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Abstract. Organic photodetectors (OPDs), as a new generation of flexible photodetection technology, demonstrate 

broad application prospects in fields such as health monitoring, environmental safety detection, and intelligent 

imaging, owing to their unique advantages of solution processability, low cost, lightweight, and flexibility. This paper 

systematically reviews the latest research progress in OPDs, from material design to cutting-edge applications. 

Materials-wise, it emphasizes the structural optimization methods of non-fullerene acceptors and their effects on 

enhancing device performance and introduces synergy interactions of perovskite-organic hybrid structures. 

Performance-wise, it systematically presents new ideas such as interface engineering and designing of optical 

structure, which can effectively enhance photoelectric performance and stability. Application-wise, it emphasizes the 

pioneering applications of wearable health monitoring and environmental pollutant sensing of flexible OPDs. Despite 

there being tremendous progress, OPDs still have issues with response speed and large-area fabrication. The future 

research direction needs to explore high-mobility, narrow-bandgap new materials, roll-to-roll processing 

optimization, and standard evaluation system construction. Through the step-by-step optimization in material and 

processing, OPDs can expect to achieve large-scale commercialization over the next 5–10 years, which can provide 

great technical support for the construction of flexible electronics and the Internet of Things. 

INTRODUCTION 

Organic photodetectors (OPDs), as an emerging generation of photodetection technology, have garnered great 

interest in academia and the industry over the past few years. Compared with traditional inorganic photodetectors 

(e.g., silicon and InGaAs detectors), OPDs have the following distinguishing advantages: The material basis of 

OPDs is organic semiconductor materials, which can be printed at affordable cost over large areas with 

solution-processing techniques such as inkjet printing and spin-coating. Second, due to the inherent extensibility and 

flexibility of organic materials, they can easily form curved geometries to support wearable electronics. Third, the 

material's structure in the form of bands can easily be tailored with molecular design for the broad spectral response 

from ultraviolet to near-infrared. 

These attributes have enormous potential for use in various applications. For healthcare applications, OPDs' 

flexibility can be applied towards real-time blood oxygen saturation and heart rate determination [1]. For 

environmental sensing, flexibility of OPD can be applied towards developing portable air pollutant detectors as gas 

sensors [2]. For industrial inspection, high-area OPD arrays can offer X-ray images and security scans. Market 

research foretells that the global market of the photodetectors would rise from 350 million in 2022 to 1.2 billion in 

2030 at an annual growth of 16.8% and that OPDs would capture a significant percentage of this market [3]. 

Despite their high potential, real applications of OPDs are fraught with a number of issues. Organic 

semiconductor processes are mostly prone to photo-oxidation and thermal degradation in material stability. 

Experiments prove that unsealed OPDs can degrade more than 50% in detectivity (D*) after just 24 h exposure to 

air. This is attributed to: 1) Exciton quenching caused by oxygen, 2) Moisture-induced corrosion, and 3) Molecular 

chain scissoring due to photo-ageing [4]. In performance parameters, while state-of-the-art OPDs can already 

achieve detectivity (D*) as high as 10¹³ Jones, which is comparable with that of inorganic detectors, they still fall 
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behind in response speed. This performance gap is primarily constrained by the relatively low charge carrier 

mobility (typically <1 cm²V⁻¹s⁻¹) and high trap-state density of organic materials. From a fabrication standpoint, 

while spin-coating—the conventional laboratory method—proves inadequate for scalable production, printed 

electronics technologies face challenges in achieving consistent film uniformity and reproducibility. Moreover, 

device structure optimizations (such as the incorporation of interfacial modification layers) often increase process 

complexity, ultimately compromising manufacturing feasibility for mass production [5]. 

This paper will systematically review OPD research progress from fundamentals to applications: Section 2 will 

analyze material design strategies in detail, including active layer optimization and interface engineering; Section 3 

will thoroughly discuss performance optimization methods, covering improvements in photoelectric parameters and 

stability enhancement; Section 4 will comprehensively summarize cutting-edge applications; finally, future 

development directions will be presented. Through multidimensional analysis, this work aims to provide theoretical 

guidance and technical references for advancing OPDs from laboratory research to practical applications. 

 

MATERIAL DESIGN FOR ORGANIC PHOTODETECTORS 

Active Layer Materials 

Professor Yang Yang's group at UCLA in 2010 showed an organic photodetector with the P3HT:PCBM system 

in Advanced Materials[6] with an external quantum efficiency of equal to or above 5% for the first time. This early 

work opened the door to bulk heterojunction architectures, even though their near-infrared sensing remained poor 

due to the relatively high bandgap (1.9 eV) of P3HT. This early work set the stage for the narrow-bandgap materials 

in the coming years. With demand for narrow-bandgap materials building, second-generation donors were the next 

to emerge. 

Professor Fei Huang's group synthesized the PTB7-Th polymer donor in 2014 [7]. By introducing 

benzodithiophene (BDT) and thienothiophene (TT) units, they extended the absorption edge to 900 nm and 

broadened the EQE of the device to more than 70%. This solved the narrow spectral range response bottleneck of 

the first-generation materials. This molecular design strategy provided an important benchmark for the rest of the 

narrow-bandgap polymers' developments. 

During the course of developing the polymer donors, there were also great advancements made with 

non-fullerene acceptors. In 2017, Professor Yongfang's group in the Institute of Chemistry, Chinese Academy of 

Sciences, published the ITIC acceptor in Nature Communications [8]. Due to the new fused-ring core-end group 

molecular structure, the ITIC showed excellent absorption and adjustable energy levels, and the EQE reached over 

10% for the first time. This work created a new page for non-fullerene acceptors. This new achievement 

revolutionized the direction of acceptor material research for organic photodetectors. 

The acceptor materials have been constantly changing. North Carolina State University's Professor Harald Ade's 

team developed the Y6 acceptor in the year 2020 [9]. By introducing fluorinated end groups and increased 

conjugation, they achieved EQE over 90% and D* over 10^13 Jones. This achievement overcame the low 

detectability of traditional acceptor materials. This breakthrough brought the performance of organic detectors to 

near inorganic detectors. 

The active layer serves as the core functional component of OPDs, where material design directly determines 

device performance. Currently, the mainstream bulk heterojunction (BHJ) structure employs a donor (D)-acceptor 

(A) blend system, where high-performance detection can be achieved through optimized material combinations. 

Research indicates that the D18:Y6 system exhibits an exceptionally low energy loss of just 0.5 eV [9]，significantly 

outperforming conventional systems. 

Interface Engineering Research 

In 2018, Professor Thuc-Quyen Nguyen's team at UC Santa Barbara reported the PFN-Br interfacial layer in 

Advanced Materials [10]. With a mere 5 nm thickness, this layer adjusted the work function of ZnO from 4.3 eV to 

3.8 eV through dipole effects, reducing device dark current by one order of magnitude. This work successfully 

addressed the issue of excessive interfacial energy barriers between electrodes and active layers. The ultrathin 

interfacial layer design provided new insights for balancing charge extraction and optical losses. 

While electron transport layers were being optimized, significant breakthroughs were also achieved in hole 
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transport layers. In 2021, Professor Mohammad Khaja Nazeeruddin's team at the Swiss Federal Institute of 

Technology (EPFL) developed the MeO-2PACz self-assembled monolayer [11]. With a mere 1-2 nm thickness, this 

layer achieved excellent hole collection efficiency while avoiding the acidic corrosion issues associated with 

traditional PEDOT:PSS. This work successfully addressed the long-standing challenge of poor stability in HTL 

materials. Such molecular-level precision in interface control represents the future direction of development. 

Metal oxide materials have been widely used in constructing electron transport layers (ETLs) due to their 

excellent electron transport properties. Among them, ZnO and SnO₂ have become research hotspots with their 

electron mobilities exceeding 10 cm²V⁻¹s⁻¹. Experimental studies demonstrate that UV-ozone treatment can 

effectively modulate ZnO's surface work function [12], reducing it from 4.3 eV to 3.8 eV, which significantly 

decreases the injection barrier at the interface with active layers. 

Novel Material Systems Research 

In 2022, Professor Jin Zhang's team at Peking University reported the L8-BO acceptor in Science Advances [13]. 

Through asymmetric molecular design and three-dimensional charge transport network construction, they extended 

the response edge beyond 1000 nm while maintaining excellent thermal stability at 300°C. This work successfully 

addressed the long-standing challenge of poor stability in narrow-bandgap materials. Such structural innovation 

provides a reliable solution for near-infrared detection applications. 

Significant progress has also been made in hybrid material systems. In 2023, Professor Liangsheng Liao's team 

at Soochow University developed a MAPbI₃/P3HT graded heterojunction [14]. Through PEAI interface passivation 

and matched thermal expansion coefficients, the device maintained 90% of its initial performance for over 1000 

hours under AM1.5 illumination. This achievement significantly enhanced the stability of hybrid systems. Such 

multi-scale regulation strategies deserve wider adoption in other material systems. 

Emerging research paradigms are transforming material development approaches. In 2023, Professor Richard 

Friend's team at the University of Cambridge applied machine learning to material screening [15]. Through 

high-throughput computational predictions, they identified multiple promising new acceptor structures, reducing the 

traditional "trial-and-error" development cycle by 80%. This work effectively addressed the inefficiency in new 

material development. Such data-driven research models will significantly accelerate the discovery of novel 

materials. 

The perovskite-organic hybrid material system demonstrates unique optoelectronic properties by synergistically 

combining the advantageous characteristics of both material classes [13,14]. In terms of structural design, 

researchers have developed various innovative configurations including core-shell structures, graded heterojunctions, 

and superlattice alternating layers. These material systems exhibit remarkable advantages such as broad spectral 

response ranges, high photoelectric gain, and fast response characteristics. In terms of stability enhancement, 

interface passivation treatments, thermal expansion coefficient match for stress engineering, and composition 

engineering through mixed cations/halides have all contributed importantly to the environmental stability of these 

materials. 

 

ADVANCES IN PERFORMANCE OPTIMIZATION STRATEGIES 

Research on Photoelectric Performance Enhancement 

Photoelectric performance optimization is an essential step to improve the practicability of organic 

photodetectors, and there are mainly two directions: improvement of responsivity and noise suppression. In the past 

few years, scientists have achieved great progress through methods such as optical structure engineering and 

engineering of the bandgap. In 2019, Professor Richard Friend's group at the University of Cambridge broke through 

in Nature Materials [16]. By inserting an optical microcavity structure, they effectively increased the optical field at 

certain wavelengths by 3-5 times, with the maximum device responsivity reaching 100 A/W. This work solved the 

age-old problem of poor light absorption efficiency of traditional structures. Such optical design ideas provide new 

inspiration for overcoming the Shockley-Queisser limit. 

Although responsivity has improved, tremendous strides have also been made in noise minimization. In the year 

2021, Professor Fei Huang's team at the South China University of Technology developed the PM6:BTP-eC9 [17]. 
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By employing a stepwise energy level structure, they reduced the dark current density to 10⁻¹⁰ A/cm² and 

achieved a noise equivalent power (NEP) of 10⁻¹⁴ W/Hz¹/². This advancement significantly enhanced the device's 

weak-light detection capability. This band engineering strategy provides crucial guidance for designing 

high-sensitivity detectors. These innovative developments demonstrate that through precise regulation of the 

photoelectric conversion process, the performance of organic photodetectors has approached the level of inorganic 

detectors. 

 

Stability Enhancement Research 

Environmental stability remains a major bottleneck limiting practical applications of organic photodetectors. 

Current solutions primarily focus on two approaches: encapsulation technology improvements and intrinsic material 

stability enhancement. In 2020, Professor Bumjoon Kim's team at KAIST reported an atomic layer deposition (ALD) 

encapsulation technique in ACS Nano [18]. By leveraging the use of an Al₂O₃ encapsulation of 20 nm, they lowered 

the water vapor transmission rate (WVTR) to 10⁻⁶ g/m²/day and increased the device operation time 10 times. This 

effort effectively addressed the environmental instability of organic materials. This technology of encapsulation is of 

atomic-level precision and is of great application value. 

In addition to encapsulation technologies, significant advances have also been made in enhancing material 

intrinsic stability. In 2022, Professor Zhenan Bao's group at Stanford synthesized spiro-structured SM1 acceptor [4] 

with enhanced thermal decomposition temperature of 400°C and retention performance of >90% after >1000 h 

under 85°C/85%RH conditions. This is an available solution for use under high-temperature and humidity 

conditions. The molecular rigidification design paradigm here deserves further extension to other material systems. 

These advancements have considerably extended device time under extremely demanding environments, removing 

significant hurdles for future applications. 

ADVANCES IN FRONTIER APPLICATIONS 

Healthcare Monitoring Applications 

The biocompatibility and flexibility of organic photodetectors (OPDs) are particularly suited for medical 

applications, particularly for miniaturized medical imaging and wearable sensing. In 2021, the University of Tokyo 

group under Professor Takao Someya showed an ultra-flexible OPD from the P3HT:PCBM device with 95% 

accuracy for sensing of pulses in continuous, adhesive, 72-hour-duration use [1]. The work illustrates the promise of 

OPDs for extended physiological sensing without compromising reliability or convenience. More progress has been 

made towards imaging diagnostics: in 2022, Soochow University's group under Professor Liangsheng Liao 

described an ultra-thin OPD array (<5 μm) packaged in an endoscopic catheter, with 20 μm spatial resolution for 

in-situ tissue diagnosis [19]. By significantly reducing the rigidity and bulk of traditional systems, the method brings 

clinical imaging technology into more minimally invasive, pliable formats. Together, these developments affirm the 

growing utility of OPDs in medicine, where miniaturization, flexibility, and convenience are ever more valuable. 

Environmental Safety Monitoring Applications 

The organic photodetectors are now gaining popularity for application in environmental sensing due to their 

tuneable spectral response and cost-effective manufacturing. Important future applications are likely to originate 

from fields such as radiation sensing and the sensing of gases. One review in 2023 from Professor Qibing Pei's 

group at Tsinghua University outlined the use of VOC sensing with porphyrin-derivative-based OPDs, with an 

achieved lowest detectable value of as little as 50 ppb of formaldehyde [2]. This shows how material-specific 

interactions can create high specificity in air quality sensing compared to the lack of specificity commonly involved 

with traditional methods. In a further effort, radiation sensing progress was delivered thanks to the efforts of 

Professor Yongfang Li's group at the Institute of Chemistry, CAS. In 2021, the group fabricated an organic/ZnO 

nanorod hybrid photodetector which could differentiate between UVA and UVB radiation with response times under 

100 ms [20]. This not only guarantees quick discrimination of the spectrum, but also takes advantage of the stability 

advantage present in hybrid material systems. Taken together, these work efforts document the flexibility of OPDs 
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towards environmental sensing applications requiring precision as well as robustness. 

RESEARCH SUMMARY AND FUTURE PERSPECTIVES 

This paper thoroughly surveys the leading research work in the field of organic photodetectors over the past few 

years. In material design, the issues in the narrow spectral response and instability of traditional materials have been 

addressed by the non-fullerene acceptor material development and the perovskite hybrid systems. Regarding 

performance optimization, interface engineering and optical structure design have significantly improved device 

responsivity and environmental stability. For application development, flexible and miniaturization technologies 

have provided new solutions for medical testing and environmental monitoring. These innovative approaches have 

comprehensively enhanced the performance metrics of organic photodetectors, achieving a detectivity (D*) 

exceeding 10¹³ Jones, responsivity reaching 100 A/W, and operational lifetime extending to 10⁴ hours, laying a solid 

foundation for industrial applications. 

Despite remarkable progress, challenges remain including relatively slow response speed (microsecond level), 

insufficient large-area uniformity, and need for further improved long-term stability. Future research should focus 

on: 1) developing new semiconductor materials with both high mobility and narrow bandgap, 2) advancing 

CMOS-compatible heterogeneous integration processes, and 3) establishing standardized performance evaluation 

systems. Notably, machine learning-assisted material design and optimization of roll-to-roll manufacturing 

processes will be key to promoting industrialization. With breakthroughs in these technologies, OPDs are expected 

to achieve large-scale commercial applications within 5-10 years and play significant roles in flexible electronics 

and IoT fields. 
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