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Abstract. Blockchain technology, while revolutionizing industries through decentralization, faces escalating security
threats such as 51% attacks, smart contract vulnerabilities, and DDoS attacks. Traditional defense mechanisms, including
consensus protocols (e.g., PoOW/PoS) and rule-based detection tools, exhibit limitations, such as susceptibility to double-
spending and high false-positive rates of 15-20%. This paper systematically investigates machine learning (ML)-driven
approaches for blockchain attack detection and defense, evaluating their performance through a multidimensional "attack
type-defense level" framework. Supervised learning models show robust performance: LightGBM achieves 99.17%
accuracy in Ethereum fraud detection using hybrid sampling and feature engineering, outperforming XGBoost (97.99%)
and Random Forest (98.26%). Deep learning methods, such as CodeBERT combined with graph structural analysis,
achieve an 84.78% Fl-score in detecting reentrancy vulnerabilities, surpassing static graph-based approaches with
53.44% accuracy. Federated learning frameworks with dynamic reputation mechanisms attain 99.1% DDoS detection
accuracy while preserving data privacy. However, challenges include adversarial attack vulnerabilities, ambiguous global
transaction patterns, and computational overheads limiting real-time deployment. Structural constraints in graph-based
vulnerability analysis and trade-offs between privacy and efficiency further complicate applications. Future directions
include adversarial defense reinforcement, lightweight edge-computing architectures, and SDN-integrated cooperative
defense systems to balance detection accuracy, privacy, and scalability in evolving threat landscapes.

INTRODUCTION

Blockchain technology, as a typical representative of distributed ledger systems, has triggered changes in
finance, supply chain, and other fields while continuing to face new security threats such as 51% attacks, smart
contract vulnerability exploits (e.g., the re-entry attack model proposed by Crisostomo et al.), and DDoS attacks and
other novel security threats [1-3]. Traditional protection mechanisms have significant limitations in dealing with
these attacks, PoW/PoS-based consensus protocols are susceptible to double-spending attacks triggered by the
concentration of computational power, and rule-matching vulnerability detection tools have a false positive rate of
up to 15%-20% [4, 5].

In this context, machine learning-driven security protection techniques show breakthrough potential. Supervised
learning optimizes attack identification by extracting transaction features (e.g., Kilic et al. achieved 97.1% blacklist
prediction accuracy by training SVMs with Ethereum address PageRank values) [6]. Deep learning breaks through
the semantic analysis bottleneck (Choi et al. fusion of CodeBERT with graph structure to detect reentrant
vulnerabilities with 84.78% Fl1-score, while Wang et al., 2022 bytecode control flow graph-based graph
convolutional network only achieves 53.44% accuracy in detecting timestamp-dependent vulnerabilities [7]).
Federated learning further balances privacy and efficiency (Saveetha et al. designing a reputation federation
framework to against DDoS attacks with 99.1% accuracy [1]. In addition, Kim et al. uses differential privacy
federation learning to improve the accuracy of anti-poisoning attack models by 12% [8]). However, the field still
suffers from the following constraints. For example, many models are not optimized for real-time scenarios in large-
scale blockchain networks and need to be tuned to ensure efficient operation without sacrificing speed or accuracy.
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The incompleteness and noise of real-world data pose challenges for vulnerability detection, privacy-preserving
techniques introduce significant computational overhead in blockchain networks leading to increased computational
complexity, traditional machine learning methods fall short in detecting DoS attacks, it is difficult to satisfy the
financial-grade real-time demand [3, 5, 8, 9].

This paper aims to systematically compare the performance boundaries and application scenarios of different
machine learning techniques by constructing a multi-dimensional framework of “attack type-defense level” to
provide theoretical support for breaking through the bottleneck of blockchain security protection.

METHOD
Blockchain Infrastructure

Blockchain is a decentralized distributed ledger technology whose core architecture consists of a data layer, a
network layer, a consensus layer, an incentive layer, a contract layer, and an application layer [10]. As shown in
Figure 1, the data layer ensures data tamper ability through hash chain storage structure and asymmetric encryption
algorithms (e.g., ECDSA), in which the block header contains the root of the Merkel tree and the hash value of the
previous block, which forms a chain validation relationship, the network layer adopts the P2P protocol to achieve
distributed communication between nodes, and synchronizes transactions and block data through the broadcast
mechanism; the consensus layer adopts Proof of Work (PoW) , Proof of Workload (PoW), Proof of Stake (PoS) and
other algorithms to achieve decentralized verification and ensure that all nodes agree on the state of the ledger [4].
The incentive layer drives nodes to participate in the maintenance of the network through the issuance of tokens and
the distribution mechanism (e.g., Bitcoin mining incentives), and the contract layer embeds the smart contract as a
programmable logic into the system to support automated execution of transaction rules (e.g., ethereum Solidity).
(e.g., ethereum Solidity scripts); and the application layer covers practical scenarios such as financial payments,
supply chain traceability, and digital identity.

Blockchain security relies on the collaborative work of all layers, data layer encryption and consensus layer
authentication form the base protection, but the complex business logic of the application layer (e.g., the DeFi
protocol), and the node collaboration of the network layer are still exposed to multiple attack risks. For example,
intelligence vulnerabilities at the contract layer can be exploited by reentry attacks, while consensus layer arithmetic
imbalances may trigger 51% attacks and network layer P2P communication is vulnerable to DDoS attacks [1]. These
threats are directly related to the types of attacks and defense mechanisms discussed subsequently.
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FIGURE 1. Blockchain infrastructure [11].
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Attack Types and Machine Learning Models
Fraud Attack

Fraud attacks are one of the most prevalent security threats in blockchain networks, and their core tactics include
forging transaction records, manipulating address identities (e.g., impersonating legitimate users), and utilizing
transaction validation loopholes to implement Double-Spending and Sybil Attacks. Such attacks destroy the network
trust mechanism through abnormal transaction patterns (e.g., high-frequency small transfers in a short period of
time, abnormal address activity cycles), resulting in significant economic losses. For such attacks, traditional
machine learning models are widely used due to their efficient feature learning capability and nonlinear pattern
recognition advantages.

Ashfaq et al. proposed a hybrid machine learning framework based on the Random Forest and eXtreme Gradient
Boosting (XGBoost) algorithms, which extracts transaction key metrics through multidimensional feature
engineering, including network topology features (e.g., node outgoing/incoming degree averaging) and transaction
pattern analysis (e.g., malicious transaction labeling) [12]. The study uses a publicly available dataset of 30,000
Bitcoin transactions, of which less than 1% are malicious samples, to solve the data imbalance problem by
synthesizing minority class samples through Synthetic Minority Oversampling Technique (SMOTE), and finally the
XGBoost model achieves a classification accuracy of about 90% on the test set.

Kilic et al. constructed a directed transaction graph containing 16.1 million nodes by collecting 141 million
transaction data in the interval of 9,000,000 to 10,999,999 Ethereum block heights (November 2019 to October
2020), and combining public intelligence sources such as Etherscan and CryptoScamDB to 1,430 active blacklisted
addresses are filtered to form the research dataset [6]. At the feature extraction level, the method integrates local and
global features, local features cover direct behavioral metrics such as address access, transaction amount statistics
(e.g., mean, extreme, total), and activetime; global features introduce PageRank algorithm to quantify node
influence and map the global topological location of addresses through the connectivity subgraph identifier
(con_comp_id). address's global topological location. Aiming at the class imbalance problem that the proportion of
blacklisted addresses in the dataset is less than 0.01%, the study reconstructs the balanced training set using a hybrid
strategy of random undersampling and SMOTE oversampling, and utilizes the extreme random tree to screen out the
10 key features, such as avg out amount, unique indegree, pagerank, and so on, to input into the classification
model.

The core contribution of lies in the improved (LGBM) LightGBM model, the optimization parameters are
estimated via a Euclidean distance structure, and fraud classification is achieved by combining the transaction
frequency and balance change features on an Ethereum dataset containing 4,000 tagged addresses [13]. The SMOTE
oversampling technique is used to increase the fraud samples from 3,115 to 6,116, and finally achieves 99.17% test
accuracy with 95.62% F1 score, which significantly outperforms comparative models such as XGBoost (97.99%)
and Random Forest (98.26%).

Subsequently, Ravindranath et al. innovatively combined the K-Means-SMOTE oversampling technique with
LightGBM to improve the model robustness by improving the sample distribution (the original fraud share of
22.14% was balanced to 50%) in a dataset of 6,000 fraudulent addresses [14]. Feature engineering focuses on
traditional statistical indicators, ERC20 reception time difference, transaction amount average, address uniqueness,
etc., and identifies key features such as “time difference between the first and the last transaction” through SHAP
interpretive analysis.

DDoS Attack

DDoS attacks disrupt the availability of blockchain networks through distributed traffic flooding, protocol
vulnerability exploitation, and smart contract resource exhaustion, and their detection requires a combination of
network traffic characteristics and distributed defense mechanisms. Existing studies propose multi-layered defense
strategies to deal with dynamic attack patterns through the co-optimization of blockchain architecture and machine
learning models.

Banchhiwal et al. proposed a multilayered defense framework based on blockchain smart contracts and deep
learning, which achieves dual protection of traffic filtering and anomaly detection through a layered architecture [3].
The framework redirects inbound traffic requests to the blockchain network, uses smart contracts for initial filtering
(based on preset parameters such as request type, source address, packet size, etc.), and suspicious traffic enters the
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deep learning layer for further analysis. The blockchain storage layer uses encrypted chunks to store traffic data to
ensure data integrity; the deep learning model identifies abnormal traffic patterns (e.g., TCP/UDP protocol
anomalies, high-frequency request cycles) by analyzing features such as request types, resource access patterns, and
embedded scripts. The experiments use real-time network traffic dataset (including core network and edge network
nodes), and the robustness of the deep learning method under complex attack patterns is verified by comparing the
performance of ANN and SVM models.

Saveetha et al. designed a detection framework integrating federated learning (FL) and blockchain to optimize
the data quality of miner nodes through a dynamic reputation assessment mechanism and improve the robustness of
the model against malicious traffic [1]. The study uses the CIC-DD0S2019 dataset (containing 12 types of attacks
such as SYN, UDP, DNS, etc.) to construct a training set containing 80-dimensional traffic characteristics (e.g.,
target port, flow duration, and forward and backward packet statistics). In the federated learning framework, the
miner nodes use the local traffic data to train Random Forest (RF), Multilayer Perceptron (MLP) with Logistic
Regression (LR) models, and global model aggregation is achieved through the Flower framework. To cope with
potential malicious node poisoning attacks in federated learning, a dynamic reputation evaluation mechanism is
proposed, the reputation value is calculated based on the node's historical training accuracy (acc), pledge volume
(data_stake) and the number of times of participation in training (training_count), and the high-reputation miners are
screened to participate in training.

Defense Mechanisms and Deep Learning Models
Smart Contract Vulnerability Defense

The research in the field of smart contract vulnerability defense focuses on combining code semantic analysis
and distributed architecture features to improve the comprehensiveness and dynamic adaptability of vulnerability
detection through deep learning methods. By integrating natural language processing and graph structure analysis
techniques, the existing research breaks through the limitations of traditional static rule detection and builds a hybrid
detection framework that takes into account both code logic and execution paths, making significant progress in
detection accuracy and interpretability.

Choi et al. proposed a smart contract vulnerability detection method that integrates large-scale language
modeling (CodeBERT) and graph structural analysis and achieves collaborative analysis of code semantics and
execution paths through a dual coding strategy [7]. The method firstly inputs the Solidity source code into
CodeBERT model to generate 768-dimensional text embedding, and captures semantic features such as function
naming, variable types, etc. Meanwhile, they constructed a code structure graph based on Abstract Syntax Tree
(AST) and Control Flow Graph (CFG), and vectorize the sequence of operands by using Sent2Vec to extract critical
path features through the triple analysis of Degree centrality, Katz centrality, and Proximity centrality. The critical
path features are extracted by degree centrality, Katz centrality and proximity centrality triple analysis. The
experiments use a dataset containing 30,000 Ethereum contracts and comparing CodeBERT detection alone (81.26%
accuracy) with CodeBERT+AST combination (83.48% accuracy), the method achieves a combined accuracy of
86.70%, and the F1-score is improved to 84.46%.

Wang et al. proposed a bytecode-based graph convolutional network (GCN) detection framework to achieve
vulnerability localization by constructing a control flow graph through reverse engineering [15]. The method first
decompiles the smart contract bytecode into a sequence of opcodes, divides the base blocks by jump instructions and
constructs a CFG, and uses a 3-layer GCN model for graph structure learning. The experiments use a dataset
containing 1,420 contracts (472 with timestamp-dependent vulnerabilities), with adjacent matrix and unit matrix (not
semantically processed) as node feature inputs, and nonlinear transformation by ReL U activation function.

Privacy and Attack Resistance

In the convergence of blockchain and machine learning, privacy protection and attack resistance are the core
technical challenges. By combining differential privacy (DP), federated learning, and smart contracts, researchers
have proposed a variety of defense mechanisms to cope with data leakage and malicious attacks. For example, Kim
et al. designed a stochastic gradient descent method (DP-SGD) based on differential privacy for distributed machine
learning (DML) scenarios in blockchain networks, which ensures that the data of a single participant cannot be
inversely inferred by injecting Gaussian noise into the gradient update [8]. Meanwhile, its proposed error
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aggregation rule effectively defends against poisoning attacks by malicious nodes by filtering low error local
gradients and filtering anomalous gradient paradigms.

Research in the other direction focuses on direct defense of machine learning models against blockchain attacks.
For example, Latif et al. proposed a decentralized IoT security and privacy architecture based on the integration of
blockchain and machine learning, aiming to address the core security issues such as single point of failure, data
privacy leakage, and denial-of-service attacks in IoT networks [9]. The framework achieves device authentication
through a dual registration mechanism between certification authorities and local nodes, uses blockchain to record
access credential transactions to eliminate the risk of single point of failure, innovatively combines attribute-based
encryption algorithms with blockchain to achieve key management and data privacy protection, and sets device
resource thresholds through smart contracts to defend against DoS attacks.

DISCUSSION

Limitations and Challenges

The literature involved in this paper infers various limitations, and this paper divides it into three categories:
detection accuracy, model robustness, and practical application, in order to clearly demonstrate its impact on the
study.

Detection Accuracy Limit

e Structural Representation Constraints: Choi et al. noted that their graph centrality analysis struggled to
effectively capture depth-related logical characteristics of function calls in CallDepth vulnerabilities,
indicating limitations in handling layered execution dependencies through structural graph representations
[71.

e Semantic Feature Oversight: Wang et al., the author acknowledged that their graph neural network
approach had limitations in capturing semantic features of opcode nodes, as they did not integrate natural
language processing for operand analysis, potentially constraining detection accuracy [15].

Model Robustness Limitations

e Adversarial Attack Susceptibility: The current state of research in blockchain fraud detection and related
fields has made substantial progress, but several limitations and challenges remain. Ashfaq et al. identified a
critical vulnerability in their machine learning-integrated blockchain fraud detection model, which is
susceptible to adversarial attacks targeting ML classifiers [12].

e Parameter Sensitivity: Banchhiwal et al. highlighted that the accuracy of their deep learning-based
detection model could be constrained by the need for cleaner datasets and further parameter refinement,
limiting real-world adaptability when handling diverse attack patterns [3].

e Systemic Deficiencies of Machine Learning in Dynamic Environments: Traditional machine learning
models rely on static datasets and fail to dynamically adapt to real-time evolving attack patterns in IoT
environments, resulting in collinearity and data redundancy issues that degrade detection accuracy and real-
time responsiveness [9].

Practical Application Limitations

e Data Scale Dependency: Aziz et al. noted that the LightGBM model requires significantly large datasets
to perform effectively, posing a challenge when applied to small-scale Ethereum transaction data. This
limitation restricts its adaptability in resource-constrained scenarios [13].

e Computational Complexity: Ravindranath et al. identified computational complexity as a key challenge in
real-time fraud detection, particularly when processing high-frequency Ethereum transactions using
ensemble models like LGBM and CATBoost [14].

e Lack of Real-time Attack Mitigation Mechanisms: Saveetha et al. made it clear that current research
focuses on the attack detection level. Although the federated learning model stored through the blockchain
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improves the detection reliability, it has not yet built a dynamic blocking system against the identified DDoS
attacks [1].

Future Prospects

Based on the limitations and challenges identified in this study, the following are proposed future research
directions to further enhance the effectiveness and applicability of machine learning in blockchain attack detection
and defense mechanisms

e Adversarial Defense Reinforcement: Future work should prioritize enhancing the robustness of the
integrated ML-blockchain framework against adversarial threats, such as data poisoning or evasion attacks.
The authors explicitly state that mitigating these vulnerabilities is a key direction for further research,
emphasizing the need to refine anomaly detection mechanisms to withstand sophisticated adversarial
exploitation while maintaining blockchain’s decentralized integrity [12].

e Enhancing Dataset and Explainability: To address the limitations of global features (e.g., connected
component ID), in a study, the author proposed expanding the dataset size and integrating explainability
algorithms to improve model transparency and reliability [6].

e Computational Intelligence Optimization: The integration of algorithms such as Elephant Herding
Optimization (EHO), Monarch Butterfly Optimization (MBO), and Slime Mould Algorithm (SMA) could
optimize feature selection and model robustness, particularly for data-intensive models like LightGBM [13].

e Real-time Detection Frameworks: To address computational bottlenecks in latency-sensitive
environments, the study suggests developing optimized real-time detection systems that integrate
lightweight model architectures with edge computing capabilities [14].

e Data Refinement and Layered System Enhancement: Future research should focus on integrating cleaner
datasets and refining model parameters to improve detection accuracy, as noted in the paper’s limitations.
Additionally, advancing smart contract capabilities for real-time traffic analysis and expanding the
blockchain-machine learning layered architecture could enhance adaptability to evolving DDoS attack
patterns, while addressing computational efficiency constraints inherent in decentralized systems [3].

e Cooperative Defense System Based on SDN: Kilic et al. proposed extending the study to typical practical
SDN network environment. It is suggested that the real-time traffic control module should be integrated into
the software defined network architecture in the future [1].

e Graph-based Vulnerability Analysis: Advanced graph-based techniques (e.g., spectral analysis,
community detection) should be explored to address depth-related vulnerabilities, while expanding dataset
diversity improves generalizability [7].

. Semantic Feature Extraction: Enhancing semantic feature extraction through natural language processing
of operand semantics and refining graph structure representations (e.g., differentiating edge types like
conditional jumps) can improve model interpretability and detection accuracy [15].

e Adaptive Models with Dynamic Threshold Optimization: Developing reinforcement learning-based
adaptive models that dynamically adjust feature weights and detection thresholds through real-time feedback
mechanisms [9].

CONCLUSION

This study systematically compared different machine learning techniques and their application scenarios in
blockchain security, highlighting both their strengths and limitations. While supervised learning models have
demonstrated high accuracy in identifying fraud attacks, deep learning methods have made strides in semantic
analysis and vulnerability detection. Federated learning has also shown promise in balancing privacy and efficiency.
However, key challenges persist: models remain vulnerable to adversarial attacks and ambiguous transaction
patterns, while data scale dependencies and computational bottlenecks limit real-world deployment. Future research
should focus on three priorities: (1) adversarial defense frameworks combining blockchain-optimized attack
simulations, (2) hybrid models integrating graph analysis with edge computing for real-time detection, and (3)
adaptive privacy mechanisms coordinated with SDN-based defense orchestration. These aim to balance security,
efficiency, and decentralization in evolving blockchain ecosystems. The continuous evolution of blockchain and
machine learning technologies will undoubtedly provide new opportunities for improving security mechanisms,
ensuring the integrity and reliability of decentralized systems.
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