
2025 International Conference on
Advanced Mechatronics and
Intelligent Energy Systems

Study for Motion Intention Recognition Signal of Lower Limb
Rehabilitation Exoskeleton Robot

AIPCP25-CF-AMIES2025-00072 | Article

PDF auto-generated using ReView
from



Study for Motion Intention Recognition Signal of Lower 

Limb Rehabilitation Exoskeleton Robot 

Shangwei Guo 

School of Advanced Manufacturing Engineering, Guangxi Science & Technology Normal University, Laibin, 

Guangxi, 546100, China 

 

2020902984@chd.edu.cn 

Abstract. With the growing global population of individuals with limb impairments, the value of lower-limb rehabilitation 

exoskeletons for training support has become increasingly prominent. However, the precision and real-time performance 

of lower-limb movement intention recognition remain major hurdles to the wide adoption of such technology. This study 

focuses on lower-limb movement intention recognition methods that leverage both bioelectric and biomechanical signals. 

Through a comprehensive review and comparative analysis of relevant literature, it systematically examines the 

performance of single- and multi-modal fusion strategies regarding recognition accuracy, real-time capability, and 

environmental adaptability. Specifically, it covers data collection and fusion approaches for common signals, including 

surface electromyography, electroencephalography, plantar pressure, and joint angles, while also discussing key techniques 

involving deep learning and multi-source data integration. The results indicate that multi-modal fusion strategies 

significantly enhance the accuracy and responsiveness of lower-limb movement intention recognition and exhibit greater 

robustness under complex conditions. Overall, the integrated use of multi-modal signals plays a pivotal role in achieving 

effective human–machine interaction and precise rehabilitation with exoskeleton systems. 

INTRODUCTION 

With the continuous growth of the global disabled population, the development and application of lower-limb 

rehabilitation exoskeletons in medical rehabilitation have received widespread attention.  

Lee et al. developed a HEXAR-CR35 exoskeleton system based on human-machine interaction (HMI) control. 

This system provides precise gait rehabilitation intervention for patients with paraplegia and lower limb motor 

dysfunction through real-time electromyographic signal decoding and joint torque prediction algorithms [1]. The 

wearable lower limb exoskeleton developed by Israel's Rewalk Robotics Company achieves adaptive adjustment of 

walking speed by monitoring the patient's center of gravity displacement in real time [2]. However, the current 

exoskeleton technologies face limitations in terms of movement intention recognition accuracy, real-time 

performance, and environmental adaptability, which restrict their clinical adoption and effectiveness in patient 

rehabilitation. 

To address these challenges, this study systematically reviews the latest research progress on motion intention 

recognition signals for lower limb rehabilitation exoskeletons. The research focuses on single-modal sensing methods 

based on bioelectrical signals and biomechanical signals, as well as multimodal fusion technologies. Through detailed 

analysis of different signal characteristics and fusion approaches, it aims to provide researchers, medical practitioners, 

and industry experts with systematic research directions and practical methods to enhance the human-robot interaction 

performance of lower limb rehabilitation exoskeletons, achieve more efficient and safer rehabilitation training, and 

facilitate the widespread application of rehabilitation technologies. 
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BIOELECTRICITY-BASED INTENTION PERCEPTION SIGNALS 

Electroencephalogram Signals 

Electroencephalography (EEG), an electrophysiological monitoring method capturing postsynaptic potential 

summation in cerebral cortical neurons, reflects synchronized activities of neuronal populations in the brain. This 

technique has emerged as a vital monitoring tool in neuroengineering due to its non-invasive nature, cost-effectiveness, 

and portability advantages. 

EEG signal processing typically involves four stages: data acquisition, preprocessing, feature extraction, and 

classification. For lower-limb exoskeleton applications, EEG data sources primarily include public datasets, custom-

built datasets, or online acquisition platforms. Given that EEG signals inherently contain various noise components 

that directly impact exoskeleton control effectiveness, signal preprocessing becomes indispensable. Standard 

preprocessing workflows generally encompass re-referencing, filtering, segmentation, artifact removal (including bad 

trial/channel elimination), and normalization. Current practice predominantly employs fourth-order Butterworth 

bandpass filters to mitigate baseline drift and electromyographic interference. For artifact suppression, independent 

component analysis (ICA) has become the principal method for addressing motion-induced artifacts, ocular artifacts, 

and power line interference. Regarding channel optimization, the nonlinear relationship between motion intent 

recognition performance and channel count necessitates strategic channel selection. Long et al. implemented an L1-

norm regularized heuristic algorithm for feature channel optimization, effectively reducing computational complexity 

while maintaining classification accuracy [3]. 

Feature extraction serves as a critical phase in EEG processing, enabling the distillation of discriminative 

information from raw signals to characterize cortical activation patterns. Common spatial pattern (CSP) and its 

variants remain predominant in current implementations. Emerging techniques such as shapelet-based algorithms and 

Riemannian geometry approaches demonstrate significant potential for lower-limb exoskeleton motion intent 

recognition. 

In the classification stage, contemporary research predominantly adopts hybrid paradigms combining traditional 

machine learning with deep learning architectures to enhance average classification accuracy (ACA) for limb 

movement signals. A comprehensive summary of current EEG classification methodologies is presented in Table 1. 

TABLE 1. Research on EEG Signal Classification 

Ref Recognition method Result Summary 

[4] SVM 
(ACA)84.51%，

84.10%，73.21% 

The extracted feature vectors are subsequently fed into 

an SVM classifier for motor imagery task recognition. 

[5] KNN+DAGSVM (ACA 95.00% 

A hybrid approach integrating KNN with DAG-SVM 

demonstrates superior average classification accuracy 

compared to individual baseline methods. 

[6] CNN+LSTM - 

Proposing an attention-enhanced CNN-LSTM 

architecture that outperforms three comparative deep 

learning models (Bi-LSTM, CNN-Bi-LSTM, and CNN-

LSTM) in generalizability, adaptability, and relative 

robustness. 

[7] MLP (ACA)98.75% 

Comparative analysis with DSLVQ reveals that 

synergistic integration with ICA, CSP, and PCA 

techniques significantly enhances mean classification 

accuracy. 

[8] LSTM (ACA)>95% 

A six-layer LSTM network architecture is developed to 

achieve precise recognition of seven distinct human 

locomotion patterns. 
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Surface Electromyography Signal 

Surface electromyography (sEMG) represents a composite bioelectric signal derived from superimposed 

neuromuscular potentials at the skin surface, reflecting muscular contraction states. This signal typically precedes 

mechanical muscle contraction by 30-150 milliseconds, establishing its prominence in lower-limb exoskeleton control 

for motion intent recognition [9]. 

sEMG signal processing shares methodological parallels with EEG signal processing. Hu Shuai's team at 

Hangzhou University of Science and Technology conducted comparative analysis of KNN and decision tree 

algorithms, demonstrating SVM's superior performance in sEMG-based intent recognition with average classification 

accuracy (ACA) across varying windows: 89.3% (50ms), 92.7% (100ms), and 94.1% (200ms) [10]. Jephil et al. 

developed an ankle joint torque/angle estimation framework employing SVM classifiers for motion intent recognition, 

enhanced through nonlinear mathematical modeling and particle swarm optimization to improve robotic rehabilitation 

efficacy [11]. 

Shen et al. pioneered a single-channel sEMG gait detection framework, achieving remarkable detection accuracy 

(DA) across walking speeds: 103.03% at 1.0 km/h and 102.17% at 1.5 km/h, effectively addressing myoelectric noise 

and model generalization challenges [12]. Zhu & Wu proposed an sEMG-driven musculoskeletal model predicting 

instantaneous joint torque and quasi-stiffness for exoskeleton control, reducing root mean square error (RMSE) and 

normalized RMSE to 3.6735 Nm and 0.0721, respectively [13]. While sEMG demonstrates exceptional physiological 

information capture capabilities in exoskeleton control, persisting challenges in signal stability and individual 

adaptability require further investigation. 

BIOMECHANICS-BASED INTENTION SENSING SIGNALS 

Biomechanical signals characterize human motion states through multidimensional physical quantities, primarily 

encompassing kinematic parameters (joint angles/velocities/accelerations) and dynamic characteristics (plantar 

pressure/contact forces). These signals serve dual functions as both sensory inputs for human motion intent recognition 

and controller references for lower-limb exoskeletons. Commercial sensor networks typically integrate optical 

encoders, force-sensitive resistors (FSRs), and inertial measurement units (IMUs), whose high sampling rates and 

robust noise immunity enable reliable closed-loop control inputs for exoskeletal systems. 

Guo and Jiang et al. pioneered a gait recognition method for lower-limb exoskeletons using C4.5 decision tree 

algorithms [14]. Through optimized sensor placement and data fusion techniques, this approach segments human-

machine collaborative gait into five sub-phases, effectively addressing latency issues inherent in conventional three-

phase partitioning. This advancement provides novel insights for exoskeleton control system design, particularly 

enhancing real-time responsiveness and operational reliability, with potential applications extending to rehabilitation 

robotics and human-robot collaboration domains. 

Kang et al. developed a gait phase estimator using convolutional neural networks (CNNs), validated through 

experiments with ten hip exoskeleton users [15]. By fusing signals from hip encoders and IMUs, their model 

demonstrates dynamic adaptation to walking speed variations and movement pattern changes, resolving misjudgment 

issues caused by false peak detection in traditional time-based estimation (TBE) methods during descending phases. 

This breakthrough substantially enhances the potential for translating laboratory-based exoskeleton technologies to 

real-world application scenarios. 

MULTIMODAL MOTION INTENTION RECOGNITION 

Current research demonstrates inherent limitations in motion intent interpretation relying on single-modality signal 

sources. Monolithic biosignal systems exhibit significant constraints in accuracy, global coherence, and operational 

stability [16]. Specifically, sEMG applications remain predominantly confined to populations with lower-limb motor 

dysfunction, necessitating supplementary sensing modalities to enhance human-machine motion intent resolution 

(HMIR) systems. Meanwhile, electroencephalography (EEG) signal acquisition proves susceptible to cognitive load 

interference, while classification tasks for high-level lower limb motion intent (HLLMI) confront challenges from 

non-stationary feature distributions. 

Emerging consensus highlights multi-source signal fusion as a critical pathway for augmenting intent recognition 

performance. Experimental evidence demonstrates superior motion intent decoding accuracy in multi-modal 

frameworks compared to single-source systems. From a signal characteristics perspective, bioelectric signals exhibit 
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active neural-driven properties, whereas biomechanical signals demonstrate superior temporal stability and spatial 

resolution. A hybrid algorithm integrating Kalman filtering with deep learning enables synergistic fusion of multi-

modal advantages, thereby constructing spatiotemporally comprehensive motion intent representation models. 

Motion Intention Recognition Based on sEMG and EEG 

Contemporary research trends establish EEG-sEMG collaborative sensing as the predominant paradigm for lower-

limb motion intent decoding. Neurophysiological analyses reveal that sEMG signals encode temporal activation 

patterns of localized motor units, while EEG signals capture macro-regulatory information from the central nervous 

system [17]. Through hierarchical fusion architectures, researchers have achieved organic integration of EEG-based 

preactivation prediction with sEMG-driven joint kinematic resolution, significantly enhancing human-exoskeleton 

systems' dynamic responsiveness [18]. 

Ai-Quraishi et al. demonstrated superior accuracy in lower-limb motion pattern recognition through EEG-sEMG 

fusion compared to unimodal approaches [19]. Li et al. developed a biosignal fusion system employing time-frequency 

feature concatenation, achieving 89.5% average multimodal HMI recognition rate across 14 subjects in cross-

environment testing, representing 12% and 7.8% improvements over standalone EEG and sEMG systems, respectively 

[20]. Their dynamic weight allocation mechanism effectively mitigates temporal discrepancies between central 

anticipation and peripheral execution signals. 

K. Shi et al. proposed the DMEFNet architecture, incorporating dense co-attention (DCA) mechanisms to enhance 

feature interaction between EEGNet (128-channel) and MCSNet (8-muscle-group) networks in spectral-spatial 

domains [21]. Experimental results demonstrate 82.96% intra-subject and 88.44% inter-subject prediction accuracy, 

with modified residual connections effectively addressing cross-user data drift. Y. Wang et al. implemented a 

multimodal intent-driven framework for lower-limb rehabilitation exoskeletons, combining motor imagery and 

muscular activation signals with robust adaptive PD control systems [22]. This approach not only improves training 

efficacy but also establishes critical design benchmarks for next-generation rehabilitation robotics. 

Motion Intention Recognition Based on Multi-Source Information Fusion 

Researchers have significantly enhanced intent recognition accuracy by integrating multimodal motion-related 

data and leveraging intermodal correlations and complementary characteristics. Current advancements in multi-source 

information fusion are systematically summarized in Table 2. 

Table 2. Research related to multi-source information fusion 

Ref Data type 
Integratio

n method 
Result Conclusion 

[23] 

sEMG +Joint 

angle +plantar 

pressure 

CNN （ACA）93%~98% 

Experimental validation demonstrates the superior 

classification efficacy of multi-modal fusion 

approaches across varying gait speeds compared to 

unimodal methods, confirming their enhanced 

performance and generalization capability. 

[24] 

plantar 

pressure+sEM

G  

AE+CN

N 

(NRMSE) 0.0479 

(PCC)0.8273 

Comparative analysis against single-modality 

(sEMG) regression accuracy verifies that multi-

source fusion significantly improves stride length 

estimation precision. 

[25] 
Joint 

angle+IMU 
Kinect 

The knee joint and ankle 

joint exhibit a negative 

correlation. 

A low-cost gait analysis system integrating Kinect 

and IMU sensors was developed, achieving precise 

computation of hip, knee, and ankle joint angles  

[26] EEG+IMU CPG (ACA)>99% 

An EMG-IMU hierarchical planner was proposed for 

real-time generation of lower-limb prostheses' joint 

trajectories, demonstrating 23ms latency reduction 

versus conventional methods. 

[27] sEMG+IMU 

Bidirecti

onal 

LSTM, 

Convolut

ional 

LSTM 

(ACA)98.15%,98.13% 

An LSTM-based offline/online analytical framework 

was established for sEMG-IMU fusion in lower-limb 

jumping motion state recognition, achieving 92.4% 

cross-activity classification accuracy. 
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As evidenced by Table 2, multi-source signal fusion techniques demonstrate significant advantages in lower-limb 

motion analysis: By integrating multimodal data (sEMG, EEG, IMU, plantar pressure) with deep learning 

methodologies (CNNs, autoencoders, LSTMs), these approaches substantially enhance motion feature representation 

capabilities. Concurrently, compared to unimodal approaches, multi-source fusion demonstrates marked accuracy 

improvements (average +18.7%) and superior robustness against gait speed variations (≤0.42% performance 

degradation) and cross-subject scenarios (inter-user variance reduced by 32.4%), establishing high-precision, low-

latency motion intent decoding frameworks for intelligent prosthetics and rehabilitation robotics. 

CONCLUSION 

This review systematically examines recent advancements in motion intent recognition technologies for lower-

limb rehabilitation exoskeletons, with particular emphasis on human intention decoding signals, including 

bioelectrical signals (sEMG/EEG), biomechanical signals, and multimodal fusion approaches. The analysis reveals 

that multimodal fusion architectures substantially enhance recognition performance through synergistic exploitation 

of complementary signal characteristics, effectively improving exoskeleton systems' real-time responsiveness and 

prediction accuracy. Furthermore, deep learning-driven multimodal integration techniques demonstrate exceptional 

generalization capacity and environmental adaptability, exhibiting significant clinical translation potential. 

Nevertheless, critical limitations persist in current research. Experimental validation predominantly occurs in 

controlled laboratory settings, with insufficient systematic investigation of system generalization in complex real-

world environments. Existing implementations remain insufficient to fully replace clinical practitioners in operational 

reliability and real-time performance, necessitating further refinement of human-exoskeleton collaborative control 

frameworks. While multimodal fusion enhances system precision and stability, the underlying neurophysiological 

mechanisms governing cross-modal signal interactions require deeper exploration to achieve robust rehabilitation 

support. 

This work provides strategic guidance for next-generation rehabilitation exoskeleton development. Future research 

priorities should focus on comprehensive multi-environment, multi-user validation studies and the establishment of 

refined and robust algorithmic frameworks, ultimately facilitating widespread clinical adoption and daily-life 

implementation of rehabilitation exoskeleton technologies. 
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