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Abstract. Blockchain technology, while revolutionizing industries through decentralization, faces escalating security 

threats such as 51% attacks, smart contract vulnerabilities, and DDoS attacks. Traditional defense mechanisms, including 

consensus protocols (e.g., PoW/PoS) and rule-based detection tools, exhibit limitations, such as susceptibility to double-

spending and high false-positive rates of 15–20%. This paper systematically investigates machine learning (ML)-driven 

approaches for blockchain attack detection and defense, evaluating their performance through a multidimensional "attack 

type-defense level" framework. Supervised learning models show robust performance: LightGBM achieves 99.17% 

accuracy in Ethereum fraud detection using hybrid sampling and feature engineering, outperforming XGBoost (97.99%) 

and Random Forest (98.26%). Deep learning methods, such as CodeBERT combined with graph structural analysis, 

achieve an 84.78% F1-score in detecting reentrancy vulnerabilities, surpassing static graph-based approaches with 

53.44% accuracy. Federated learning frameworks with dynamic reputation mechanisms attain 99.1% DDoS detection 

accuracy while preserving data privacy. However, challenges include adversarial attack vulnerabilities, ambiguous global 

transaction patterns, and computational overheads limiting real-time deployment. Structural constraints in graph-based 

vulnerability analysis and trade-offs between privacy and efficiency further complicate applications. Future directions 

include adversarial defense reinforcement, lightweight edge-computing architectures, and SDN-integrated cooperative 

defense systems to balance detection accuracy, privacy, and scalability in evolving threat landscapes. 

INTRODUCTION  

Blockchain technology, as a typical representative of distributed ledger systems, has triggered changes in 

finance, supply chain, and other fields while continuing to face new security threats such as 51% attacks, smart 

contract vulnerability exploits (e.g., the re-entry attack model proposed by Crisostomo et al.), and DDoS attacks and 

other novel security threats [1-3]. Traditional protection mechanisms have significant limitations in dealing with 

these attacks, PoW/PoS-based consensus protocols are susceptible to double-spending attacks triggered by the 

concentration of computational power, and rule-matching vulnerability detection tools have a false positive rate of 

up to 15%-20% [4, 5].  

In this context, machine learning-driven security protection techniques show breakthrough potential. Supervised 

learning optimizes attack identification by extracting transaction features (e.g., Kilic et al. achieved 97.1% blacklist 

prediction accuracy by training SVMs with Ethereum address PageRank values) [6]. Deep learning breaks through 

the semantic analysis bottleneck (Choi et al. fusion of CodeBERT with graph structure to detect reentrant 

vulnerabilities with 84.78% F1-score, while Wang et al., 2022 bytecode control flow graph-based graph 

convolutional network only achieves 53.44% accuracy in detecting timestamp-dependent vulnerabilities [7]). 

Federated learning further balances privacy and efficiency (Saveetha et al. designing a reputation federation 

framework to against DDoS attacks with 99.1% accuracy [1]. In addition, Kim et al. uses differential privacy 

federation learning to improve the accuracy of anti-poisoning attack models by 12% [8]). However, the field still 

suffers from the following constraints. For example, many models are not optimized for real-time scenarios in large-

scale blockchain networks and need to be tuned to ensure efficient operation without sacrificing speed or accuracy. 



The incompleteness and noise of real-world data pose challenges for vulnerability detection, privacy-preserving 

techniques introduce significant computational overhead in blockchain networks leading to increased computational 

complexity, traditional machine learning methods fall short in detecting DoS attacks, it is difficult to satisfy the 

financial-grade real-time demand [3, 5, 8, 9].  

This paper aims to systematically compare the performance boundaries and application scenarios of different 

machine learning techniques by constructing a multi-dimensional framework of “attack type-defense level” to 

provide theoretical support for breaking through the bottleneck of blockchain security protection. 

METHOD  

Blockchain Infrastructure 

Blockchain is a decentralized distributed ledger technology whose core architecture consists of a data layer, a 

network layer, a consensus layer, an incentive layer, a contract layer, and an application layer [10]. As shown in 

Figure 1, the data layer ensures data tamper ability through hash chain storage structure and asymmetric encryption 

algorithms (e.g., ECDSA), in which the block header contains the root of the Merkel tree and the hash value of the 

previous block, which forms a chain validation relationship, the network layer adopts the P2P protocol to achieve 

distributed communication between nodes, and synchronizes transactions and block data through the broadcast 

mechanism; the consensus layer adopts Proof of Work (PoW) , Proof of Workload (PoW), Proof of Stake (PoS) and 

other algorithms to achieve decentralized verification and ensure that all nodes agree on the state of the ledger [4]. 

The incentive layer drives nodes to participate in the maintenance of the network through the issuance of tokens and 

the distribution mechanism (e.g., Bitcoin mining incentives), and the contract layer embeds the smart contract as a 

programmable logic into the system to support automated execution of transaction rules (e.g., ethereum Solidity). 

(e.g., ethereum Solidity scripts); and the application layer covers practical scenarios such as financial payments, 

supply chain traceability, and digital identity. 

Blockchain security relies on the collaborative work of all layers, data layer encryption and consensus layer 

authentication form the base protection, but the complex business logic of the application layer (e.g., the DeFi 

protocol), and the node collaboration of the network layer are still exposed to multiple attack risks. For example, 

intelligence vulnerabilities at the contract layer can be exploited by reentry attacks, while consensus layer arithmetic 

imbalances may trigger 51% attacks and network layer P2P communication is vulnerable to DDoS attacks [1]. These 

threats are directly related to the types of attacks and defense mechanisms discussed subsequently. 

 

 

FIGURE 1. Blockchain infrastructure [11]. 

 



Attack Types and Machine Learning Models 

 Fraud Attack 

Fraud attacks are one of the most prevalent security threats in blockchain networks, and their core tactics include 

forging transaction records, manipulating address identities (e.g., impersonating legitimate users), and utilizing 

transaction validation loopholes to implement Double-Spending and Sybil Attacks. Such attacks destroy the network 

trust mechanism through abnormal transaction patterns (e.g., high-frequency small transfers in a short period of 

time, abnormal address activity cycles), resulting in significant economic losses. For such attacks, traditional 

machine learning models are widely used due to their efficient feature learning capability and nonlinear pattern 

recognition advantages. 

Ashfaq et al. proposed a hybrid machine learning framework based on the Random Forest and eXtreme Gradient 

Boosting (XGBoost) algorithms, which extracts transaction key metrics through multidimensional feature 

engineering, including network topology features (e.g., node outgoing/incoming degree averaging) and transaction 

pattern analysis (e.g., malicious transaction labeling) [12]. The study uses a publicly available dataset of 30,000 

Bitcoin transactions, of which less than 1% are malicious samples, to solve the data imbalance problem by 

synthesizing minority class samples through Synthetic Minority Oversampling Technique (SMOTE), and finally the 

XGBoost model achieves a classification accuracy of about 90% on the test set.  

Kilic et al. constructed a directed transaction graph containing 16.1 million nodes by collecting 141 million 

transaction data in the interval of 9,000,000 to 10,999,999 Ethereum block heights (November 2019 to October 

2020), and combining public intelligence sources such as Etherscan and CryptoScamDB to 1,430 active blacklisted 

addresses are filtered to form the research dataset [6]. At the feature extraction level, the method integrates local and 

global features, local features cover direct behavioral metrics such as address access, transaction amount statistics 

(e.g., mean, extreme, total), and activetime; global features introduce PageRank algorithm to quantify node 

influence and map the global topological location of addresses through the connectivity subgraph identifier 

(con_comp_id). address's global topological location. Aiming at the class imbalance problem that the proportion of 

blacklisted addresses in the dataset is less than 0.01%, the study reconstructs the balanced training set using a hybrid 

strategy of random undersampling and SMOTE oversampling, and utilizes the extreme random tree to screen out the 

10 key features, such as avg_out_amount, unique_indegree, pagerank, and so on, to input into the classification 

model.  

The core contribution of lies in the improved (LGBM) LightGBM model, the optimization parameters are 

estimated via a Euclidean distance structure, and fraud classification is achieved by combining the transaction 

frequency and balance change features on an Ethereum dataset containing 4,000 tagged addresses [13]. The SMOTE 

oversampling technique is used to increase the fraud samples from 3,115 to 6,116, and finally achieves 99.17% test 

accuracy with 95.62% F1 score, which significantly outperforms comparative models such as XGBoost (97.99%) 

and Random Forest (98.26%). 

Subsequently, Ravindranath et al. innovatively combined the K-Means-SMOTE oversampling technique with 

LightGBM to improve the model robustness by improving the sample distribution (the original fraud share of 

22.14% was balanced to 50%) in a dataset of 6,000 fraudulent addresses [14]. Feature engineering focuses on 

traditional statistical indicators, ERC20 reception time difference, transaction amount average, address uniqueness, 

etc., and identifies key features such as “time difference between the first and the last transaction” through SHAP 

interpretive analysis. 

DDoS Attack 

DDoS attacks disrupt the availability of blockchain networks through distributed traffic flooding, protocol 

vulnerability exploitation, and smart contract resource exhaustion, and their detection requires a combination of 

network traffic characteristics and distributed defense mechanisms. Existing studies propose multi-layered defense 

strategies to deal with dynamic attack patterns through the co-optimization of blockchain architecture and machine 

learning models. 

Banchhiwal et al. proposed a multilayered defense framework based on blockchain smart contracts and deep 

learning, which achieves dual protection of traffic filtering and anomaly detection through a layered architecture [3]. 

The framework redirects inbound traffic requests to the blockchain network, uses smart contracts for initial filtering 

(based on preset parameters such as request type, source address, packet size, etc.), and suspicious traffic enters the 



deep learning layer for further analysis. The blockchain storage layer uses encrypted chunks to store traffic data to 

ensure data integrity; the deep learning model identifies abnormal traffic patterns (e.g., TCP/UDP protocol 

anomalies, high-frequency request cycles) by analyzing features such as request types, resource access patterns, and 

embedded scripts. The experiments use real-time network traffic dataset (including core network and edge network 

nodes), and the robustness of the deep learning method under complex attack patterns is verified by comparing the 

performance of ANN and SVM models.  

Saveetha et al. designed a detection framework integrating federated learning (FL) and blockchain to optimize 

the data quality of miner nodes through a dynamic reputation assessment mechanism and improve the robustness of 

the model against malicious traffic [1]. The study uses the CIC-DDoS2019 dataset (containing 12 types of attacks 

such as SYN, UDP, DNS, etc.) to construct a training set containing 80-dimensional traffic characteristics (e.g., 

target port, flow duration, and forward and backward packet statistics). In the federated learning framework, the 

miner nodes use the local traffic data to train Random Forest (RF), Multilayer Perceptron (MLP) with Logistic 

Regression (LR) models, and global model aggregation is achieved through the Flower framework. To cope with 

potential malicious node poisoning attacks in federated learning, a dynamic reputation evaluation mechanism is 

proposed, the reputation value is calculated based on the node's historical training accuracy (acc), pledge volume 

(data_stake) and the number of times of participation in training (training_count), and the high-reputation miners are 

screened to participate in training.  

Defense Mechanisms and Deep Learning Models 

 Smart Contract Vulnerability Defense 

The research in the field of smart contract vulnerability defense focuses on combining code semantic analysis 

and distributed architecture features to improve the comprehensiveness and dynamic adaptability of vulnerability 

detection through deep learning methods. By integrating natural language processing and graph structure analysis 

techniques, the existing research breaks through the limitations of traditional static rule detection and builds a hybrid 

detection framework that takes into account both code logic and execution paths, making significant progress in 

detection accuracy and interpretability. 

Choi et al. proposed a smart contract vulnerability detection method that integrates large-scale language 

modeling (CodeBERT) and graph structural analysis and achieves collaborative analysis of code semantics and 

execution paths through a dual coding strategy [7]. The method firstly inputs the Solidity source code into 

CodeBERT model to generate 768-dimensional text embedding, and captures semantic features such as function 

naming, variable types, etc. Meanwhile, they constructed a code structure graph based on Abstract Syntax Tree 

(AST) and Control Flow Graph (CFG), and vectorize the sequence of operands by using Sent2Vec to extract critical 

path features through the triple analysis of Degree centrality, Katz centrality, and Proximity centrality. The critical 

path features are extracted by degree centrality, Katz centrality and proximity centrality triple analysis. The 

experiments use a dataset containing 30,000 Ethereum contracts and comparing CodeBERT detection alone (81.26% 

accuracy) with CodeBERT+AST combination (83.48% accuracy), the method achieves a combined accuracy of 

86.70%, and the F1-score is improved to 84.46%. 

Wang et al. proposed a bytecode-based graph convolutional network (GCN) detection framework to achieve 

vulnerability localization by constructing a control flow graph through reverse engineering [15]. The method first 

decompiles the smart contract bytecode into a sequence of opcodes, divides the base blocks by jump instructions and 

constructs a CFG, and uses a 3-layer GCN model for graph structure learning. The experiments use a dataset 

containing 1,420 contracts (472 with timestamp-dependent vulnerabilities), with adjacent matrix and unit matrix (not 

semantically processed) as node feature inputs, and nonlinear transformation by ReLU activation function. 

Privacy and Attack Resistance 

In the convergence of blockchain and machine learning, privacy protection and attack resistance are the core 

technical challenges. By combining differential privacy (DP), federated learning, and smart contracts, researchers 

have proposed a variety of defense mechanisms to cope with data leakage and malicious attacks. For example, Kim 

et al. designed a stochastic gradient descent method (DP-SGD) based on differential privacy for distributed machine 

learning (DML) scenarios in blockchain networks, which ensures that the data of a single participant cannot be 

inversely inferred by injecting Gaussian noise into the gradient update [8]. Meanwhile, its proposed error 



aggregation rule effectively defends against poisoning attacks by malicious nodes by filtering low error local 

gradients and filtering anomalous gradient paradigms.  

Research in the other direction focuses on direct defense of machine learning models against blockchain attacks. 

For example, Latif et al. proposed a decentralized IoT security and privacy architecture based on the integration of 

blockchain and machine learning, aiming to address the core security issues such as single point of failure, data 

privacy leakage, and denial-of-service attacks in IoT networks [9]. The framework achieves device authentication 

through a dual registration mechanism between certification authorities and local nodes, uses blockchain to record 

access credential transactions to eliminate the risk of single point of failure, innovatively combines attribute-based 

encryption algorithms with blockchain to achieve key management and data privacy protection, and sets device 

resource thresholds through smart contracts to defend against DoS attacks.  

DISCUSSION 

Limitations and Challenges 

The literature involved in this paper infers various limitations, and this paper divides it into three categories: 

detection accuracy, model robustness, and practical application, in order to clearly demonstrate its impact on the 

study. 

Detection Accuracy Limit 

• Structural Representation Constraints：Choi et al. noted that their graph centrality analysis struggled to 

effectively capture depth-related logical characteristics of function calls in CallDepth vulnerabilities, 

indicating limitations in handling layered execution dependencies through structural graph representations 

[7]. 

• Semantic Feature Oversight：Wang et al., the author acknowledged that their graph neural network 

approach had limitations in capturing semantic features of opcode nodes, as they did not integrate natural 

language processing for operand analysis, potentially constraining detection accuracy [15]. 

Model Robustness Limitations 

• Adversarial Attack Susceptibility：The current state of research in blockchain fraud detection and related 

fields has made substantial progress, but several limitations and challenges remain. Ashfaq et al. identified a 

critical vulnerability in their machine learning-integrated blockchain fraud detection model, which is 

susceptible to adversarial attacks targeting ML classifiers [12].  

• Parameter Sensitivity：Banchhiwal et al. highlighted that the accuracy of their deep learning-based 

detection model could be constrained by the need for cleaner datasets and further parameter refinement, 

limiting real-world adaptability when handling diverse attack patterns [3]. 

• Systemic Deficiencies of Machine Learning in Dynamic Environments：Traditional machine learning 

models rely on static datasets and fail to dynamically adapt to real-time evolving attack patterns in IoT 

environments, resulting in collinearity and data redundancy issues that degrade detection accuracy and real-

time responsiveness [9]. 

Practical Application Limitations 

• Data Scale Dependency：Aziz et al. noted that the LightGBM model requires significantly large datasets 

to perform effectively, posing a challenge when applied to small-scale Ethereum transaction data. This 

limitation restricts its adaptability in resource-constrained scenarios [13].  

• Computational Complexity: Ravindranath et al. identified computational complexity as a key challenge in 

real-time fraud detection, particularly when processing high-frequency Ethereum transactions using 

ensemble models like LGBM and CATBoost [14].  

• Lack of Real-time Attack Mitigation Mechanisms: Saveetha et al. made it clear that current research 

focuses on the attack detection level. Although the federated learning model stored through the blockchain 



improves the detection reliability, it has not yet built a dynamic blocking system against the identified DDoS 

attacks [1]. 

Future Prospects 

Based on the limitations and challenges identified in this study, the following are proposed future research 

directions to further enhance the effectiveness and applicability of machine learning in blockchain attack detection 

and defense mechanisms 

• Adversarial Defense Reinforcement: Future work should prioritize enhancing the robustness of the 

integrated ML-blockchain framework against adversarial threats, such as data poisoning or evasion attacks. 

The authors explicitly state that mitigating these vulnerabilities is a key direction for further research, 

emphasizing the need to refine anomaly detection mechanisms to withstand sophisticated adversarial 

exploitation while maintaining blockchain’s decentralized integrity [12]. 

• Enhancing Dataset and Explainability: To address the limitations of global features (e.g., connected 

component ID), in a study, the author proposed expanding the dataset size and integrating explainability 

algorithms to improve model transparency and reliability [6]. 

• Computational Intelligence Optimization: The integration of algorithms such as Elephant Herding 

Optimization (EHO), Monarch Butterfly Optimization (MBO), and Slime Mould Algorithm (SMA) could 

optimize feature selection and model robustness, particularly for data-intensive models like LightGBM [13]. 

• Real-time Detection Frameworks: To address computational bottlenecks in latency-sensitive 

environments, the study suggests developing optimized real-time detection systems that integrate 

lightweight model architectures with edge computing capabilities [14]. 

• Data Refinement and Layered System Enhancement: Future research should focus on integrating cleaner 

datasets and refining model parameters to improve detection accuracy, as noted in the paper’s limitations. 

Additionally, advancing smart contract capabilities for real-time traffic analysis and expanding the 

blockchain-machine learning layered architecture could enhance adaptability to evolving DDoS attack 

patterns, while addressing computational efficiency constraints inherent in decentralized systems [3]. 

• Cooperative Defense System Based on SDN: Kilic et al. proposed extending the study to typical practical 

SDN network environment. It is suggested that the real-time traffic control module should be integrated into 

the software defined network architecture in the future [1]. 

• Graph-based Vulnerability Analysis: Advanced graph-based techniques (e.g., spectral analysis, 

community detection) should be explored to address depth-related vulnerabilities, while expanding dataset 

diversity improves generalizability [7]. 

•  Semantic Feature Extraction: Enhancing semantic feature extraction through natural language processing 

of operand semantics and refining graph structure representations (e.g., differentiating edge types like 

conditional jumps) can improve model interpretability and detection accuracy [15]. 

• Adaptive Models with Dynamic Threshold Optimization: Developing reinforcement learning-based 

adaptive models that dynamically adjust feature weights and detection thresholds through real-time feedback 

mechanisms [9]. 

CONCLUSION 

This study systematically compared different machine learning techniques and their application scenarios in 

blockchain security, highlighting both their strengths and limitations. While supervised learning models have 

demonstrated high accuracy in identifying fraud attacks, deep learning methods have made strides in semantic 

analysis and vulnerability detection. Federated learning has also shown promise in balancing privacy and efficiency. 

However, key challenges persist: models remain vulnerable to adversarial attacks and ambiguous transaction 

patterns, while data scale dependencies and computational bottlenecks limit real-world deployment. Future research 

should focus on three priorities: (1) adversarial defense frameworks combining blockchain-optimized attack 

simulations, (2) hybrid models integrating graph analysis with edge computing for real-time detection, and (3) 

adaptive privacy mechanisms coordinated with SDN-based defense orchestration. These aim to balance security, 

efficiency, and decentralization in evolving blockchain ecosystems. The continuous evolution of blockchain and 

machine learning technologies will undoubtedly provide new opportunities for improving security mechanisms, 

ensuring the integrity and reliability of decentralized systems. 
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