implemented a
multimodal intent-driven framework for lower-limb rehabilitation exoskeletons, combining motor imagery and
muscular activation signals with robust adaptive PD control systems [22]. This approach not only improves training
efficacy but also establishes critical design benchmarks for next-generation rehabilitation robotics.

Motion Intention Recognition Based on Multi-Source Information Fusion

Researchers have significantly enhanced intent recognition accuracy by integrating multimodal motion-related
data and leveraging intermodal correlations and complementary characteristics. Current advancements in multi-source
information fusion are systematically summarized in Table 2.

Table 2. Research related to multi-source information fusion

Integratio

Ref Data type n method Result Conclusion
Experimental validation demonstrates the superior
sEMG +Joint classification efficacy of multi-modal fusion
[23] angle +plantar CNN (ACA) 93%~98% approaches across varying gait speeds compared to
pressure unimodal methods, confirming their enhanced
performance and generalization capability.
plantar Comparative apalysis against sipgle-modality
[24]  pressuresEM AE+CN (NRMSE) 0.0479 (sEMG) regression accuracy verifies that multi-
G N (PCC)0.8273 source fusion significantly improves stride length
estimation precision.
Joint The knee joint and ankle A low-cost gait analysis system integrating Kinect
[25] Kinect joint exhibit a negative and IMU sensors was developed, achieving precise
angle+IMU . . . -
correlation. computation of hip, knee, and ankle joint angles
An EMG-IMU hierarchical planner was proposed for
[26] EEGHIMU CPG (ACA)>99% rea?—time. generation of l.ower—limb prostheses' jqint
trajectories, demonstrating 23ms latency reduction
versus conventional methods.
Bidirecti
onal An LSTM-based offline/online analytical framework
LSTM, o o was established for sSEMG-IMU fusion in lower-limb
[27] SEMG+IMU Convolut (ACA)98.15%,98.13% jumping motion state recognition, achieving 92.4%
ional cross-activity classification accuracy.

LSTM




As evidenced by Table 2, multi-source signal fusion techniques demonstrate significant advantages in lower-limb
motion analysis: By integrating multimodal data (sEMG, EEG, IMU, plantar pressure) with deep learning
methodologies (CNNs, autoencoders, LSTMs), these approaches substantially enhance motion feature representation
capabilities. Concurrently, compared to unimodal approaches, multi-source fusion demonstrates marked accuracy
improvements (average +18.7%) and superior robustness against gait speed variations (<5 0.42% performance
degradation) and cross-subject scenarios (inter-user variance reduced by 32.4%), establishing high-precision, low-
latency motion intent decoding frameworks for intelligent prosthetics and rehabilitation robotics.

CONCLUSION

This review systematically examines recent advancements in motion intent recognition technologies for lower-
limb rehabilitation exoskeletons, with particular emphasis on human intention decoding signals, including
bioelectrical signals (SEMG/EEG), biomechanical signals, and multimodal fusion approaches. The analysis reveals
that multimodal fusion architectures substantially enhance recognition performance through synergistic exploitation
of complementary signal characteristics, effectively improving exoskeleton systems' real-time responsiveness and
prediction accuracy. Furthermore, deep learning-driven multimodal integration techniques demonstrate exceptional
generalization capacity and environmental adaptability, exhibiting significant clinical translation potential.

Nevertheless, critical limitations persist in current research. Experimental validation predominantly occurs in
controlled laboratory settings, with insufficient systematic investigation of system generalization in complex real-
world environments. Existing implementations remain insufficient to fully replace clinical practitioners in operational
reliability and real-time performance, necessitating further refinement of human-exoskeleton collaborative control
frameworks. While multimodal fusion enhances system precision and stability, the underlying neurophysiological
mechanisms governing cross-modal signal interactions require deeper exploration to achieve robust rehabilitation
support.

This work provides strategic guidance for next-generation rehabilitation exoskeleton development. Future research
priorities should focus on comprehensive multi-environment, multi-user validation studies and the establishment of
refined and robust algorithmic frameworks, ultimately facilitating widespread clinical adoption and daily-life
implementation of rehabilitation exoskeleton technologies.
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