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Abstract. The Long Short Term Memory-Kalman Filter (LSTM-KF) provides an innovative solution for high-precision 

control of robotic arm joints by integrating the temporal modeling capabilities of deep learning with the dynamic 

optimization characteristics of the Kalman Filter. This method addresses complex disturbances such as nonlinear friction 

and sudden load changes by using LSTM memory units to correct the state estimation bias of the Kalman Filter online. 

Through adaptive adjustment of noise covariance and filter gain, it significantly enhances the system's stability and 

anti-interference ability. Core innovations include: dynamic noise covariance estimation for parameter adaptive 

optimization, alleviating the fixed parameter limitations of traditional methods; a joint state prediction and filtering 

architecture to reduce prediction lag and improve tracking performance in high-speed motion scenarios; and a 

residual-driven adaptive correction mechanism to enhance response to abnormal disturbances. Experimental verification 

shows that this method significantly reduces torque estimation errors in dynamic load compensation and effectively 

suppresses non-Gaussian noise in compliant control scenarios. However, LSTM-KF still faces challenges such as 

real-time bottlenecks, insufficient interpretability, and limited generalization ability. Future research should focus on 

lightweight architecture design, safety verification frameworks, and cross-domain transfer learning techniques to promote 

its application in high-end manufacturing and medical fields. 

INTRODUCTION 

The robotic arm, as the core actuator in industrial automation, medical surgeries, and space exploration, its joint 

control accuracy directly determines the safety and reliability of task execution. With the rapid development of 

Industry 4.0 and collaborative robots (Cobots), the complexity of dynamic environments faced by robotic arms has 

significantly increased, including nonlinear friction, load sudden changes, and multi-source sensor noise coupling 

etc. Traditional control methods (such as PID, sliding mode control) rely on precise dynamic models, but in practical 

applications, model mismatch and noise interference often lead to a decrease in control accuracy [1]. 

The Kalman Filter (KF), as a classic state estimation algorithm, is widely used in robotic arm control based on 

the optimal linear unbiased estimation (BLUE) theory. However, its performance is limited by the linear Gaussian 

assumption and is difficult to handle complex nonlinear noise [2]. Long Short Term Memory-Kalman Filter 

(LSTM)-KF integrates the time series modeling of deep learning with the dynamic optimization of Kalman filtering, 

significantly improving the accuracy, robustness, and real-time response capability of robotic arm joint control in 

nonlinear interference and complex noise environments. 

This paper systematically reviews the research progress of LSTM-KF in robotic arm joint control: breaking 

through the linear limitation of traditional Kalman filtering, proposing key technologies such as dynamic parameter 

prediction, joint state estimation, and residual correction, and verifying its superiority in resisting non-Gaussian 

noise and complex interference through industrial robotic arms and surgical robot experiments, and discussing 

challenges such as real-time performance, interpretability, and generalization ability, providing a multi-modal fusion 

theoretical and engineering reference for intelligent control. 
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KALMAN FILTERING AND MECHANICAL ARM CONTROL 

The Kalman filter dynamically estimates the system state in a noisy environment through two stages: prediction 

and update. In the prediction stage, the system predicts the current state based on the optimal state estimation result 

from the previous moment, such as the joint positions and velocities of the robotic arm, combined with the current 

control input, like motor torque, using the state transition matrix and the control input matrix. The state transition 

matrix describes the kinematic laws of the robotic arm, while the control input matrix maps the external control 

input to the state space. At the same time, the prediction stage also calculates the prediction error covariance matrix, 

which reflects the uncertainty of the state prediction and its value is obtained by propagating the error covariance 

from the previous moment through the state transition matrix and adding the process noise covariance. The process 

noise covariance is used to describe the system model error, such as unmodeled nonlinear friction or external 

disturbances. In the update stage, the Kalman filter first calculates the Kalman gain based on the prediction error 

covariance and the observation noise covariance. The observation noise covariance characterizes the noise 

characteristics of the sensor, such as the measurement error of the encoder. The role of the Kalman gain is to balance 

the weights of the predicted value and the observed value. When the sensor accuracy is high, the gain tends to trust 

the observed data. Then, the system compares the predicted state with the actual observed values, such as the 

position information read by the encoder, and corrects the predicted value through weighted correction by the 

Kalman gain to obtain the optimal state estimation result. Finally, the error covariance matrix is updated to reflect 

the improved confidence, which is achieved by adjusting the product of the Kalman gain and the observation matrix 

to ensure the accuracy of subsequent predictions. 
However, the mechanical arm dynamics model often exhibits strong nonlinear and time-varying characteristics, 

leading to the failure of the classical KF in the following scenarios: when there is nonlinear noise coupling, when the 

process noise and observation noise follow non-Gaussian distributions, the optimality of the KF cannot be 

guaranteed [1]. When the model parameters drift and the mechanical arm load changes cause the inertia matrix M(q) 

to dynamically change, traditional KF with fixed parameters QK, Rk is difficult to adapt; due to the heterogeneity of 

multiple-source sensors, the spatio-temporal asynchrony of visual, force, and encoder data makes it difficult to 

uniformly model the KF observation equation [3-5]. 

THE TEMPORAL MODELING MECHANISM AND ENHANCEMENT STRATEGIES 

OF LSTM 

LSTM manages long-term memory information through a gating mechanism. The forget gate first determines 

how much of the historical unit states to retain, and its output is controlled by the Sigmoid function within the range 

of 0 to 1. For example, when the load of the robotic arm suddenly changes, the forget gate can actively discard 

outdated friction model memory. The input gate is responsible for regulating the write proportion of the new 

candidate states. The new candidate states are calculated by the current input and the hidden state at the previous 

time step through the weight matrix and bias term, and are activated by the hyperbolic tangent function. For 

instance, when learning the nonlinear changes in dynamic friction, the input gate adjusts the fusion weights of new 

data to ensure only valid information is retained. The updated cell state is fused with the historical state and new 

information through element-wise multiplication. For example, the long-term friction characteristics of the robotic 

arm joint (such as temperature drift) are encoded into the cell state. The output gate ultimately controls the 

information flow from the cell state to the hidden state. The hidden state serves as the output at the current moment 

and can be used for predicting joint positions or noise parameters. 

The Key Advantages of Using LSTM for Digital Filtering 

Firstly, regarding the characterization of non-linear noise, LSTM can learn the non-stationary characteristics of 

the joint torque noise of the robotic arm (such as the speed-dependent noise in the Stribeck friction model), breaking 

through the Gaussian assumption limitation of KF [6]. Secondly, regarding the prediction of dynamic parameters, 

based on the historical state sequence, LSTM can predict the noise covariance matrices Qt and Rt of KF in real time, 

achieving parameter adaptation [7]. Regarding the fusion of multimodal data, through cascaded LSTM branches to 
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process visual (RGB-D) and force perception (FT sensor) data, the output fused features are used as the observation 

input of KF [8]. 

Defects of LSTM in Digital Filtering 

The gradient bottleneck of LSTM for nonlinear noise modeling is the gradient attenuation problem. Firstly, 

although LSTM can theoretically model long-term dependencies through the gating mechanism, in the scenario of 

high-frequency movement of the robotic arm (>10Hz), the rapid time-varying characteristics of joint torque noise 

(such as sudden changes in Stribeck friction speed) are prone to causing gradient attenuation. Experiments show that 

when the noise frequency exceeds the length of the LSTM time window, the amplitude of the parameter update 

gradient decreases by approximately 37% [9]. Secondly, LSTM networks have limitations in non-Gaussian 

modeling. Although LSTM can break through the Gaussian assumption of KF, its hidden state distribution is still 

limited by the saturation characteristics of the Sigmoid/Tanh activation functions, making it difficult to accurately fit 

the bimodal distribution (such as the mixed state of static and dynamic friction) in friction noise. Monte Carlo 

simulation shows that in low-speed high-load conditions, the KL divergence of LSTM predicted noise is 19.6% 

higher than the true distribution. The LSTM network has real-time constraints in dynamic parameter prediction, and 

there are issues of computational delay and accuracy trade-offs. The consumption of LSTM to predict noise 

covariance Qt, Rt on the Jetson TX2 platform is approximately 2.8ms, introducing an unignorable delay in the 

high-speed control loop of the robotic arm (typical cycle 1ms). Experiments show that when the delay exceeds 3ms, 

the trajectory tracking error increases by 41% [10]. Moreover, online learning has stability risks. Dynamic parameter 

online updates may disrupt the convergence of KF. When the Qt predicted by LSTM changes (such as a load step 

change), the eigenvalues of the posterior covariance matrix Pt of KF oscillate, resulting in an increase of 23% in the 

estimated error covariance. 

LSTM-KF FUSION ARCHITECTURE AND INNOVATIVE METHODS 

Dynamic Noise Covariance Estimation (DNCE-LKF) 

In the dynamic noise covariance estimation method, LSTM predicts the process noise covariance and 

observation noise covariance based on historical data such as torque and angular velocity, replacing the fixed 

parameters of the traditional Kalman filter. This design enables the system to adaptively adjust the sensitivity to 

model errors and sensor noise. For example, when the load of the robotic arm suddenly increases, the predicted 

process noise covariance by LSTM will increase, prompting the Kalman filter to rely more on the observations and 

avoiding estimation deviations caused by model mismatch. A dual-channel LSTM network is constructed to predict 

the process noise covariance and observation noise covariance respectively, replacing the fixed parameters of KF 

[10]. In the trajectory tracking task of the UR5 robotic arm, the root mean square error (RMSE) of DNCE-LKF is 

42.3% lower than that of EKF [9]. 

Joint State Prediction and Filtering (JSPF-LKF) 

In the joint state prediction and filtering framework, LSTM serves as the pre-predictor, which predicts the future 

multi-step state sequence in advance, such as the trend of joint position changes, and inputs the results into the 

Kalman filter for iterative correction. This strategy effectively solves the prediction lag problem of the Kalman filter 

in high-speed motion scenarios. For example, when the Delta parallel robotic arm performs a high-speed picking 

task, the trajectory trend predicted by LSTM can help the Kalman filter adjust the control instructions in advance, 

and then combined with real-time sensor data for fine-tuning, ultimately reducing the position tracking delay by 

more than 50%. 

Residual-Driven Adaptive Correction (RDAC-LKF) 

The residual-driven adaptive correction method utilizes LSTM to analyze the residual sequence of the Kalman 

filter, which is the difference between the observed values and the predicted values. It dynamically adjusts the 

Kalman gain. When an abnormal residual is detected, such as a sudden collision of the robotic arm, LSTM will 

Auto-generated PDF by ReView 2025 International Conference on Advanced Mechatronics and Intelligent Energy Systems

073ZhengAMIES2025.docxMainDocument AIPP Review Copy Only 4



suppress the Kalman gain to reduce the influence of noise interference. In the control of the flexible joints of 

surgical robots, this method can shorten the response time of the sudden change in tissue contact force to 12 

milliseconds, significantly improving the safety of the control system. 

ENGINEERING PRACTICE AND PERFORMANCE EVALUATION 

Dynamic Load Compensation for Industrial Robotic Arms 

In the automotive welding scenario, sudden changes in the load of the end effector of the robotic arm (such as 

tool switching or changes in the quality of the workpiece) can lead to dynamic mismatch of the inertia matrix M(q). 

Traditional Kalman filtering cannot adapt to the dynamic characteristics due to the fixed noise covariance 

parameters Qk and Rk, resulting in a torque estimation error exceeding 20% [8]. This paper proposes an LSTM-KF 

combined architecture. Through dynamic prediction of the inertia matrix 𝑞𝑡−𝑛 , 𝑞̇𝑡−𝑛, 𝜏𝑡−𝑛, the LSTM network 

predicts the correction term ΔM(q) based on the historical joint state sequence, and updates the KF dynamic model 

in real time (algorithm design reference: Zhang et al., IEEE Transactions on Industrial Electronics, 2023); online 

optimization of noise covariance, by using LSTM to predict the time-varying noise covariance combined with the 

sliding window residual feedback mechanism to adjust parameters [9]. 

The experimental verification platform is the KUKA KR500 industrial robotic arm, equipped with a 

high-precision torque sensor (sampling rate 1 kHz). The results of the load mutation simulation are as follows: the 

root mean square error (RMSE) of torque estimation decreases from 21.3% to 4.7%, and the peak error reduces to 

7.2% [10]. The mismatch rate of the inertia matrix decreases from 18% to 3.5% (comparison experiments can be 

found in: Gao et al., Mechatronics, 2022). The theoretical support of this scheme is as follows: frequency domain 

analysis shows that the noise suppression gain of LSTM-KF in the 0.5- 10Hz frequency band (where the main 

energy distribution of load mutation is located) is increased by 40% [3]. 

Smooth Control of Collaborative Robots 

In the human-machine collaboration scenario, contact force noise exhibits a non-Gaussian, multi-modal 

distribution (such as the randomness of human contact and sudden changes in environmental friction), and the 

traditional KF's Gaussian assumption fails, resulting in cumulative estimation errors of contact force (theoretical 

analysis can be found in: Bar-Shalom et al., Estimation with Applications to Tracking and Navigation, Wiley, 2001). 

This paper proposes a solution for enhancing the KF observation model using a hybrid density LSTM 

(MD-LSTM). The key technologies include the following: multi-modal noise modeling, MD-LSTM output of mixed 

Gaussian parameters, and constructing a non-Gaussian observation noise PDF. 

Regarding adaptive observation update, the mixed Gaussian parameters are embedded into the KF update 

equation to optimize the observation likelihood function [8]. The experimental platform and data involve equipping 

the Franka Emika Panda robotic arm with ATI Gamma 6-axis force sensors to collect human-machine interaction 

data (including grasping, collision, etc.). The comparison of experimental data shows that the KL divergence of 

contact force estimation decreases from 1.24 to 0.30, and the PDF matching accuracy significantly improves; the 

MD-LSTM inference delay is 0.6ms, in the case of 30% data loss, the contact force estimation error is still below 

15% [8, 9]. Theoretical extension and engineering inspiration 

In the aspect of dynamic load compensation, the sliding window time sequence enhancement strategy of 

LSTM-KF borrows the dynamic weight allocation mechanism from time series prediction. In the aspect of 

non-Gaussian noise processing, the design of MD-LSTM integrates the nonlinear compensation idea of radial basis 

function (RBF) neural networks. Future research directions for lightweight deployment, plans to adopt the 

TinyLSTM compressed model to reduce parameter quantities. In the aspect of multi-sensor fusion, combined with 

the pose estimation data from visual servoing, the temporal and spatial consistency of contact force prediction is 

enhanced. 

OPEN QUESTIONS AND FUTURE DIRECTIONS 

The inference delay of LSTM-KF (usually > 5ms) makes it difficult to meet the microsecond-level control 

requirements of high-speed robotic arms. At the algorithmic level, TCN (Temporal Convolutional Network) is 

adopted to replace LSTM, and parallel computing is utilized to reduce the delay [9]. At the hardware level, 
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LSTM-KF joint inference is implemented based on an FPGA, compressing the calculation cycle to less than 0.1ms 

[10]. 

Due to the "black box" nature of LSTM, its application is limited in safety-critical fields such as aviation and 

healthcare. This paper proposes a hybrid interpretable architecture, replacing LSTM with NARX (Nonlinear 

Autoregressive Exogenous Model), combining explicit differential equations with KF [10]. Formal verification uses 

SMT solvers to verify the Lyapunov stability of the LSTM-KF control system [10]. 

The existing LSTM-KF models are mostly designed for specific mechanical arms and sensor configurations, 

resulting in insufficient generalization. This algorithm is expected to use a meta-learning framework, pre-training 

the LSTM-KF model through MAML (Model-Agnostic Meta-Learning), enabling it to quickly adapt to the 

dynamics of new robotic arms (experimental platform: Meta-World benchmark library), and integrating with graph 

neural networks, encoding the mechanical arm topology as graph data, and using GNN to enhance the modeling 

ability of LSTM-KF in multi-degree-of-freedom heterogeneous joints [2]. 

CONCLUSION 

This paper systematically demonstrates the innovative value and technological breakthroughs of LSTM-Kalman 

Filter (LSTM-KF) in the control of robotic arm joints. By integrating deep learning with classical state estimation 

theory, a hierarchical architecture of dynamic parameter prediction, joint state estimation, and residual correction is 

proposed, effectively overcoming the limitations of traditional methods in nonlinear friction modeling, 

non-Gaussian noise suppression, and dynamic load adaptation. Experiments show that in scenarios of high-speed 

welding of industrial robotic arms and flexible operations of surgical robots, this framework significantly reduces 

trajectory tracking errors, improves anti-interference response speed, and optimizes end-effector positioning 

accuracy through a multimodal data collaborative mechanism (such as visual-force fusion), outperforming 

traditional control methods in terms of performance. 

At the theoretical level, this study proposes a non-Gaussian noise characterization method based on Hybrid 

Density LSTM (MD-LSTM), solving the performance degradation problem of the Kalman Filter when the Gaussian 

assumption fails. The related theoretical verification has been published in the authoritative journal of the robotics 

field. Further, the dual-channel LSTM-QR network is constructed to achieve joint online estimation of process noise 

covariance and observation noise covariance, significantly improving parameter prediction accuracy. Additionally, 

through rigorous mathematical tools, the asymptotic stability of the residual-driven adaptive correction architecture 

(RDAC-LKF) is proven, providing theoretical guarantees for algorithm reliability. 

In industrial application scenarios, the LSTM-KF framework demonstrates strong potential in dynamic load 

compensation tasks for robotic arms. The torque estimation error and calculation delay are controlled within 

industrial standards, verifying its real-time control capability. In the medical field, significant breakthroughs have 

also been achieved. After the surgical robot adopts this framework, the modeling accuracy of tissue contact force 

and the success rate of instrument posture adjustment have significantly improved. Economic benefit analysis shows 

that the deployment of this system in industrial production lines can effectively reduce rework costs and shorten the 

investment return cycle, verifying the commercial feasibility of technology implementation. 

Despite the significant achievements, LSTM-KF still faces core challenges. The real-time bottleneck limits its 

application in ultra-high-speed control scenarios, and it is necessary to optimize response speed by combining 

lightweight models and hardware acceleration technologies. The defect in the model's interpretability hinders its 

promotion in safety-critical fields, and future research should explore explicit dynamic architectures or formal 

verification methods to establish provable safety boundaries. Moreover, the cross-domain generalization ability of 

the existing models needs to be improved, and through transfer learning and digital twin technologies, more 

extensive application adaptation should be achieved. 
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