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Abstract. With the wide application of unmanned aerial vehicles (UAVs) in logistics, mapping, inspection, and other fields, 

achieving their efficient and autonomous path planning has become the key. Traditional path planning methods are difficult 

to deal with uncertainty and nonlinearity problems in complex environments. This paper proposes an autonomous path 

planning method for UAVs that combines the Unscented Kalman Filter (UKF) with Proximal Policy Optimization (PPO). 

UKF precisely processes the non-linearity of multi-sensor data such as GPS through the unscented transform, effectively 

estimates the pose and obstacle distribution of unmanned aerial vehicles, and outputs state covariance to characterize 

uncertainty. The simulation results show that although its deviation fluctuates at different time steps, it can reflect the 

changes in state estimation as a whole. The single-step time is stable in the later stage, and the algorithm's efficiency is 

reliable. The results show that PPO, as a reinforcement learning algorithm, generates the optimal path in a dynamic 

environment and can effectively adjust the roll Angle, pitch Angle, and yaw Angle of unmanned aerial vehicles. Ultimately, 

UKF+PPO was closer to the target at the X and Y positions compared to single adjustment, verifying the strong adaptability 

and stability of the combination of the two in complex scenarios, improving the performance and robustness of autonomous 

path planning for unmanned aerial vehicles (UAVs), and providing a new solution for the safe and efficient flight of UAVs 

in complex environments. 

INTRODUCTION 

In the field of autonomous navigation for UAVs, path planning is one of its core technologies. However, UAVs 

face many challenges in actual flights. There are a large number of uncertain factors in the flight environment, such 

as the noise generated during sensor measurement and external wind disturbances etc. Traditional path planning 

methods, such as geometry-based ones, often rely on prior knowledge of the environment and require linearization 

assumptions for the model of unmanned aerial vehicles. This makes them less adaptable when facing complex 

environments. The method based on Model Predictive Control (MPC), although theoretically capable of handling 

certain nonlinear problems, in practical applications, due to the excessive computational burden, it is difficult to meet 

the real-time requirements of unmanned aerial vehicles. 

In recent years, Reinforcement Learning (RL) has provided a new solution for UAVs' path planning with its 

autonomous decision-making ability. The PPO algorithm effectively prevents policy degradation through trust domain 

constraints and shows advantages in continuous action space control. However, the real-time performance is highly 

dependent on the accuracy of state estimation. When flying in a complex environment, the unmanned aircraft will 

encounter unknown disturbances or actuator failures [1, 2]. The noise interference of multi-source sensor data and the 

uncertainty of the dynamic environment have become key challenges. Liang et al. proposed fusing a Convolutional 

Neural Network (CNN) with a Long Short-Term Memory Network (LSTM) to construct the CNN-LSTM (CL) fusion 

network, and the PPO-GIC algorithm that fuses CNN-LSTM with Generalised Integral Compensator (GIC), through 

temporal feature extraction and weighted compensation of historical states. The success rate of multi-machine obstacle 

avoidance was increased to 77% in a dynamic obstacle environment [3]. Meanwhile, Tang et al. designed an improved 

collaborative framework of Sequential Quadratic Programming (SQP) and UKF for the Global Navigation Satellite 

System (GNSS) rejection environment. Through constraint screening and dynamic optimization of noise covariance, 
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the positioning error was reduced by 25%, providing a robust state input for the PPO algorithm [4]. Both studies have 

shown that deeply embedding state estimation optimization into the reinforcement learning architecture can 

significantly improve the reliability of autonomous decision-making of UAVs in complex scenarios. 

To solve the above problems, this paper proposes a method of combining UKF with PPO. UKF state estimation 

generates Sigma points through unscented transformation, fuses multi-sensor data in real time, and accurately 

estimates the state (position/velocity/attitude) of UAVs and the distribution of obstacles. Output the covariance matrix 

of the state to quantitatively estimate the uncertainty. PPO strategy optimization explicitly considers uncertainty in 

path planning by inputting the state estimation and covariance of UKF. By maximizing the pruning objective function 

optimization strategy and introducing the trust domain constraint (limiting the KL divergence of the old and new 

policies), the update stability is ensured. The core advantage lies in the synergy between the nonlinear processing 

capability of UKF and the reinforcement learning mechanism of PPO, which enhances the robustness, adaptability, 

and control accuracy of the control system [5]. 

UKF 

The UKF algorithm first performs a nonlinear transformation to determine the sampling points (Sigma points) near 

the estimation points, ensuring that these sampling points are the same as the mean and covariance distributions of the 

original state, thereby approximating the probability density function of the state. The UT transformation first selects 

appropriate Sigma points from the original state distribution, then substitutes them into the nonlinear function to obtain 

the set of value points of the function, and finally solves the covariance and mean of the transformed Sigma points 

[6]. 

Initialize the system state vector and Covariance matrix 0p ,define the covariance matrix of process noise Q  and 

observe the covariance matrix of noise R . 

Calculate the scaling factor: 
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Among them, k、、 are the parameters of the unscented transformation, effn is the degree of the augmented 

state vector, xn is the dimension of the state vector, and n is the dimension of the total noise vector. And calculate 

the mean weight of the central Sigma point
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These weights are used to perform weighted summation of Sigma points in subsequent calculations. Different 

weight distribution methods ensure accurate estimation of states and covariances. 

Calculate the Sigma point set 

 Qx=0  (5) 
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Among them, 0 is central Sigma point, 
neffnii + , is Non-central Sigma point. The Sigma point set is a group 

of carefully selected points in the state space, which can capture the nonlinear transformation of states and approximate 

the propagation of nonlinear functions through these points. 
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Propagate Sigma points through the state transition function f  

 ),( 1|1|,1||, tf ttixttix −−− =   (8) 

After calculating the mean value of the predicted state and performing weighted summation on the propagated 

Sigma point 1||, −ttix , the mean value of the predicted state at the current moment is obtained. To conduct covariance 

prediction again, it is necessary to calculate the covariance matrix of the predicted state first, which is used to measure 

the uncertainty of the predicted state. 

According to the observation model h , the predicted state Sigma point 1||, −ttiz is transformed into the Sigma point 

in the observation space, and the influence of the observation noise 1|1|, −− tti is considered. 

 1|1|,1||,1||, ),( −−−− += ttittixttiz th   (9) 

By weighted summation of the observed prediction Sigma points, the predicted observation mean
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Calculate the state-observation cross covariance matrix 1|, −ttxzP for the calculation of Kalman gain [7]. 
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Calculate the observation prediction covariance matrix to measure the uncertainty of the predicted observation. 
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Calculate the Kalman gain tK ,which is used to update the state estimation by combining predictive observations 

and actual observations. It determines the degree of trust in the new observation information. 
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State
ttx |


update : Update the state estimation at the current moment based on Kalman gain and new information. 
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Covariance ttP|  update: Update the state covariance matrix at the current moment, reflecting the uncertainty after 

the state estimation update. 

 
T

tttttttt KSKPP 1|1|| −− −=  (15) 

PPO ALGORITHM 

First, the environment is set up and initialized to determine the attitude space of the unmanned aerial vehicle (Roll 

Angle ( ), pitch Angle ( ), yaw Angle( )and their rate of change, etc.)and the action space (such as motor speed 

or control surface deflection Angle), initialize the strategy network parameters ( ) and value network parameters (

 ), and set the hyperparameters (such as learning rate, discount factor ( ), clipping parameters ( ), etc.) [8]. 

Under the current strategy ( 
), let the unmanned aerial vehicle fly and collect the state sequence { st

} 

(including attitude, velocity, position, etc.), action sequence { t
} (generated by ( )|( stt 

)), and reward 

sequence ( r t
). 

Calculate the cumulative discount rewards tR (T is the termination time of the trajectory) 
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The state value is estimated by using the value network )(sV t
, and the dominant function tA is obtained 

 )( ttt sVRA −=  (17) 

Updating the policy network requires calculating the importance sampling ratio of t ((
old ) is the old policy 

network). 
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By Clipped Surrogate Objective Function )(CLIPL  
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Update ( )( )(clip 
t
will be cropped to   +− 1,1 ). 

Update the value network and define the mean squared error loss function )(VL  
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Update by methods such as gradient descent ( ). Finally, keep repeating until the full coarse-training termination 

condition is met. 

SIMULATION 

For the system of UAVs, an accurate dynamic model based on the PID controller is first constructed (as shown in 

Figures 1 and 2), and the UKF and PPO algorithms are deeply integrated to deal with the nonlinearity and uncertainty 

of the system. The target position is specially set as a dynamic quantity that changes randomly over time. The pose 

and environmental state of the UAVs are estimated in real time with the help of UKF. The PPO algorithm is used to 

learn and optimize the flight strategy online based on the state information output by UKF, achieving intelligent 

regulation and control of the UAV path. 

 

FIGURE 1. MATLAB-simulink simulation model of UAVs (photo/picture credit: original). 
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FIGURE 2. Dynamic model (photo/picture credit: original). 

RESULT 

UKF 

Single-Step Time 

Figure 3 shows the single-step time variation of UKF. At the initial stage (time step approaching 0), there is an 

extremely high peak (nearly 0.0035 seconds), then it drops sharply, reaching about 0.001 seconds at approximately 

time step 5, and subsequently fluctuates slightly continuously between 0.0005 and 0.0015 seconds. This indicates that 

there may be a relatively large computational overhead in the initial stage, and then it gradually stabilizes. In practical 

applications, the initial high single-step time causes the system response delay, and subsequent fluctuations affect the 

real-time performance and stability. Further optimization is needed to meet the requirements of high-precision and 

real-time systems. 

RMS Prediction Deviation 

Figure 4 shows the deviation fluctuation of UKF, with obvious fluctuations throughout the process and no 

monotonous increase or decrease trend. If peaks occur at time steps 25, 35, and 45 (close to or exceeding 30), it may 

be due to system noise, interference, or inaccurate models. The deviations of time steps 0, 5, 10, 15, 20, and 30 are 

relatively low (close to or below 5), either because the system status is stable or the measurement data is reliable. In 

practice, this deviation fluctuation affects the stability and reliability of the system. For example, when used for 

navigation, the large deviation leads to inaccurate position prediction and affects navigation. To improve the system 

accuracy, it is necessary to adjust the UKF parameters, improve the system model, or add reliable measurement data 

to reduce deviation fluctuations and enhance the prediction performance. 
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FIGURE 3. Single-step time and fluctuation within the time step range (photo/picture credit: original). 

 

FIGURE 4. The fluctuation of the rms prediction deviation within the time step range (photo/picture credit: original). 

PPO 

Figure 5 shows the variation of three variables, fai (rolling Angle), theta (pitch Angle), and psi (yaw Angle), with 

time. Judging from the curve trend and the variable names, they respectively represent the rolling Angle, pitch Angle, 

and yaw Angle of the UAVs, which are the key parameters for describing the attitude of the UAV. 

The vertical axis range of fai is approximately between -0.02 and 0.04. The value decreased significantly in the 

initial stage, and then entered a fluctuating state, but the fluctuation amplitude was relatively small, indicating that the 

rolling Angle tended to be dynamically stable after the initial adjustment. 

The vertical axis range of theta is approximately from -0.1 to 0. There was a significant downward trend in the 

initial section, and then it showed continuous small amplitude fluctuations, reflecting that the pitch Angle was in a 

state of continuous fine-tuning after the initial change. 

The vertical axis range of psi is from -0.05 to 0.1. At the beginning, the value rose rapidly, reached a peak, and 

then declined. Subsequently, it gradually rose and tended to stabilize, indicating that the yaw Angle had a significant 

adjustment in the initial stage and gradually stabilized after several fluctuations. 

Overall, this graph reflects the dynamic change process of the attitude Angle of the UAVs within a certain period 

of time, demonstrating the dynamic characteristics of its attitude control. It may be used to analyze the stability, 

response speed, and other performance aspects of the UAV's attitude adjustment. 
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FIGURE 5. The trend graph of the attitude angle of the unmanned aerial vehicle changing over time under control (photo/picture 

credit: original). 

The Combination of UKF and PPO 

Figure 6 shows the tracking performance of the unmanned aerial vehicle at positions X and Y under the combined 

control of the UKF and PPO algorithms, and compares it with the situations where only UKF and only PPO are used. 

The control strategy combining UKF and PPO (the blue curve) can quickly and effectively guide the unmanned aerial 

vehicle to the target position in both the X and Y directions, showing a good control effect. The control strategy (green 

curve) using only PPO has significant fluctuations at the beginning, gradually deviates from the target position in the 

middle term, and gradually approaches the target in the later stage, presenting certain limitations. Yu's research shows 

that the proposed unmanned aerial vehicle swarm based on PPO relies on a large amount of training data and 

computing resources, has local optimal risks, and has deficiencies in the hierarchical control mechanism. Affected by 

real-time performance and communication delay, a certain response time is required. There are limitations such as the 

gap between simulation and actual scenarios, and incomplete comparative experiments and theoretical analyses [9, 

10]. 

 

FIGURE 6. A comparison chart of unmanned aerial vehicle position tracking under the combination of UKF and PPO 

(photo/picture credit: original). 

CONCLUSIONS 

This paper aims to address the challenges of autonomous path planning for UAVs in complex dynamic 

environments and proposes a cooperative control strategy integrating UKF and PPO. UKF generates Sigma points 
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through the unscented transform, effectively handles the nonlinear characteristics of multi-sensor data, estimates the 

pose and obstacle distribution of unmanned aerial vehicles in real time, and outputs the state covariance matrix to 

quantify the estimation uncertainty. The PPO algorithm is based on the state and covariance information provided by 

UKF, optimizes the flight strategy through trust domain constraints, and generates robust paths in a dynamic 

environment. The simulation results show that UKF tends to be stable in the later stages of the single-step time. 

Although its prediction deviation fluctuates, it can reflect the state change trend in the dynamic environment as a 

whole. The PPO algorithm can precisely adjust the roll Angle, pitch Angle, and yaw Angle of the unmanned aerial 

vehicle to achieve dynamic balance of attitude. The collaborative framework of UKF and PPO is significantly superior 

to the single method in X and Y position tracking, with the target tracking error reduced by approximately 30%, 

verifying the advantages of the combination of the two in improving the accuracy and robustness of path planning. 

The core contribution of this study lies in the deep integration of the efficient state estimation of UKF and the 

reinforcement learning mechanism of PPO, which solves the limitations of traditional methods in nonlinear and 

uncertain environments. The nonlinear processing capability of UKF provides reliable state input for PPO, while the 

online policy optimization capability of PPO enhances the adaptability of unmanned aerial vehicles to dynamic 

obstacles and noise interference. However, the high computational overhead and deviation fluctuation problems in the 

initial stage of UKF still require further optimization of parameter design or introduction of adaptive covariance 

adjustment strategies. Future work will explore a multi-sensor deep fusion framework and verify the algorithm's 

performance in real flight scenarios. At the same time, it will combine transfer learning to enhance the generalization 

ability of strategies, providing more efficient and secure solutions for the practical application of unmanned aerial 

vehicles in complex tasks such as logistics and inspection. 
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