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Abstract. With the growing demand for drone applications in special environments such as forest fires, earthquake
disasters, and complex urban terrain, improving their autonomous obstacle avoidance and path planning capabilities in
dynamic environments has become a core issue in current research. This paper systematically reviews the research progress
of four typical visual algorithms in this field, covering target detection (YOLO series) and environmental perception and
localization (SLAM). On the basis of introducing the principles of various algorithms, this paper focuses on comparing
their performance in terms of real-time, environmental adaptability, modeling accuracy, and deployment efficiency, and
further points out their typical advantages and disadvantages in complex dynamic scenes: For example, the YOLO series
has extremely high frame rate and small target detection capabilities in dynamic target recognition, but has limited
robustness under weak light or occlusion conditions; the SLAM algorithm can achieve high-precision positioning and
mapping in unknown scenes, but it is prone to drift and failure when the texture is sparse or dynamic objects interfere.
Finally, this paper further explores the development trend of the perception-decision integrated path planning system, and
looks forward to future research directions such as multi-sensor fusion, lightweight model design, and multi-UAV
collaborative obstacle avoidance.

INTRODUCTION

In recent years, global warming and frequent extreme weather have led to a significant increase in the frequency
and intensity of forest fires [1]. Forest ecosystems play a key role in carbon balance and biodiversity, and their safety
is related to human sustainable development [2]. Traditional ground monitoring methods, such as watchtowers and
fixed-wing aircraft, are difficult to meet the rapid response needs in disaster scenarios due to terrain obstruction and
limited mobility [2]. Unmanned aerial vehicles (UAVs) have demonstrated good data acquisition capabilities in
complex and high-risk environments with their flexible deployment and low-risk advantages [3]. However, traditional
path planning methods face severe challenges in environments with dense smoke, heat flow, and dynamic obstacles
[4].

The three existing mainstream algorithms each have their advantages and disadvantages. RRT has good global
search capabilities in high-dimensional space, but it responds slowly in dynamic scenarios. Liu et al. introduced
Dubins curve optimization to reduce redundant nodes by 35%. Zhao et al. proposed a double sampling mechanism to
reduce path cost by 38.32% and time by 71.22%, but it still requires frequent global resampling [5, 6]. A* can generate
approximate optimal paths using heuristic functions, but the computational burden is large in high-dimensional space,
and the path often contains multiple turns. EBS-A* proposed by Wang et al. improves planning efficiency by 278%
and completely eliminates turns [7]. Guo et al. introduced Bezier curves to reduce turning points by 46.15%, but the
algorithm relies on static heuristic functions and lacks the ability to adapt to instantaneous changes [8]. The APF
algorithm has excellent real-time performance. Pan et al. used the rotating potential field to increase the success rate
of multi-aircraft formation re-planning to 92.5%. Hao et al. combined collision assessment to improve efficiency by
24.6% and reduce energy consumption by 15.7%, but it is still difficult to maintain robustness under conditions of
perception uncertainty [9, 10].



In summary, although the performance of traditional algorithms has been significantly improved in static
environments, it is difficult to cope with the complex dynamic characteristics of disaster sites. Visual algorithms
provide a new path. YOLOv5n achieves 102 FPS and mAP50 of 76.7% on the Jetson platform, and has high frame
rate target detection capabilities [11]. NICER-SLAM reduces ATE-RMSE to 1.88 cm, and SLAM3R can maintain
20+ FPS and effectively suppresses drift by relying only on RGB video [12]. The integration of target detection and
centimeter-level mapping capabilities provides a basis for real-time and accurate path reconstruction for UAVs in
dynamic environments.

This paper will systematically sort out the research context of YOLO and SLAM in UAV obstacle avoidance,
conduct a quantitative comparison based on a unified data set, and explore the development trend of their integration
and optimization. It aims to clarify the applicable boundaries and performance bottlenecks of different visual
algorithms in complex dynamic scenes, and provide methodological reference and technical support for the subsequent
construction of an efficient and robust UAV path planning system.

ANALYSIS OF MAINSTREAM VISUAL ALGORITHMS

YOLO Series Algorithms

Basic Concepts

YOLO is a single-stage target detection framework, which is widely used in real-time perception tasks of drones
due to its fast reasoning speed and lightweight structure.

You Only Look Once (YOLO) is a single-stage object detection framework that compresses the inference latency
to milliseconds by dividing the input image into a regular grid and regressing the bounding box and category
probability at one time [13]. Thanks to its end-to-end design, lightweight convolutional backbone, and parallel
decoding head, YOLO can maintain >60 FPS on embedded platforms such as Jetson Orin Nano, which is very suitable
for drones' needs for low latency and high frame rate perception. From v1 to v8, the algorithm has introduced
improvements such as the CSPDarknet backbone, Anchor-Free prediction, and automatic data enhancement, which
significantly improved the speed-accuracy trade-off [13]. In tasks such as forest fire monitoring and urban canyon
obstacle avoidance, YOLO can output the location information of smoke, fire points, or dynamic obstacles in real
time, provide semantic constraints for downstream SLAM mapping and local path planning, and realize online
decision-making and safe avoidance during flight.

Experimental Data and Performance Comparison

In order to verify the detection capability of YOLOvVS in complex environments, Table 1 shows the performance
comparison results of the algorithm on the VisDrone2019 dataset. By comparing with the YOLOv8s baseline model,
the improvement in indicators such as precision, recall, F1 score, and mAP@0.5 is analyzed.

TABLE 1. Comparison of detection performance of the improved YOLOv8 model on the VisDrone2019 dataset
Model Accuracy Recall Fl score mAP@0.5
UAV-YOLOVS [4] 54.4 % 45.6% 49.6% 47.0%
YOLOVS s(baseline) 50.9 % 382% 389% 39.3%

UAV-YOLOvVS uses YOLOvVSs as the baseline, introduces WIoU v3 loss and BiFormer sparse attention, and
expands the three-scale detection to five-scale to strengthen the representation of small targets. VisDrone2019 scenes
cover complex backgrounds such as urban high-rise buildings, roads, and low light at night. The improved model
improves Precision and Recall by 3.5 pp and 7.4 pp, respectively, and mAP@0.5 increases by 7.7 pp. For drone
inspections, this means that small targets such as pedestrians and vehicles can still be reliably captured in the gaps
between high-rise buildings or in dense traffic flows, providing more accurate obstacle positioning for subsequent
path planning.

UAD-YOLOVS8 is based on YOLOv8n. It first deletes the high-level P5 feature layer and then uses C2f-DCNv2 to
adapt deformation and occlusion. Then it replaces the standard convolution with UGDConv and Lw-Detect
lightweight detection head, achieving parameters —77% and GFLOPs —34%. Despite the significant reduction in
computational complexity, the model still maintains more than 80% in Precision, and mAP@0.5 is increased to 80.3%.
This ensures that the drone can stably identify and track moving obstacles at a speed of ~90 FPS in dynamic



environments such as forest areas or power inspections, laying the foundation for real-time obstacle avoidance and
track replanning.

Next, in the UAD-YOLOvV8 experimental dataset, this experiment used the UAVDT and VisDrone datasets, the
latter of which is a large-scale drone image dataset that contains a variety of flight scenes and obstacle types. By
adding deformable convolution (DCNv2) and lightweight modules (such as UGDConv), the model reduces the
computational burden while improving detection accuracy. Although the recall rate is slightly lower (78.2%), the
precision rate is close to 90%, indicating that the model can avoid misidentification in most scenarios and can
effectively identify moving obstacles. In actual flight, real-time reasoning performance is crucial. The addition of
DCNv2 and UGDConv greatly improves the efficiency of the model and meets the real-time detection requirements
of drones. To further evaluate the performance of the improved YOLOv8 model in multi-class obstacle recognition,
Table.2 shows the comparison of its detection effect on the UAD obstacle dataset, covering key indicators such as
Precision, Recall, F1 score, and mAP@0.5.

TABLE 2. Comparison of detection performance of the improved YOLOv8 model on the UAD obstacle dataset
Model Precision Recall F1%  mAP@0.5 %
UAD -YOLOVS [11] 80.7 % 73.8% 77.1% 803 %
YOLOv8 n (baseline)  80.4 % 719% 759% 76.9%

The data is extracted from the control experiment of the UAD dataset built by the author (Table 2). The UAD
dataset contains 3636 obstacle images, covering multiple types of obstacles such as trees, electric poles, vehicles,
pedestrians, etc. Experimental data show that the YOLOVS series of algorithms has high accuracy and good real-time
performance in target detection tasks, especially when dealing with obstacles in dynamic environments (such as
moving fire sources, smoke, etc.), which can effectively reduce the occurrence of false detection and missed detection.
In the UAV obstacle avoidance and path planning tasks, YOLOvS8 not only improves the accuracy of obstacle
recognition but also helps UAVs plan safer and more effective flight paths through high-precision target positioning.

Limitations and Challenges

Although UAV-YOLOVS increased mAPO0.5 to 47.0% on VisDrone2019, its FLOPs increased from 28.7G to 53G,
and the detection rate of extremely small and single-texture targets (such as bicycles) is still low. In low-light and
backlit scenes, the decrease in feature contrast leads to a significant increase in the missed detection rate, and the
mAPO.5 of small targets decreases by 8-12 pp. In addition, when inferring at high resolution, both the video memory
usage and inference latency will double, making it difficult for embedded GPUs to achieve real-time processing. At
the same time, algorithm training is highly dependent on large-scale, cross-view annotation data, otherwise, it is easy
to overfit to a specific view.

Application of Visual SLAM in Autonomous Navigation and Positioning Mapping
Basic Concepts

Simultaneous Localization and Mapping is a key algorithm for simultaneous localization and map construction in
unknown environments, and is widely used in autonomous navigation tasks of drones. Through sensors such as
cameras, IMUs, or lidars, SLAM systems can estimate their own positions and build environmental models in real
time during flight, providing spatial support for path planning and obstacle avoidance. Among various perception
methods, visual SLAM has become a common solution in drone missions due to its lightweight and low cost. Its basic
principle is to extract features from continuous image sequences, infer pose changes, and gradually generate sparse or
dense environmental maps to help drones achieve accurate navigation in GPS-deficient or complex environments [14,
15].

Experimental Data and Performance Comparison

In order to systematically compare the comprehensive performance of different dense SLAM algorithms on
multiple data sets, Table 3 summarizes the pose error, reconstruction quality, and real-time indicators of SLAM3R



and mainstream algorithms on 7Scenes and Replica data sets, covering key dimensions such as ATE-RMSE,
Accuracy/Completeness, and FPS.

TABLE 3. Comparison of pose error, reconstruction quality, and real-time performance of dense SLAM algorithms on 7Scenes
and Replica datasets

7scenes RMS  Repliac RMSE

Method 7scenes_Acc/Comp  Repliac_ Acc/Comp  FPS

E (cm) (cm)
NICER-SLAM[12] 8.55 1.88 3.65/4.16 3.65/4.16 <1
DROID-SLAM 5.66 0.33 5.66/11.70 5.50/12.29 ~20
SLAM3R-NoConf  8.44 6.61 2.40/2.24 3.76 /2.62 ~24
SLAM3R 8.41 6.61 2.13/2.34 3.57/2.62 ~24

In the comparative experiment of SLAM3R, Liu et al. selected two commonly used 3D scene datasets: 7Scenes
and Replica, and compared and evaluated the current mainstream dense SLAM systems, including NICER-SLAM,
DROID-SLAM, and its two self-developed versions: SLAM3R-NoConf and SLAM3R. The experiment quantitatively
evaluated the pose estimation error (ATE-RMSE), the accuracy and completeness of point cloud reconstruction
(Accuracy / Completeness), and the system operation efficiency (FPS), and fully verified the comprehensive
performance of SLAM3R in 3D reconstruction tasks.

First, in the NICER-SLAM experiment, Zhu et al. used voxel hashing and implicit surface reconstruction. The
lowest RMSE on the Replica dataset was 1.88 cm, but the FPS was always <1, which was insufficient for real-time
performance [12]. Then, in the DROID-SLAM experiment, Teed & Deng used a recurrent neural network to estimate
and reconstruct the scene through a joint optimization process. The RMSE in the Replica dataset was 0.33 c¢cm, and
the Completeness reached 12.29 c¢m, the highest among all methods. The actual GPU measurement was about 20 FPS
[14]. Subsequently, the RMSE of SLAM3R-NoConf on 7Scenes and Replica was 8.44 cm and 6.61 cm, respectively,
but it still maintained a high reconstruction consistency and structural coherence. FPS~24. After further introducing
the confidence gating mechanism, SLAM3R-NoConf (SLAM3R) maintained an average RMSE of 8.41 cm/6.61 cm,
but the reconstruction accuracy was improved to 2.13/2.34 cm (7Scenes) and 3.57/2.62 cm (Replica), indicating that
this mechanism significantly reduced the introduction of low-quality points, thereby improving the model stability
without relying on global optimization.

The full-process GPU parallelism enables SLAM3R to achieve 24FPS real-time dense reconstruction on RTX
4090 without camera calibration, and can provide +10 cm, >20 FPS positioning and mapping support for indoor drone
inspections, post-disaster search and rescue, and other GPS-free scenarios, which is better than traditional graph
optimization SLAM methods. SLAM3R shows extremely high practicality, especially in high-frequency dynamic
scenes or resource-constrained platforms (such as drones or embedded devices).

Overall, there are many types of SLAM algorithms. The mainstream methods can be divided into sparse mapping
(such as ORB-SLAM?2) and dense reconstruction (such as SLAM3R). Both have their advantages in the application
of UAV path planning [15]. ORB-SLAM?2 adopts a sparse mapping method based on feature points. The system
structure is lightweight and has strong real-time performance. It is suitable for resource-constrained platforms. Its
positioning mean square error (RMSE) on the TUM dataset can reach 4.4 cm, with good accuracy and closed-loop
capability [16]. In recent years, end-to-end dense visual SLAM methods such as SLAM3R have been developed. They
complete local point cloud reconstruction and global fusion through deep neural networks, and achieve 2.13 cm
reconstruction accuracy (Acc.) and 24 FPS real-time performance on the 7Scenes dataset. It performs better in point
cloud integrity and visual understanding ability, but global drift and increased reasoning delay still occur when
deployed on weak textures, high dynamic flight, and Jetson-level platforms; the robustness can be improved through
lightweight posture supervision and multi-source sensor fusion [15]. In summary, different SLAM algorithms have
different focuses on mapping accuracy, system efficiency, and path planning support capabilities, and need to be
flexibly selected in combination with UAV application requirements.

Limitations and Challenges

In scenes with sparse textures or repeated patterns, the front-end matching robustness of the visual SLAM system
decreases, which can easily lead to a cumulative trajectory drift of 9 cm within 5 minutes; high-speed maneuvering
flight amplifies the timing error between the IMU and vision, causing frequent relocalization failures. In addition,
most algorithms assume that the environment is static by default and cannot model dynamic targets. They need to rely
on semantic occlusion culling mechanisms to maintain map consistency and navigation stability.



FUTURE DIRECTIONS

Although current visual algorithms have made significant progress in drone obstacle avoidance and path planning,
they still face the triple challenges of “scarce computing power, harsh environment, and dynamic interference” in
actual deployment. To address these limitations, several technical paths have shown good engineering potential in
recent years and can serve as the focus of subsequent research. On the detection side, lightweight strategies have
achieved phased breakthroughs. For example, EDGS-YOLOVS reduces the model GFLOPs by 35% on the Jetson
Nano platform by introducing GhostConv and a deep separable convolution structure, while maintaining the original
mAP and reaching 25 FPS in actual measurements, verifying the computing power compression capability of the
perception module on a low-power platform [17]. On the positioning side, multimodal information fusion is becoming
a key breakthrough in improving the robustness of SLAM. LVI-Fusion tightly couples LiDAR, camera, and IMU data
into a factor graph optimization framework, controls the ATE error within 10 cm in weak texture and illumination
mutation scenes, and maintains the frame rate at 25 FPS, effectively improving the positioning stability in extreme
environments. At the same time, the coupling of perception and mapping tasks also shows good synergistic effects
[18]. The YPR-SLAM system combines YOLOvV8's detection and elimination of dynamic objects with geometric
constraints in the map optimization process, reducing the trajectory error by about 30% under the TUM-RGB-D
dynamic sequence without affecting real-time performance, indicating that the map optimization mechanism based on
detection priors can effectively suppress motion interference and improve map coherence and navigation reliability
[19].

CONCLUSION

This review focuses on the "detection-localization-avoidance" link and presents the latest progress and bottlenecks
of two representative algorithms. Different algorithms have their advantages and are suitable for different mission
requirements and flight environments. In UAV-YOLOVS, with the help of WloU v3 and BiFormer, the mAP@0.5 of
VisDrone2019 was increased by 7.7 pp to 47.0%; UAV-YOLOVS achieved 80.3% mAP with only 0.68M parameters
and 5.3GFLOPs through layer deletion and Ghost convolution, and the frame rate was ~90 FPS. Dense visual SLAM-
3R relies on the I2P-L2W two-stage network and confidence gating to achieve 6.61 cm ATE-RMSE and 24FPS in
Replica, refreshing the "centimeter-level-real-time" balance. In summary, current visual algorithms have basically met
the needs of centimeter-level positioning and hundred-frame-level detection in GPS-free scenarios such as forest
inspections and indoor search and rescue, but there are still risks of recall attenuation and global drift in low-light,
sparse textures, and Jetson-level platforms. In the future, it should focus on hardware perception compression,
multimodal robustness enhancement, online adaptive learning, and DRL-coupled planning to further approach the
optimal frontier of accuracy- computing power -environmental robustness.

Future research can focus on three aspects: lightweight models, multi-source fusion, and task coupling: by
introducing Ghost/RepConv and pruning technology, the YOLOVS structure can be further compressed and the small
target detection performance can be maintained; in terms of SLAM, the integration of sparse attention Transformer
and multi-modal perception such as event cameras and LiDAR is expected to achieve stable deployment of SLAM-
3R on embedded platforms; at the system level, embedding the semantic information output by YOLO into the graph
optimization process can simultaneously improve the map expression and positioning stability. These paths jointly
promote the perception- mapping -planning integrated framework, providing efficient and robust support for multi-
UAV collaborative obstacle avoidance.
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