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Abstract. Blockchain systems, despite their decentralised and secure design, remain vulnerable to a range of attacks, 

including Sybil attacks, 51% attacks, and smart contract exploits. In response, researchers have increasingly adopted 

Machine Learning (ML) to detect and mitigate these threats. This review provides a comprehensive overview of ML-based 

approaches for blockchain attack detection. This paper first categories existing works into traditional ML and Deep 

Learning (DL) methods. Traditional models such as Decision Trees, SVMS, and Logistic Regression offer efficiency and 

interpretability but are limited in handling complex, sequential data. In contrast, DL approaches—including Convolutional 

Neural Networks (CNNs), Long Short-term Memory Networks (LSTMs), and Graph Neural Networks (GNNs)—

demonstrate powerful pattern recognition capabilities and adaptability to diverse attack types. However, they often suffer 

from poor interpretability, limited generalisation across blockchain platforms, and heavy reliance on labelled data. This 

paper also identifies key challenges, including data imbalance, high computational cost, and reproducibility issues. To 

address these, this paper discusses future directions such as integrating expert systems, employing domain adaptation, and 

using generative models for data augmentation and pre-training. Overall, this review highlights the opportunities and 

limitations of ML in blockchain security and provides a roadmap for developing more robust and scalable detection 

frameworks. 

INTRODUCTION  

Blockchain technology has transformed the design of digital systems, particularly in establishing trust and ensuring 

data integrity without reliance on centralised authorities. Originally developed for cryptocurrencies like Bitcoin, 

blockchain has since been adopted in numerous sectors, such as healthcare, finance, supply chain, and the Internet of 

Things (IoT), owing to its decentralisation, immutability, and transparency. However, despite its reputation for 

security, blockchain systems are not immune to attacks. Malicious actors have exploited vulnerabilities through 

various methods, including 51% attacks, double-spending, Sybil attacks, and smart contract exploits [1]. These attacks 

not only compromise the integrity of blockchain networks but also pose significant challenges to their broader 

adoption in critical applications. 

Recent studies have proposed using Machine Learning (ML) to enhance blockchain security. ML algorithms, 

recognised for their ability to detect patterns, identify anomalies, and learn from data, are widely employed in 

traditional cybersecurity applications. When applied to blockchain, ML can assist in detecting malicious behaviours, 

classifying attack types, and identifying anomalies in transaction or consensus patterns [2]. The key benefit of 

implementing ML in blockchain security is its potential to detect both known and unknown threats by learning from 

evolving data, rendering it more adaptive than rule-based systems. 

A growing body of literature has explored the intersection between blockchain and ML. One notable example is 

Block Hunter, a federated learning framework designed for threat hunting in blockchain-based Industrial IoT (IIoT) 

environments [3]. This approach enables decentralised nodes to collaboratively train a global ML model while 

maintaining data privacy. It enhances attack detection accuracy and aligns with the decentralised philosophy of 

blockchain. Similarly, Sayeed and Marco proposed a model that integrates machine learning with algorithmic game 



theory to mitigate majority (51%) attacks by analysing consensus behaviour [4]. Their work demonstrates how 

predictive models can detect abnormal actions that may indicate the onset of a coordinated attack. 

On the other hand, researchers have also shown that ML can be employed offensively to exploit blockchain 

systems. Wu et al. introduced a cascading ML framework that de-anonymises Bitcoin transactions, raising concerns 

about the privacy guarantees of blockchain [2]. Meanwhile, Khan et al. developed a blockchain-based architecture 

that integrates ML models for IoT-based e-health applications, concentrating on securing the integrity of ML training 

data and protecting the model from adversarial manipulation [5]. These works collectively underscore both the 

defensive and offensive roles that ML can play in the blockchain ecosystem.  

Benefiting from the rapid development of this field, numerous studies have made significant breakthroughs in 

recent years. Therefore, this review aims to systematically summarize, investigate, and analyze these advancements, 

offering a comprehensive understanding of the current research landscape. This research aims to examine these 

challenges by evaluating current ML-based solutions for blockchain attack detection, identifying their limitations, and 

summarising potential solutions. By bridging the divide between ML techniques and blockchain-specific threats, this 

review contributes to the development of intelligent and resilient blockchain infrastructures capable of defending 

against evolving cyber threats. 

METHOD 

Preliminaries of Blockchain and Machine Learning 

Blockchain is a decentralized and tamper-resistant digital ledger that records transactions across a network of 

nodes, eliminating the need for a central authority. Each block includes a list of transactions, a timestamp, and a 

cryptographic hash of the previous block, ensuring immutability and traceability. Common consensus mechanisms, 

such as Proof of Work (PoW) and Proof of Stake (PoS), allow network participants to agree on the validity of 

transactions and the state of the ledger [1]. While blockchain is often viewed as secure by design, it remains susceptible 

to various attack vectors, including 51% attacks, double-spending, Sybil attacks, and smart contract exploits [6]. 

ML, a subfield of artificial intelligence, involves developing algorithms that learn patterns from data and make 

predictions or decisions without explicit programming. ML techniques have increasingly been applied to enhance 

blockchain security, particularly in detecting anomalies, malicious behaviors, and fraudulent transactions. Supervised, 

unsupervised, and reinforcement learning algorithms are commonly used depending on the nature of the security 

problem and the availability of labeled data [7]. 

The general workflow for integrating ML into blockchain security, shown in Figure 1, comprises several stages: 

data acquisition, feature engineering, model training, validation, and deployment. Blockchain data, including 

transaction histories, node activities, and smart contract logs, serves as input. This data is preprocessed and 

transformed into feature sets that are suitable for learning algorithms. Once trained and validated, ML models can 

monitor blockchain activity in real-time, identify suspicious patterns, and flag potential security threats [8]. 

 
FIGURE 1. Workflow of ML-based Blockchain Attack Detection [9]. 



 

Blockchain-related attacks can be categorized into three main groups, shown in Figure 2: network-level attacks 

(e.g., Sybil and eclipse attacks), consensus-level attacks (e.g., 51% attacks and selfish mining), and application-level 

attacks (e.g., smart contract manipulation and reentrancy attacks) [10]. ML methods are tailored accordingly: 

supervised models (e.g., decision trees, SVMs) can classify node behaviors, while unsupervised models (e.g., 

clustering, autoencoders) can detect transaction anomalies without prior labels. 

 
FIGURE 2. Classification of Blockchain Attack Type (Picture credit: Original). 

ML-based Methods for Blockchain Attack Detection: Traditional Approaches 

Traditional ML techniques have been extensively researched in the context of blockchain security because of their 

interpretability, efficiency, and ease of deployment. These models are especially suitable for structured data and 

situations that require low-latency decision-making. This section presents representative studies that utilize classical 

ML methods to detect blockchain-related attacks, emphasizing the methodological processes and model architectures 

involved. 

Chen et al. proposed a Sybil node detection system for permissionless blockchain networks [11], leveraging 

Random Forest (RF) and k-Nearest Neighbors (KNN) classifiers. Their approach involved collecting topological and 

behavioral features from the network, including node connectivity, propagation delay, and message frequency. The 

selected features were used to train classifiers capable of accurately distinguishing honest nodes from Sybil attackers. 

The system was designed to operate in real-time with minimal overhead, making it suitable for integration into 

lightweight blockchain clients. 

Li et al. investigated the issue of double-spending detection by applying Support Vector Machines (SVM) to 

transactional data [12]. Their framework extracted timing intervals, balance patterns, and distributions of transaction 

values from blockchain records. SVM was chosen for its ability to manage high-dimensional feature spaces and deliver 

robust binary classification. Their experiments demonstrated that SVM models generalized well across various 

blockchain environments and were particularly effective at identifying subtle transactional inconsistencies. 

Ahmed et al. focused on detecting anomalies in smart contracts on the Ethereum blockchain [13]. They designed 

a logistic regression model that utilized opcode frequency vectors and function call graphs to represent contract 

behavior. The training process involved labeling known vulnerable contracts and using regression coefficients to 

evaluate new contracts. Their method demonstrated that even basic linear classifiers could achieve high precision 

when enhanced with domain-specific feature engineering. 

In a different approach, Singh and Sood addressed the issue of selfish mining by utilizing Decision Tree and Naïve 

Bayes classifiers [14]. Their system extracted mining-related metadata, including block generation time, miner identity 

frequency, and block acceptance rates. Decision Trees provided an interpretable, rule-based structure for categorizing 

mining behavior, while Naïve Bayes acted as a probabilistic baseline. The study concluded that traditional classifiers, 

although less complex than deep models, still deliver strong performance in controlled settings. 



Deep Learning-based Approaches 

Deep learning techniques have garnered increasing attention in blockchain security research due to their strong 

ability to model complex, nonlinear relationships and learn hierarchical feature representations directly from raw data. 

Unlike traditional machine learning algorithms, which often require manual feature engineering, deep learning models 

can automatically capture temporal, structural, and contextual patterns, making them well-suited for sophisticated 

detection tasks involving sophisticated attacks. This section highlights notable studies that apply deep learning 

approaches to identify and mitigate blockchain-based attacks. 

Wu et al. proposed a cascading deep learning framework to de-anonymize Bitcoin transactions [15]. Their 

architecture comprised multiple stacked neural networks that processed transaction metadata, user behavior patterns, 

and timing sequences. The system learned to associate transactions with user profiles, exposing vulnerabilities in the 

blockchain’s pseudonymity. The model demonstrated that deep learning can effectively detect hidden patterns in 

large-scale blockchain data and infer identity linkage with high accuracy. 

Zhao et al. developed a model based on Convolutional Neural Networks (CNN) for detecting vulnerabilities in 

smart contracts [16]. By transforming smart contract code into image-like opcode matrices, the CNN extracted spatial 

features that represent execution logic and control flows. This innovative encoding strategy enabled the network to 

classify contracts as either vulnerable or benign. Their results underscored the effectiveness of CNNs in identifying 

subtle structural flaws in smart contract code. 

Kumar and Tripathi introduced a Recurrent Neural Network (RNN) framework to identify sequential attack 

behaviors in blockchain transactions [17]. Their system utilized Long Short-term Memory (LSTM) units to capture 

dependencies across transaction sequences. The model was trained on labeled datasets that represent normal and 

malicious behaviors, achieving robust performance in predicting coordinated attacks such as double-spending and 

transaction flooding. 

Another notable contribution was made by Zhang et al. [18], who proposed a hybrid deep learning model that 

combines Graph Neural Networks (GNNs) and autoencoders to detect anomalous node behavior in blockchain 

networks. The GNN component captured relational patterns among nodes and transactions, while the autoencoder 

component learned latent representations to reconstruct typical behaviors. This combined framework enabled the 

system to flag outliers that deviate from expected patterns, providing a robust solution for network-level threat 

detection. 

DISCUSSION 

Over the past decade, ML has increasingly played a prominent role in enhancing blockchain security. As the threat 

landscape for blockchain systems has expanded, ranging from Sybil attacks and double-spending to smart contract 

exploits, researchers have turned to ML techniques to automate threat detection and provide data-driven insights. Early 

developments in this field predominantly employed traditional ML models, such as decision trees, Random Forests 

(RF), Support Vector Machines (SVM), logistic regression, and Naïve Bayes classifiers [11-14]. These models gained 

traction due to their ease of deployment, interpretability, and low computational requirements, making them well-

suited for use in permissionless and resource-constrained blockchain environments. 

Traditional ML approaches generally rely on manually engineered features extracted from blockchain data, 

including transaction frequencies, value distributions, network latency, miner behaviors, and opcode usage. As 

highlighted by Chen et al. and Li et al. [11, 12], such methods have proven effective in detecting specific types of 

attacks, particularly in scenarios with clear, structured patterns. Moreover, the decision logic behind these models is 

often transparent, enabling developers and system administrators to trace and validate detection outcomes—a feature 

particularly valuable in financial or regulatory contexts. However, these models also exhibit notable weaknesses. Their 

ability to capture complex, nonlinear, or dynamic attack behaviours is inherently limited. Attacks that unfold over 

time, such as transaction flooding or contract reentrancy, may evade detection due to the static nature of traditional 

features. 

To overcome these limitations, researchers have increasingly explored the use of Deep Learning (DL) models. As 

demonstrated in multiple studies [15-18], DL offers the ability to learn high-level feature representations directly from 

raw data such as transaction graphs, opcode sequences, and temporal logs. Convolutional Neural Networks, for 

instance, have been applied to detect smart contract vulnerabilities by encoding bytecode into structured matrices [16]. 

Recurrent Neural Networks, particularly Long Short-Term Memory models, have been effective in modelling 

sequential behaviors within transaction flows [17]. Graph Neural Networks, which learn representations based on the 



topological structure of blockchain ledgers, have proven useful in detecting anomalous node behaviours or fraud 

patterns [18]. 

Despite their success, deep learning methods present their own set of challenges, starting with the issue of 

interpretability. Unlike traditional ML models, which offer rule-based or probabilistic outputs, deep neural networks 

operate as black boxes. This opacity in decision-making is a major concern in blockchain environments, where 

transparency, accountability, and traceability are essential. For example, while Zhao et al. [16] demonstrated the 

potential of CNNS to detect smart contract bugs, their model lacked interpretability mechanisms to explain which 

patterns in the opcode sequence led to specific predictions. This makes it difficult for system operators to trust and 

verify the output, especially in high-stakes applications involving financial assets or governance protocols [7, 15]. 

Another significant limitation is generalisation ability. Deep learning models are usually trained and tested in 

controlled environments with specific datasets; yet, blockchain systems are highly heterogeneous. Differences in 

network protocols, consensus mechanisms, and transaction volumes across platforms mean that models optimized for 

one setting may perform poorly in another. Zhang et al. [18], for instance, proposed a GNN-autoencoder hybrid for 

anomaly detection, which worked well in structured settings but faced difficulties adapting to blockchains with 

irregular or sparse transaction graphs. This variability hinders the widespread deployment of DL-based security tools 

across multiple blockchain ecosystems. 

The third core issue is data availability and imbalance. DL models typically require large, diverse, and well-

labelled datasets to achieve competitive accuracy. However, in blockchain security research, obtaining labelled 

datasets is often difficult. Many attacks, especially sophisticated or zero-day attacks, are rare and poorly documented. 

Moreover, public blockchain data may be anonymised or obfuscated, complicating the process of generating 

meaningful labels. Wu et al. [15], who trained a cascading DL framework to infer user identities from transaction 

metadata, noted that the scarcity of high-quality labelled data limited model robustness. Even when data is available, 

class imbalance (i.e., few attack samples versus many benign samples) can bias the model, leading to high false 

negatives or overfitting to the majority class [3, 6]. 

Furthermore, while Deep Learning reduces the need for manual feature engineering, it significantly increases the 

demand for computational resources. Model training and inference often require specialised hardware (e.g., GPUS), 

which may not be feasible for deployment on lightweight blockchain clients or nodes with limited bandwidth and 

processing power. This computational burden can create scalability issues, especially when real-time attack detection 

is necessary across large-scale decentralised networks. 

Finally, there is a broader concern regarding reproducibility and benchmarking in this emerging field. As noted 

across multiple studies [10, 17], the lack of standardised datasets, metrics, and experimental protocols makes it 

challenging to compare models fairly or reproduce results. Variations in data preprocessing, label definitions, and 

evaluation criteria further obscure meaningful performance comparisons. This lack of reproducibility hinders progress 

and complicates efforts to identify truly effective models. 

In summary, the integration of ML and DL into blockchain security holds potential, although challenges remain. 

Traditional ML techniques offer interpretability and efficiency, yet they fall short in representational strength. In 

contrast, deep learning supports complex modelling but encounters obstacles such as explainability, generalisation, 

data requirements, and reproducibility. As this field progresses, researchers need to evaluate not just accuracy but also 

practicality, fairness, and robustness when developing blockchain attack detection systems. 

Moving forward, future research should address current limitations in ML-based blockchain attack detection by 

leveraging a combination of expert systems and domain knowledge integration. For instance, enhancing the 

interpretability of deep models can be achieved by embedding rule-based reasoning or incorporating symbolic AI 

techniques. This hybrid approach can help explain model decisions in security-critical blockchain applications. To 

improve generalisation across heterogeneous blockchain systems, domain adaptation and domain generalisation 

techniques, such as transfer learning or meta-learning, should be explored. These strategies enable models trained on 

one blockchain environment to be effectively adapted to others with minimal retraining. In response to data scarcity 

and imbalance, generative models such as Generative Adversarial Networks (GANS) and Variational Autoencoders 

(VAES) offer promising solutions by synthetically generating attack samples. These synthetic datasets can be used 

for pre-training deep models, followed by fine-tuning on real blockchain data to improve robustness. Additionally, 

collaboration between academia and industry could facilitate the creation of benchmark datasets and evaluation 

protocols, addressing reproducibility concerns. Overall, future work should aim for a balanced integration of model 

transparency, adaptability, and data efficiency to enhance the resilience and trustworthiness of blockchain security 

frameworks in real-world deployments. 



CONCLUSION 

This review explores the growing intersection between blockchain security and Machine Learning, highlighting 

the application of both traditional and deep learning models for attack detection. Traditional ML approaches, while 

interpretable and efficient, often struggle to capture the complexity and sequential nature of blockchain data. In 

contrast, Deep Learning methods demonstrate strong capabilities in learning intricate patterns and representations 

from raw data, enabling the detection of more advanced and evasive attacks. However, these models face challenges 

such as poor interpretability, limited generalisation across blockchain platforms, and reliance on large, labelled 

datasets. 

By synthesising recent advancements, this review emphasises the necessity for balanced trade-offs between model 

complexity, transparency, and deployment feasibility. Although significant progress has been made, blockchain-based 

attack detection remains an evolving area that requires ongoing attention to both algorithmic innovation and practical 

implementation. Future studies should consider not only enhancing detection performance but also addressing the 

real-world constraints that affect the scalability and reliability of Machine Learning systems in decentralised 

environments. 
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