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Abstract. This article introduces a comprehensive framework that brings together large-scale language models and
blockchain smart contract development to forge a direct path from human-driven specifications to secure, adaptable on-
chain logic. At its core, the framework employs advanced natural language understanding to interpret contractual
requirements and synthesize rigorously structured code that adheres to established best practices, greatly reducing the effort
and expertise traditionally required for manual implementation. Building upon this foundation, a hybrid auditing pipeline
seamlessly integrates static code inspection, adversarial transaction simulation, and model-based anomaly detection to
uncover subtle weaknesses and guide targeted mitigation, thereby elevating overall contract resilience. To address the need
for ongoing adaptability, the framework incorporates real-time oracle feeds alongside federated model updates,
empowering contracts to evolve autonomously in response to external events, governance decisions, or regulatory shifts.
In examining this approach, the study also identifies several critical challenges, including the inherent variability of
generative outputs, vulnerabilities introduced by prompt manipulation, divergences in legal requirements across
jurisdictions, and risks associated with centralized computational resources. To mitigate these concerns, the authors
advocate for a fusion of neural and symbolic reasoning components, the establishment of collaborative legal-tech standards,
and the deployment of decentralized training protocols. Together, these strategies lay the groundwork for a smart contract
ecosystem that balances innovation with trustworthiness, offering a vision of decentralized applications that are both robust
in security and fluid in their capacity to adapt to changing needs.

INTRODUCTION

The integration of Large Language Models (LLMs) into smart contracts has emerged as a transformative approach
to addressing long-standing challenges in blockchain development. Smart contracts, self-executing agreements
encoded on distributed ledgers, have fundamentally reshaped transactional paradigms across industries ranging from
Decentralized Finance (DeFi) to supply chain management. However, the technical complexity of writing secure,
efficient smart contract code continues to present significant barriers to widespread adoption [1]. Traditional
development methods relying on manual coding and formal verification tools often prove inadequate against evolving
security threats and the growing demand for contract personalization, with an increasing number of developers
consider smart contract creation more challenging than traditional software development.

Recent advancements in Natural Language Processing (NLP), particularly the emergence of transformer-based
LLMs like GPT-4 and LLaMA offer unprecedented opportunities to bridge the gap between human intent and
machine-executable contracts [2, 3]. These models demonstrate remarkable capabilities in code generation,
vulnerability detection, and requirement formalization — functions that align closely with smart contract development
needs [4]. Early implementations show LLMs can reduce contract creation time by 40-60% while improving audit
efficiency, though significant challenges remain in ensuring reliability and compliance [5].

LLMs have demonstrated exceptional proficiency in translating natural language specifications into functional
code, a capability critical for democratizing smart contract development. For instance, Xu et al. highlighted that in-
IDE code generation tools powered by LLMs can significantly reduce boilerplate coding efforts, enabling developers
to focus on high-level logic design [6]. This aligns with findings by Hu et al., who emphasize that dynamic content
generation in LLMs allows real-time adaptation to evolving security requirements, such as patching vulnerabilities
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detected during runtime [7]. However, the stochastic nature of LLM outputs introduces risks, including hallucinated
code or overlooked edge cases, which are particularly perilous in immutable blockchain environments.

The application of LLMs in automated security auditing represents another frontier. Ma et al. propose a hybrid
framework combining fine-tuned LLMs with agent-based systems to audit smart contracts, achieving a 22%
improvement in detecting reentrancy and overflow vulnerabilities compared to traditional static analyzers [8]. This
approach leverages LLMs’ contextual understanding to interpret complex contract interactions, a task that formal
verification tools often struggle with. Similarly, researchers demonstrate that Al-driven vulnerability management
systems can prioritize threats based on exploit likelihood, reducing false positives by 35% in Ethereum-based contracts
[9]. Despite these advancements, adversarial attacks targeting LLM-generated code—such as prompt injection or
training data poisoning—remain understudied, necessitating robust defensive mechanisms.

This paper aims to systematically examine three critical intersections of LLMs and smart contracts: 1) Automated
code generation from natural language specifications. 2) Al-assisted security auditing and vulnerability mitigation. 3)
Dynamic contract adaptation through real-time language understanding.

METHODS
Preliminaries of Smart Contracts and LLMs

Smart contracts, as self-executing programs embedded within blockchain networks, rely on three foundational
technologies: distributed ledger systems, consensus mechanisms, and cryptographic protocols [10]. These contracts
automate transactional processes by following a structured lifecycle. The initial stage, specification formalization,
involves translating human-readable contractual terms into precise, machine-interpretable logic using formal
verification tools such as TLA+ or Alloy [11]. This step ensures that ambiguities in natural language—such as vague
clauses or conditional dependencies—are resolved before code generation. Subsequent stages include writing
executable code in blockchain-specific languages like Solidity, deploying the code onto decentralized networks like
Ethereum, and triggering automated actions once predefined conditions are met [12,13].

LLMs utilize transformer-based architectures to process natural language inputs and generate contextually relevant
outputs [14]. The operational efficacy of these models stems from their three-phase development pipeline. During pre-
training, LLMs are exposed to vast datasets—ranging from open-source code repositories to legal documents—to
internalize syntactic patterns and semantic relationships [15]. Fine-tuning tailors these general-purpose models to
specialized tasks, such as generating secure smart contract code or identifying vulnerabilities, using domain-specific
datasets like DeFi protocol audits [7]. Finally, during inference, models generate real-time outputs, such as code
snippets or security recommendations, based on user prompts [2].

The integration of LLMs into smart contract ecosystems introduces three interconnected functional modules. The
first, intent parsing, enables LLMs to interpret natural language requirements through iterative dialogue. For example,
phrases like “release escrow upon delivery confirmation” are decomposed into formal logic using techniques like
chain-of-thought prompting, which forces models to articulate intermediate reasoning steps [16]. The second module,
code synthesis, involves generating auditable code that adheres to blockchain-specific syntax and security standards.
For instance, GPT-4 can enforce the Checks-Effects-Interactions pattern—a best practice to prevent reentrancy
attacks—Dby structuring function calls to validate inputs before modifying state variables [8]. The third module,
runtime adaptation, allows LLMs to dynamically adjust contract parameters in response to real-world data. By
interfacing with oracle networks, models can modify interest rates or collateral requirements based on external events
like market volatility [7].

Empirical studies demonstrate that this integrated framework significantly reduces reliance on manual coding
expertise. For example, supply chain managers can describe contractual conditions in plain language (e.g., “Trigger
payment when IoT sensors confirm refrigerated cargo arrival”), and LLMs translate these requirements into code that
integrates IoT data feeds with payment logic. LLM-assisted development reduces initial coding errors by 63%
compared to traditional methods, primarily by automating boilerplate code and embedding security checks during
code generation [6].

Automated Code Generation

Recent advancements in LLM-driven code generation have transformed the translation of natural language
specifications into executable smart contracts. There is a two-stage pipeline that enhances both accuracy and security

102z houa M 1ES2025.docx M ainDocument AIPP Review COpy On/y 3



Auto-generated PDF by ReView 2025 International Conference on Advanced Mechatronics and Intelligent Energy Systems

[7]. In the first stage, semantic parsing, GPT-4 employs natural language processing techniques—such as entity
recognition and dependency parsing—to extract contractual obligations from unstructured text. For instance, clauses
like “pay 5% interest monthly” are identified as financial terms and mapped to corresponding code variables. The
second stage, constrained code synthesis, generates Solidity code embedded with security checks, guided by industry-
standard templates such as ERC-20 token contracts [17]. Evaluations across 1,200 DeFi protocols revealed that this
approach reduces development time by 58% while ensuring 89% of generated contracts pass initial security audits.

Template-based constrained decoding restricts LLM outputs to predefined code patterns, such as OpenZeppelin’s
security templates, minimizing logical errors [18]. For example, models automatically insert functions to validate
input parameters, reducing vulnerability risks by 41% [9]. Cross-lingual validation further ensures functional
consistency by comparing generated Solidity code against Python pseudocode using equivalence-checking algorithms.
Discrepancies trigger regeneration cycles until outputs align with specifications. Additionally, gas optimization hints
leverage historical blockchain data to recommend cost-efficient data structures, such as using mappings instead of
arrays, which reduce Ethereum transaction fees by 22-37% [6].

Security Auditing

The application of LLMs in smart contract security auditing represents a paradigm shift from reactive to proactive
vulnerability management. A 2024 benchmark study evaluated three auditing methodologies. Static analysis tools like
Slither detect 68% of vulnerabilities but suffer from high false-positive rates, such as incorrectly flagging safe reentrant
calls [19]. In contrast, LLM-based dynamic testing simulates attack vectors—including flash loan exploits and oracle
manipulation—by generating adversarial transactions, identifying 94% of critical risks in Uniswap V3 forks [8].
Hybrid approaches that combine symbolic execution with GPT-4’s anomaly detection capabilities achieve 99% recall
on Ethereum’s Smart Contract Weakness Classification (SWC) registry, outperforming human auditors in detecting
zero-day vulnerabilities.

The Reinforcement Learning from Human Feedback (RLHF) framework enhances LLMs’ auditing proficiency by
training them on historical exploit data. For instance, LLaMA-2 fine-tuned on 15,000 labeled vulnerabilities achieves
83% accuracy in suggesting fixes for arithmetic flaws, resolving issues in 3.2 seconds compared to 18 minutes for
human auditors [7]. Real-world applications underscore this capability: during Aave’s migration to V3, LLM-assisted
audits identified a latent price oracle manipulation risk, averting potential losses exceeding $120 million.

Emerging techniques further refine audit quality. Multi-agent systems deploy collaborative LLMs to debate
potential vulnerabilities, with a “judge” model resolving conflicts through majority voting, reducing false positives by
29% in Compound Protocol audits. Integration with formal verification tools like Z3 solvers enables mathematical
validation of LLM-generated invariants, providing rigorous guarantees for critical contracts [20]. Additionally,
explainable AI (XAI) techniques, such as attention heatmaps, visualize how models prioritize vulnerability patterns,
enhancing auditor comprehension and trust [21].

Dynamic Contract Adaptation

LLMs enable smart contracts to evolve dynamically by continuously learning from on-chain interactions and
external data streams. The Mira Network architecture exemplifies this capability, employing verification subnets to
validate LLM outputs against real-time blockchain data [7]. For example, derivatives contracts autonomously adjust
collateral ratios based on market sentiment analysis derived from news APIs, reducing liquidation risks by 58% during
periods of high volatility [8].

Technical advancements driving this innovation include on-chain/off-chain hybrid execution, which balances
immutability with computational efficiency. Critical logic, such as fund transfers, executes on-chain to maintain
trustlessness, while resource-intensive tasks like natural language dispute resolution are offloaded to decentralized
compute networks like Akas. This approach reduces gas costs by 44% compared to fully on-chain execution [6].
Federated learning further enhances adaptability by allowing contracts to share anonymized interaction patterns across
blockchains, improving LLM performance without compromising privacy [22]. For instance, decentralized exchange
(DEX) aggregators trained on cross-chain liquidity data achieve 31% better slippage predictions [7].

Real-time feedback loops enable LLMs to refine contract parameters based on transaction outcomes. On Polygon’s
test net, GPT-4-mediated negotiations reduced DAO governance dispute resolution times by 44%, as models
iteratively optimized proposal language to align with stakeholder preferences [8].
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DISCUSSION

Limitations and Challenges
Stochastic Outputs and Security Vulnerabilities

The stochastic nature of LLM-generated code remains a critical limitation in blockchain smart contract
development. While LLMs like GPT-4 demonstrate impressive code synthesis capabilities, their probabilistic decision-
making can lead to hallucinated code snippets or overlooked edge cases. For instance, a model might generate a
function that omits critical overflow checks, resulting in vulnerabilities like the infamous DAO attack [23]. Even with
constrained decoding techniques, which restrict outputs to predefined secure templates, adversarial prompts can
bypass safeguards. For example, an attacker could craft ambiguous natural language inputs like “transfer funds after
event X,” where “event X” is intentionally undefined, tricking the model into generating exploitable code. Ma et al.
noted that hybrid auditing frameworks reduce but do not eliminate such risks, as LLMs lack inherent reasoning about
causality or long-term contract implications [8]. Furthermore, training data biases—such as overrepresentation of
Ethereum-specific patterns—may lead to incompatible code for other blockchains like Solana or Polkadot.

The rise of prompt injection techniques further amplifies risks [24]. Such technology led to attacks manipulating
LLM-integrated applications into producing feedback resembling the attacker’s injected content, deviating from the
user’s original requests.

Current solutions to the problem remain partial:

1. Hybrid Verification: Combining LLMs with formal verification tools can detect syntax errors. But it struggles

with semantic ambiguities.

2. Domain-Specific Fine-Tuning: Models like Smart-LLaMA-DPO embed smart contract expertise through
multi-stage training, reducing false positives by 6.18% in reentrancy detection. However, such models require
continuous updates to address novel attack vectors [25].

3. Adversarial Training: Exposing LLMs to malicious prompts during fine-tuning improves robustness. Yet, this
approach depends on high-quality labeled datasets, which are scarce for emerging blockchains.

In conclusion, while LLMs democratize smart contract development, their stochastic nature and susceptibility to

adversarial manipulation necessitate a paradigm shift toward neuro-symbolic architectures—integrating probabilistic
generation with deterministic rule engines—to balance innovation and security.

Legal and Regulatory Ambiguities

LLMs often face legal risks caused by semantic ambiguity and insufficient domain adaptation when generating
legal texts involving smart contracts. If LLM fails to identify specific definitions across different jurisdictions, it may
automatically generate invalid or unenforceable provisions. In data processing scenarios, if a smart contract is based
on LLM generated logic and publishes un anonymized user identity information on the chain, although it meets the
“transparency” requirements of the U.S., it may violate the EU GDPR on “minimizing data disclosure” and
“deidentification processing” [26, 27]. To reduce such risks, some projects are attempting to integrate LLM with
structured legal rule engines, such as limiting model generated content through pre-set jurisdictional labels and
regulatory reference metadata, integrating legal knowledge graphs, etc. [28]. However, such solutions not only require
real-time updates of global regulations but also the model to have reasoning ability for conflicts between regulations.
The technical and legal costs are both high, and the actual implementation still faces considerable challenges.

Resource Intensiveness and Centralization Risks

The resource-intensive nature of LLM training and deployment poses a fundamental conflict with blockchain’s
decentralized ethos. Modern LLMs like LLaMA-2 require massive computational power for fine-tuning tasks such as
smart contract auditing, often demanding access to high-performance GPU clusters that are financially and technically
inaccessible to smaller developers or decentralized communities. This creates systemic entry barriers, effectively
concentrating Al-driven smart contract development capabilities within well-funded organizations or centralized cloud
providers. Such centralization introduces critical single points of failure: if a major LLM provider experiences
downtime or adversarial attacks, entire blockchain ecosystems relying on its services could face cascading
vulnerabilities. For instance, a centralized LLM service compromised by prompt injection attacks might propagate
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malicious contract code across multiple chains before detection, undermining blockchain’s core trustless principles.
Future Prospects
Hybrid Reasoning Architectures

Future systems could combine LLMs with symbolic Al to balance creativity and rigor. For instance, neuro-
symbolic frameworks might use LLMs for intent parsing but validate outputs through formal verification tools like
Certora. This approach would automate 80%-90% of routine coding while reserving complex logic for deterministic
checkers, reducing vulnerabilities.

Legal-Tech Collaborations

Developing jurisdiction-aware LLMs requires curated legal datasets annotated by domain experts. Partnerships
between tech firms and law agencies could produce standardized smart contract templates aligned with regional
regulations. The IEEE’s P3119 on blockchain compliance exemplifies such initiatives, aiming to create globally
interoperable legal primitives [29].

Decentralized LLM Training

Federated learning combined with blockchain-based incentive mechanisms could democratize model training.
Participants contributing audit data or computational resources might earn tokens, ensuring continuous model
improvement without central oversight. Projects like BitTensor’s decentralized machine learning network demonstrate
early feasibility [30].

Energy-Efficient Model Optimization

Techniques like knowledge distillation, quantization, and pruning can reduce LLM resource demands. By
transferring the soft prediction distribution of large “teacher” models to smaller “student” models, distillation can
greatly reduce computational and storage costs while retaining the core capabilities of the original model. For example,
a complete version of DeepSeek-R1 can be used as the “teacher” to distill and train a “student” model with only 200M
parameters, enabling it to master the key patterns and structures of on chain smart contract generation and run
efficiently on mobile or edge devices, significantly reducing latency and power consumption [31].

CONCLUSION

This paper presents a systematic exploration of LLMs in bridging the gap between human intent and executable
logic within blockchain smart contracts. Through three critical lenses—automated code generation, Al-assisted
security auditing, and dynamic contract adaptation—this paper demonstrated how LLMs address longstanding
challenges in blockchain development. However, the integration introduces inherent risks: stochastic model outputs
may propagate security flaws, legal ambiguities challenge cross-jurisdictional compliance, and resource-intensive
training frameworks conflict with blockchain’s decentralized principles.

Looking ahead, four key directions emerge to advance this paradigm. First, hybrid neuro-symbolic architecture
combining LLMs with formal verification tools could enforce deterministic safeguards while retaining generative
flexibility. Second, collaborative legal-tech frameworks must standardize jurisdiction-aware contract templates,
leveraging initiatives like IEEE P3119 to align smart contracts with regional regulations. Third, decentralized training
protocols, such as federated learning powered by blockchain incentives, can democratize model development and
mitigate centralization risks. Finally, energy-efficient optimizations will be critical to deploying LLMs on resource-
constrained edge devices, ensuring scalability without compromising sustainability. By addressing these challenges,
the synergy between LLMs and blockchain can unlock secure, accessible, and adaptive smart contract ecosystems that
uphold the technology’s foundational principles while harnessing AI’s transformative potential.
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