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Abstract. This article introduces a comprehensive framework that brings together large-scale language models and 

blockchain smart contract development to forge a direct path from human-driven specifications to secure, adaptable on-

chain logic. At its core, the framework employs advanced natural language understanding to interpret contractual 

requirements and synthesize rigorously structured code that adheres to established best practices, greatly reducing the effort 

and expertise traditionally required for manual implementation. Building upon this foundation, a hybrid auditing pipeline 

seamlessly integrates static code inspection, adversarial transaction simulation, and model-based anomaly detection to 

uncover subtle weaknesses and guide targeted mitigation, thereby elevating overall contract resilience. To address the need 

for ongoing adaptability, the framework incorporates real-time oracle feeds alongside federated model updates, 

empowering contracts to evolve autonomously in response to external events, governance decisions, or regulatory shifts. 

In examining this approach, the study also identifies several critical challenges, including the inherent variability of 

generative outputs, vulnerabilities introduced by prompt manipulation, divergences in legal requirements across 

jurisdictions, and risks associated with centralized computational resources. To mitigate these concerns, the authors 

advocate for a fusion of neural and symbolic reasoning components, the establishment of collaborative legal-tech standards, 

and the deployment of decentralized training protocols. Together, these strategies lay the groundwork for a smart contract 

ecosystem that balances innovation with trustworthiness, offering a vision of decentralized applications that are both robust 

in security and fluid in their capacity to adapt to changing needs. 

INTRODUCTION 

The integration of Large Language Models (LLMs) into smart contracts has emerged as a transformative approach 

to addressing long-standing challenges in blockchain development. Smart contracts, self-executing agreements 

encoded on distributed ledgers, have fundamentally reshaped transactional paradigms across industries ranging from 

Decentralized Finance (DeFi) to supply chain management. However, the technical complexity of writing secure, 

efficient smart contract code continues to present significant barriers to widespread adoption [1]. Traditional 

development methods relying on manual coding and formal verification tools often prove inadequate against evolving 

security threats and the growing demand for contract personalization, with an increasing number of developers 

consider smart contract creation more challenging than traditional software development. 

Recent advancements in Natural Language Processing (NLP), particularly the emergence of transformer-based 

LLMs like GPT-4 and LLaMA offer unprecedented opportunities to bridge the gap between human intent and 

machine-executable contracts [2, 3]. These models demonstrate remarkable capabilities in code generation, 

vulnerability detection, and requirement formalization – functions that align closely with smart contract development 

needs [4]. Early implementations show LLMs can reduce contract creation time by 40-60% while improving audit 

efficiency, though significant challenges remain in ensuring reliability and compliance [5]. 

LLMs have demonstrated exceptional proficiency in translating natural language specifications into functional 

code, a capability critical for democratizing smart contract development. For instance, Xu et al. highlighted that in-

IDE code generation tools powered by LLMs can significantly reduce boilerplate coding efforts, enabling developers 

to focus on high-level logic design [6]. This aligns with findings by Hu et al., who emphasize that dynamic content 

generation in LLMs allows real-time adaptation to evolving security requirements, such as patching vulnerabilities 
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detected during runtime [7]. However, the stochastic nature of LLM outputs introduces risks, including hallucinated 

code or overlooked edge cases, which are particularly perilous in immutable blockchain environments. 

The application of LLMs in automated security auditing represents another frontier. Ma et al. propose a hybrid 

framework combining fine-tuned LLMs with agent-based systems to audit smart contracts, achieving a 22% 

improvement in detecting reentrancy and overflow vulnerabilities compared to traditional static analyzers [8]. This 

approach leverages LLMs’ contextual understanding to interpret complex contract interactions, a task that formal 

verification tools often struggle with. Similarly, researchers demonstrate that AI-driven vulnerability management 

systems can prioritize threats based on exploit likelihood, reducing false positives by 35% in Ethereum-based contracts 

[9]. Despite these advancements, adversarial attacks targeting LLM-generated code—such as prompt injection or 

training data poisoning—remain understudied, necessitating robust defensive mechanisms. 

This paper aims to systematically examine three critical intersections of LLMs and smart contracts: 1) Automated 

code generation from natural language specifications. 2) AI-assisted security auditing and vulnerability mitigation. 3) 

Dynamic contract adaptation through real-time language understanding. 

METHODS 

Preliminaries of Smart Contracts and LLMs 

Smart contracts, as self-executing programs embedded within blockchain networks, rely on three foundational 

technologies: distributed ledger systems, consensus mechanisms, and cryptographic protocols [10]. These contracts 

automate transactional processes by following a structured lifecycle. The initial stage, specification formalization, 

involves translating human-readable contractual terms into precise, machine-interpretable logic using formal 

verification tools such as TLA+ or Alloy [11]. This step ensures that ambiguities in natural language—such as vague 

clauses or conditional dependencies—are resolved before code generation. Subsequent stages include writing 

executable code in blockchain-specific languages like Solidity, deploying the code onto decentralized networks like 

Ethereum, and triggering automated actions once predefined conditions are met [12,13]. 

LLMs utilize transformer-based architectures to process natural language inputs and generate contextually relevant 

outputs [14]. The operational efficacy of these models stems from their three-phase development pipeline. During pre-

training, LLMs are exposed to vast datasets—ranging from open-source code repositories to legal documents—to 

internalize syntactic patterns and semantic relationships [15]. Fine-tuning tailors these general-purpose models to 

specialized tasks, such as generating secure smart contract code or identifying vulnerabilities, using domain-specific 

datasets like DeFi protocol audits [7]. Finally, during inference, models generate real-time outputs, such as code 

snippets or security recommendations, based on user prompts [2]. 

The integration of LLMs into smart contract ecosystems introduces three interconnected functional modules. The 

first, intent parsing, enables LLMs to interpret natural language requirements through iterative dialogue. For example, 

phrases like “release escrow upon delivery confirmation” are decomposed into formal logic using techniques like 

chain-of-thought prompting, which forces models to articulate intermediate reasoning steps [16]. The second module, 

code synthesis, involves generating auditable code that adheres to blockchain-specific syntax and security standards. 

For instance, GPT-4 can enforce the Checks-Effects-Interactions pattern—a best practice to prevent reentrancy 

attacks—by structuring function calls to validate inputs before modifying state variables [8]. The third module, 

runtime adaptation, allows LLMs to dynamically adjust contract parameters in response to real-world data. By 

interfacing with oracle networks, models can modify interest rates or collateral requirements based on external events 

like market volatility [7]. 

Empirical studies demonstrate that this integrated framework significantly reduces reliance on manual coding 

expertise. For example, supply chain managers can describe contractual conditions in plain language (e.g., “Trigger 

payment when IoT sensors confirm refrigerated cargo arrival”), and LLMs translate these requirements into code that 

integrates IoT data feeds with payment logic. LLM-assisted development reduces initial coding errors by 63% 

compared to traditional methods, primarily by automating boilerplate code and embedding security checks during 

code generation [6]. 

Automated Code Generation 

Recent advancements in LLM-driven code generation have transformed the translation of natural language 

specifications into executable smart contracts. There is a two-stage pipeline that enhances both accuracy and security 
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[7]. In the first stage, semantic parsing, GPT-4 employs natural language processing techniques—such as entity 

recognition and dependency parsing—to extract contractual obligations from unstructured text. For instance, clauses 

like “pay 5% interest monthly” are identified as financial terms and mapped to corresponding code variables. The 

second stage, constrained code synthesis, generates Solidity code embedded with security checks, guided by industry-

standard templates such as ERC-20 token contracts [17]. Evaluations across 1,200 DeFi protocols revealed that this 

approach reduces development time by 58% while ensuring 89% of generated contracts pass initial security audits. 

Template-based constrained decoding restricts LLM outputs to predefined code patterns, such as OpenZeppelin’s 

security templates, minimizing logical errors [18]. For example, models automatically insert functions to validate 

input parameters, reducing vulnerability risks by 41% [9]. Cross-lingual validation further ensures functional 

consistency by comparing generated Solidity code against Python pseudocode using equivalence-checking algorithms. 

Discrepancies trigger regeneration cycles until outputs align with specifications. Additionally, gas optimization hints 

leverage historical blockchain data to recommend cost-efficient data structures, such as using mappings instead of 

arrays, which reduce Ethereum transaction fees by 22–37% [6]. 

Security Auditing 

The application of LLMs in smart contract security auditing represents a paradigm shift from reactive to proactive 

vulnerability management. A 2024 benchmark study evaluated three auditing methodologies. Static analysis tools like 

Slither detect 68% of vulnerabilities but suffer from high false-positive rates, such as incorrectly flagging safe reentrant 

calls [19]. In contrast, LLM-based dynamic testing simulates attack vectors—including flash loan exploits and oracle 

manipulation—by generating adversarial transactions, identifying 94% of critical risks in Uniswap V3 forks [8]. 

Hybrid approaches that combine symbolic execution with GPT-4’s anomaly detection capabilities achieve 99% recall 

on Ethereum’s Smart Contract Weakness Classification (SWC) registry, outperforming human auditors in detecting 

zero-day vulnerabilities. 

The Reinforcement Learning from Human Feedback (RLHF) framework enhances LLMs’ auditing proficiency by 

training them on historical exploit data. For instance, LLaMA-2 fine-tuned on 15,000 labeled vulnerabilities achieves 

83% accuracy in suggesting fixes for arithmetic flaws, resolving issues in 3.2 seconds compared to 18 minutes for 

human auditors [7]. Real-world applications underscore this capability: during Aave’s migration to V3, LLM-assisted 

audits identified a latent price oracle manipulation risk, averting potential losses exceeding $120 million. 

Emerging techniques further refine audit quality. Multi-agent systems deploy collaborative LLMs to debate 

potential vulnerabilities, with a “judge” model resolving conflicts through majority voting, reducing false positives by 

29% in Compound Protocol audits. Integration with formal verification tools like Z3 solvers enables mathematical 

validation of LLM-generated invariants, providing rigorous guarantees for critical contracts [20]. Additionally, 

explainable AI (XAI) techniques, such as attention heatmaps, visualize how models prioritize vulnerability patterns, 

enhancing auditor comprehension and trust [21]. 

Dynamic Contract Adaptation 

LLMs enable smart contracts to evolve dynamically by continuously learning from on-chain interactions and 

external data streams. The Mira Network architecture exemplifies this capability, employing verification subnets to 

validate LLM outputs against real-time blockchain data [7]. For example, derivatives contracts autonomously adjust 

collateral ratios based on market sentiment analysis derived from news APIs, reducing liquidation risks by 58% during 

periods of high volatility [8]. 

Technical advancements driving this innovation include on-chain/off-chain hybrid execution, which balances 

immutability with computational efficiency. Critical logic, such as fund transfers, executes on-chain to maintain 

trustlessness, while resource-intensive tasks like natural language dispute resolution are offloaded to decentralized 

compute networks like Akas. This approach reduces gas costs by 44% compared to fully on-chain execution [6]. 

Federated learning further enhances adaptability by allowing contracts to share anonymized interaction patterns across 

blockchains, improving LLM performance without compromising privacy [22]. For instance, decentralized exchange 

(DEX) aggregators trained on cross-chain liquidity data achieve 31% better slippage predictions [7]. 

Real-time feedback loops enable LLMs to refine contract parameters based on transaction outcomes. On Polygon’s 

test net, GPT-4-mediated negotiations reduced DAO governance dispute resolution times by 44%, as models 

iteratively optimized proposal language to align with stakeholder preferences [8]. 
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DISCUSSION 

Limitations and Challenges 

Stochastic Outputs and Security Vulnerabilities 

The stochastic nature of LLM-generated code remains a critical limitation in blockchain smart contract 

development. While LLMs like GPT-4 demonstrate impressive code synthesis capabilities, their probabilistic decision-

making can lead to hallucinated code snippets or overlooked edge cases. For instance, a model might generate a 

function that omits critical overflow checks, resulting in vulnerabilities like the infamous DAO attack [23]. Even with 

constrained decoding techniques, which restrict outputs to predefined secure templates, adversarial prompts can 

bypass safeguards. For example, an attacker could craft ambiguous natural language inputs like “transfer funds after 

event X,” where “event X” is intentionally undefined, tricking the model into generating exploitable code. Ma et al. 

noted that hybrid auditing frameworks reduce but do not eliminate such risks, as LLMs lack inherent reasoning about 

causality or long-term contract implications [8]. Furthermore, training data biases—such as overrepresentation of 

Ethereum-specific patterns—may lead to incompatible code for other blockchains like Solana or Polkadot. 

The rise of prompt injection techniques further amplifies risks [24]. Such technology led to attacks manipulating 

LLM-integrated applications into producing feedback resembling the attacker’s injected content, deviating from the 

user’s original requests. 

Current solutions to the problem remain partial: 

1. Hybrid Verification: Combining LLMs with formal verification tools can detect syntax errors. But it struggles 

with semantic ambiguities. 

2. Domain-Specific Fine-Tuning: Models like Smart-LLaMA-DPO embed smart contract expertise through 

multi-stage training, reducing false positives by 6.18% in reentrancy detection. However, such models require 

continuous updates to address novel attack vectors [25]. 

3. Adversarial Training: Exposing LLMs to malicious prompts during fine-tuning improves robustness. Yet, this 

approach depends on high-quality labeled datasets, which are scarce for emerging blockchains. 

In conclusion, while LLMs democratize smart contract development, their stochastic nature and susceptibility to 

adversarial manipulation necessitate a paradigm shift toward neuro-symbolic architectures—integrating probabilistic 

generation with deterministic rule engines—to balance innovation and security. 

Legal and Regulatory Ambiguities 

LLMs often face legal risks caused by semantic ambiguity and insufficient domain adaptation when generating 

legal texts involving smart contracts. If LLM fails to identify specific definitions across different jurisdictions, it may 

automatically generate invalid or unenforceable provisions. In data processing scenarios, if a smart contract is based 

on LLM generated logic and publishes un anonymized user identity information on the chain, although it meets the 

“transparency” requirements of the U.S., it may violate the EU GDPR on “minimizing data disclosure” and 

“deidentification processing” [26, 27]. To reduce such risks, some projects are attempting to integrate LLM with 

structured legal rule engines, such as limiting model generated content through pre-set jurisdictional labels and 

regulatory reference metadata, integrating legal knowledge graphs, etc. [28]. However, such solutions not only require 

real-time updates of global regulations but also the model to have reasoning ability for conflicts between regulations. 

The technical and legal costs are both high, and the actual implementation still faces considerable challenges.  

Resource Intensiveness and Centralization Risks 

The resource-intensive nature of LLM training and deployment poses a fundamental conflict with blockchain’s 

decentralized ethos. Modern LLMs like LLaMA-2 require massive computational power for fine-tuning tasks such as 

smart contract auditing, often demanding access to high-performance GPU clusters that are financially and technically 

inaccessible to smaller developers or decentralized communities. This creates systemic entry barriers, effectively 

concentrating AI-driven smart contract development capabilities within well-funded organizations or centralized cloud 

providers. Such centralization introduces critical single points of failure: if a major LLM provider experiences 

downtime or adversarial attacks, entire blockchain ecosystems relying on its services could face cascading 

vulnerabilities. For instance, a centralized LLM service compromised by prompt injection attacks might propagate 
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malicious contract code across multiple chains before detection, undermining blockchain’s core trustless principles. 

Future Prospects 

Hybrid Reasoning Architectures 

Future systems could combine LLMs with symbolic AI to balance creativity and rigor. For instance, neuro-

symbolic frameworks might use LLMs for intent parsing but validate outputs through formal verification tools like 

Certora. This approach would automate 80%–90% of routine coding while reserving complex logic for deterministic 

checkers, reducing vulnerabilities. 

Legal-Tech Collaborations 

Developing jurisdiction-aware LLMs requires curated legal datasets annotated by domain experts. Partnerships 

between tech firms and law agencies could produce standardized smart contract templates aligned with regional 

regulations. The IEEE’s P3119 on blockchain compliance exemplifies such initiatives, aiming to create globally 

interoperable legal primitives [29]. 

Decentralized LLM Training 

Federated learning combined with blockchain-based incentive mechanisms could democratize model training. 

Participants contributing audit data or computational resources might earn tokens, ensuring continuous model 

improvement without central oversight. Projects like BitTensor’s decentralized machine learning network demonstrate 

early feasibility [30]. 

Energy-Efficient Model Optimization 

Techniques like knowledge distillation, quantization, and pruning can reduce LLM resource demands. By 

transferring the soft prediction distribution of large “teacher” models to smaller “student” models, distillation can 

greatly reduce computational and storage costs while retaining the core capabilities of the original model. For example, 

a complete version of DeepSeek-R1 can be used as the “teacher” to distill and train a “student” model with only 200M 

parameters, enabling it to master the key patterns and structures of on chain smart contract generation and run 

efficiently on mobile or edge devices, significantly reducing latency and power consumption [31]. 

CONCLUSION 

This paper presents a systematic exploration of LLMs in bridging the gap between human intent and executable 

logic within blockchain smart contracts. Through three critical lenses—automated code generation, AI-assisted 

security auditing, and dynamic contract adaptation—this paper demonstrated how LLMs address longstanding 

challenges in blockchain development. However, the integration introduces inherent risks: stochastic model outputs 

may propagate security flaws, legal ambiguities challenge cross-jurisdictional compliance, and resource-intensive 

training frameworks conflict with blockchain’s decentralized principles. 

Looking ahead, four key directions emerge to advance this paradigm. First, hybrid neuro-symbolic architecture 

combining LLMs with formal verification tools could enforce deterministic safeguards while retaining generative 

flexibility. Second, collaborative legal-tech frameworks must standardize jurisdiction-aware contract templates, 

leveraging initiatives like IEEE P3119 to align smart contracts with regional regulations. Third, decentralized training 

protocols, such as federated learning powered by blockchain incentives, can democratize model development and 

mitigate centralization risks. Finally, energy-efficient optimizations will be critical to deploying LLMs on resource-

constrained edge devices, ensuring scalability without compromising sustainability. By addressing these challenges, 

the synergy between LLMs and blockchain can unlock secure, accessible, and adaptive smart contract ecosystems that 

uphold the technology’s foundational principles while harnessing AI’s transformative potential. 
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