

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Contact stiffness of a rigid flat-ended cylindrical indenter on an elastic quarter-space

AIPCP25-CF-AMSMT2025-00002 | Article

PDF auto-generated using **ReView**

Contact Stiffness of a Rigid Flat-Ended Cylindrical Indenter on an Elastic Quarter-Space

Sen Jiang^{1, 2, a)}, Qiang Li^{1, b)}

¹*Institute of Mechanics, Technische Universität Berlin, Berlin 10623, Germany*

²*Key Laboratory of Education Ministry for Modern Design and Rotor-bearing System, Xi'an Jiaotong University, Xi'an, 710049, Shanxi, PR China*

a) senjiang@stu.xjtu.edu.cn

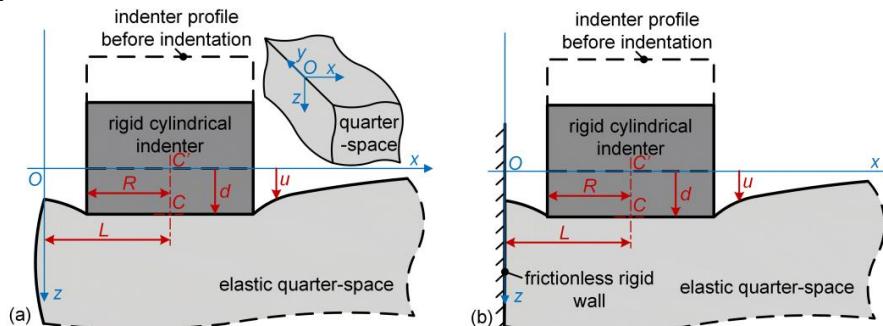
b) Corresponding author: qiang.li@tu-berlin.de

Abstract. The contact stiffness of an elastic quarter-space indented by a rigid cylindrical flat punch is numerically investigated using the Boundary Element Method. The simulations show that edge effects reduce contact stiffness, which gradually converges to the half-space solution as the indenter–edge distance increases. The results are further compared with the case of a side surface constrained not to move in the direction perpendicular to the edge. Although this boundary condition produces slightly higher contact pressures and stiffness when the contact region is near the edge, it provides a reasonable approximation of the fully free boundary while offering improved computational efficiency.

INTRODUCTION

The half-space is an idealized model widely used in contact mechanics [1], while edge effects are often unavoidable in practical applications. When the contact region lies on or near an edge, as in rail–wheel systems, rolling bearings, and gears, the edge effect should be considered [2–6]. The quarter-space contact problem specifically addresses the edge effects.

Hetényi proposed that the quarter-space problem can be solved by iteratively overlapping symmetric loads on two half-spaces [7]. Subsequently, Keer and his co-workers [8, 9] improved this method by employing a direct solution instead of the iterative process. In order to improve computational efficiency, many numerical methods have been introduced successively, such as the Ritz's method [10], the explicit solution [11], fast correction method [12, 13] and the fast Fourier transform algorithm [14, 15]. Nevertheless, when more complex phenomena such as adhesion are considered, a large number of mesh elements is required, and solving the quarter-space contact problem still demands a high computational cost.

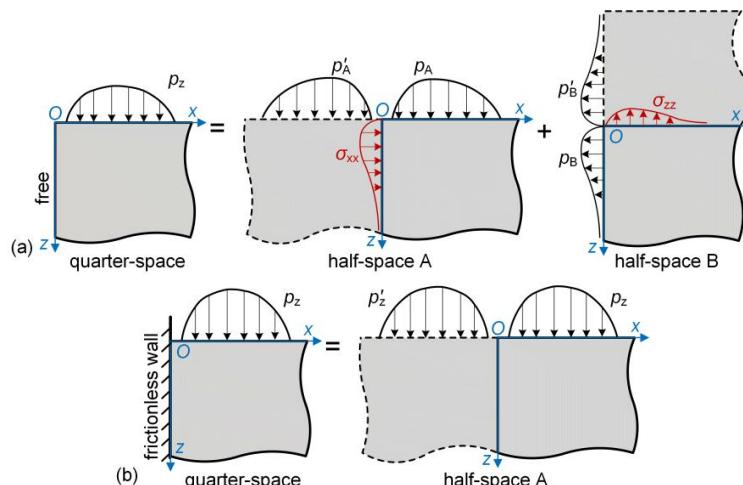

Recently, Li and Popov [16] attempted to approximate the contact of quarter-space with free side surface by that with a freely sliding side surface. The quarter-space contact with a freely sliding side can be calculated equivalently as a symmetrically loaded contact on a half-space, substantially enhancing the computational efficiency.

This study considers a rigid cylindrical indenter pressed into an elastic quarter-space, to investigate the edge effects on contact stiffness. The elastic quarter-space is modeled with both free side and freely sliding side respectively, to assess the deviations introduced by this approximation.

METHOD

Figure 1 presents the schematic of the analytical model considered in this study. The top and side surfaces of the elastic quarter-space are defined by the planes $z = 0$ and $x = 0$, respectively, with the y -axis forming the only edge. A rigid cylindrical indenter is pressed on the top surface of the quarter-space. L is the distance between the center of the indenter and the edge, R is the radius of the cylindrical indenter, u is the deformation of top surface, and d is the indentation depth of the indenter. The parameters, u and d , are defined as positive in the positive z -axis direction. The

contact on the elastic quarter-space with a free side or freely sliding side is illustrated in Figure 1(a) and (b), respectively.


FIGURE 1. Schematic diagram of analytical models for the quarter-space contact with (a) a free side surface and (b) a freely sliding side surface. In the case of (b), the side surface of the quarter-space is constrained not to move in the direction perpendicular to the edge.

The method for solving the contact problems of a quarter-space is described in [17]. As shown in Figure 2(a), the stresses p_z acting on the top surfaces of a quarter-space are equivalent to the superposition of stresses p_A and p_B applied symmetrically on half-spaces A and B, respectively, (see Refs. [9, 17]). Here are the relationships

$$p_A = (\mathbf{I} - \mathbf{K} \cdot \mathbf{K})^{-1} \cdot p_z, \quad (1)$$

$$p_B = \mathbf{K} \cdot (\mathbf{K} \cdot \mathbf{K} - \mathbf{I})^{-1} \cdot p_z,$$

where \mathbf{K} is the influence matrix, and the method for calculating \mathbf{K} can be found in the appendix of the reference [9].

FIGURE 2. Computational methods for the quarter-space contact with (a) a free side or (b) a freely sliding side.

In the case of contact of quarter-space with a freely sliding side, the side surface of the quarter-space is constrained not to move in the direction perpendicular to the edge. This condition can be visualized as the side surface leaning against or adhering to a frictionless wall. This contact problem with load p_z on the top surface can be easily solved by applying an additional symmetric p_z , on an elastic half-space, as illustrated in Figure 2(b), which leads to a substantial reduction in computational cost.

In this way, the contact problem on a quarter-space with a free or freely sliding side is transformed into a contact problem on a half-space. Given an indentation depth, the deformation distribution within the contact region can be

determined from the geometry of the flat indenter. The pressure distribution is then obtained using half-space theory, and the normal force is found by integration. The contact stiffness follows as the derivative of the normal force with respect to indentation depth. Since the relevant theories are well established [1], they are not detailed here.

RESULTS AND DISCUSSION

Figure 3 shows the variation of the contact stiffness k_n with the indenter–edge distance L . The quarter-space contact stiffness k_n is normalized with respect to the half-space solution

$$\bar{k}_n = k_n / k_{hs} \text{, with } k_{hs} = 2RE^*, \quad (2)$$

where k_{hs} is the contact stiffness of a cylindrical indenter on an elastic half-space with effective elastic modulus E^* which is given by

$$E^* = \frac{E}{1 - \nu^2}, \quad (3)$$

where E is the elastic modulus and ν is the Poisson's ratio. The distance is normalized by the radius of the cylinder, $\bar{L} = L/R$.

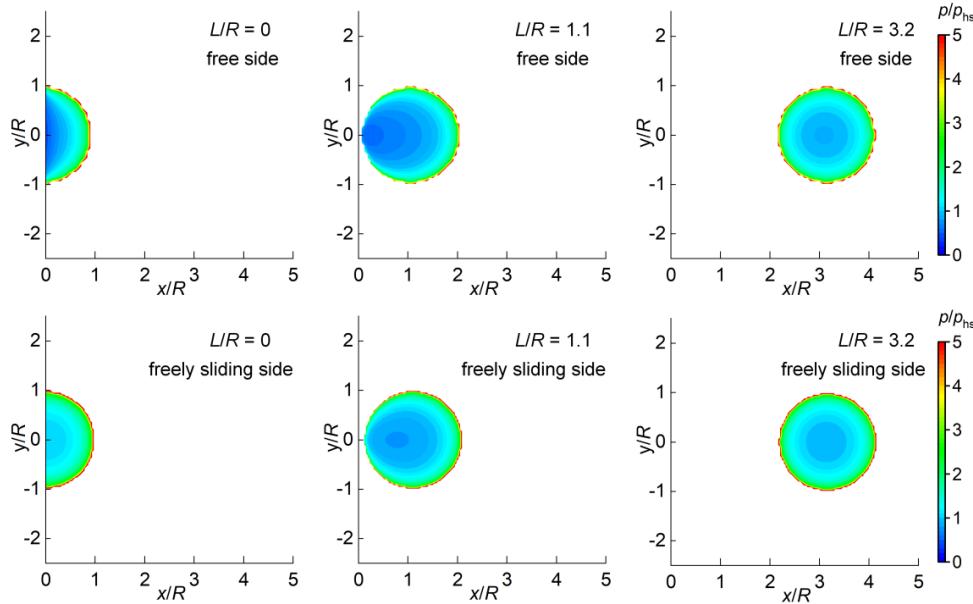
FIGURE 3. Dependence of contact stiffness on the distance between the indenter center and the edge of the elastic quarter-space. Markers are numerical results and fittings are presented with solid lines.

It can be observed from Figure 3 (solid circles and squares) that, as the distance increases, the contact stiffness on the quarter-space gradually increases and approaches the half-space solution. Compared with the free-side case, the quarter-space with a freely sliding side exhibits a higher contact stiffness. When the indenter center is directly located on the edge with $L/R = 0$, the quarter-space contact with a freely sliding side can be rigorously regarded as half of a half-space contact, resulting in a contact stiffness of 0.5.

The numerical results in Figure 3 can be fitted by the following expression

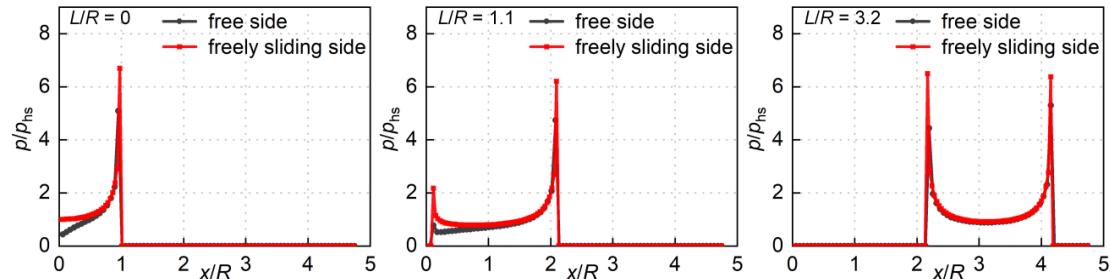
$$\bar{k}_n = \frac{\bar{L}^2 + 1.26463\bar{L} + 1.1494}{\bar{L}^2 + 1.39267\bar{L} + 2.75334} \text{ for free side case,} \quad (4)$$

$$\bar{k}_n = \frac{\bar{L}^2 + 0.64475\bar{L} + 0.40989}{\bar{L}^2 + 0.91571\bar{L} + 0.81978} \text{ for freely slide case.} \quad (5)$$


The fittings are presented with solid lines in Figure 3.

The contact pressure distributions on the quarter-space are shown in Figure 4. The pressure is normalized by the half-space solution of the pressure at the indenter center, p_{hs} . p_{hs} can be obtained by

$$p_{hs} = \frac{dE^*}{\pi R}. \quad (6)$$


From Figure 4, it can be observed that the edge effect reduces the contact pressure near the boundary, resulting in a left-right asymmetric pressure distribution. This asymmetry is further illustrated in Figure 5. Due to the finite mesh

resolution, the contact pressure near the edge of the flat indenter remains finite. At $L/R = 1.1$, the pressure on the side of the indenter close to the edge (y -axis) of quarter-space is significantly lower than that on the opposite side.

FIGURE 4. Contact pressure distribution on the top surface of the elastic quarter-space at different indenter locations.

As the distance increases, the edge effect gradually diminishes, and the pressure distribution approaches the symmetric half-space solution, as shown in Figures 4 and 5. Both the free-side and freely sliding-side cases exhibit this trend, although the quarter-space with a freely sliding side shows higher contact pressures near the edge.

FIGURE 5. Pressure distribution along the centerline of the contact region (cross-section $y = 0$ in Figure 4).

CONCLUSION

The edge effect reduces the contact stiffness of the quarter-space, and this influence gradually vanishes as the indenter–edge distance increases. For both free and freely sliding sides, the contact pressure distribution and the variation trend of contact stiffness exhibit consistent behavior. The freely sliding side case can be regarded as a reasonable approximation of free side case, although it results in slightly higher contact pressures and contact stiffness when the contact region is close to the edge. The contact stiffness at different locations may have a strong influence on the adhesive contacts as well as the tangential contacts [18].

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under project number LI 3064/2-2.

REFERENCES

1. V.L. Popov, M. Heß, E. Willert, Handbook of contact mechanics: exact solutions of axisymmetric contact problems, Springer Nature, 2019. <https://doi.org/10.1007/978-3-662-58709-6>
2. M.T. Hanson, L.M. Keer, Analysis of edge effects on rail-wheel contact, Wear, **144**, 39-55 (1991). [https://doi.org/10.1016/0043-1648\(91\)90005-F](https://doi.org/10.1016/0043-1648(91)90005-F)
3. C.C. Yu, L.M. Keer, Edge effect on elastic-plastic rolling/sliding contacts, Computational Mechanics, **18**, 259-268 (1996). <https://doi.org/10.1007/BF00364141>
4. L. Guo, W. Wang, Z.M. Zhang, P.L. Wong, Study on the free edge effect on finite line contact elastohydrodynamic lubrication, Tribology International, **116**, 482-490 (2017). <https://doi.org/10.1016/j.triboint.2017.08.010>
5. G. Stan, The effect of edge compliance on the adhesive contact between a spherical indenter and a quarter-space, International Journal of Solids and Structures, **158**, 165-175 (2019). <https://doi.org/10.1016/j.ijsolstr.2018.09.006>
6. L. Guo, Z.M. Zhang, W. Wang, Y. Zhao, P.L. Wong, An explicit solution to a three-dimensional wedge problem considering two edges effect, Friction 8, 370-383(2020). <https://doi.org/10.1007/s40544-019-0265-7>
7. M. Hetényi, A general solution for the elastic quarter space, Journal of Applied Mechanics, **37**, 70-76(1970). <https://doi.org/10.1115/1.3408492>
8. L.M. Keer, J.C. Lee, T. Mura, A contact problem for the elastic quarter space, International Journal of Solids and Structures, **20**, 513-524 (1984). [https://doi.org/10.1016/0020-7683\(84\)90016-7](https://doi.org/10.1016/0020-7683(84)90016-7)
9. M.T. Hanson, L.M. Keer, A simplified analysis for an elastic quarter-space, Quarterly Journal of Mechanics and Applied Mathematics, **43**, 561-587 (1990). <https://doi.org/10.1093/qjmam/43.4.561>
10. S. Guenfoud, S.V. Bosakov, D.F. Laefer, A Ritz's method based solution for the contact problem of a deformable rectangular plate on an elastic quarter-space, International Journal of Solids and Structures, **47**, 1822-1829 (2010). <https://doi.org/10.1016/j.ijsolstr.2010.03.014>
11. Z.M. Zhang, W. Wang, P.L. Wong, An explicit solution for the elastic quarter-space problem in matrix formulation, International Journal of Solids and Structures, **50**, 976-980 (2013). <https://doi.org/10.1016/j.ijsolstr.2012.12.001>
12. R. Guilbault, A Fast Correction for Elastic Quarter-Space Applied to 3D Modeling of Edge Contact Problems, Journal of Tribology-Transactions of the ASME, **133**, 10 (2011). <https://doi.org/10.1115/1.4003766>
13. A.K. Ahyee, D. Nelias, T. Chaise, A. Duval, New numerical resolution of the elastic quarter-space, eighth-space and finite-length-space contact problems, International Journal of Solids and Structures, **304**, 113031 (2024). <https://doi.org/10.1016/j.ijsolstr.2024.113031>
14. H.B. Zhang, W.Z. Wang, S.G. Zhang, Z.G. Zhao, Modeling of elastic finite-length space rolling-sliding contact problem, Tribology International, **113**, 224-237 (2017). <https://doi.org/10.1016/j.triboint.2016.10.045>
15. J.R. Li, L.L. Sun, N. Zhao, P. Li, H.Q. Wang, Y.L. Yan, A semi-analytical solution for inhomogeneous material in the quarter space, International Journal of Mechanical Sciences, **263**, 16 (2024). <https://doi.org/10.1016/j.ijmecsci.2023.108766>
16. Q. Li, V.L. Popov, Non-adhesive and adhesive contacts of an elastic quarter-or eighth-space with freely sliding sides, Friction, **12**, 2052-2063 (2024). <https://doi.org/10.1007/s40544-024-0866-7>
17. Q. Li, Edge effect and indentation depth-dependent contact behavior in contact of an elastic quarter-space, International Journal of Solids and Structures, **285**, 112552 (2023). <https://doi.org/10.1016/j.ijsolstr.2023.112552>
18. Q. Li, S. Jiang, V.L. Popov, Edge effects in adhesive and non-adhesive indentation: Experimental and numerical insights, European Journal of Mechanics - A/Solids, **116**, 105891 (2025). <https://doi.org/10.1016/j.euromechsol.2025.105891>

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 Walt Whitman Road, Suite 300, Melville, NY 11747-4300 USA; Phone 516-576-2268; Email: rights@aip.org.

Article Title ("Work"): Contact stiffness of a rigid flat-ended cylindrical indenter on an elastic quarter-space

(Please indicate the final title of the Work. Any substantive changes made to the title after acceptance of the Work may require the completion of a new agreement.)

All Author(s): Sen Jiang
Qiang, Li

(Please list all the authors' names in order as they will appear in the Work. All listed authors must be fully deserving of authorship and no such authors should be omitted. For large groups of authors, attach a separate list to this form.)

Title of Conference: International Conference "Advanced Mechanics: Structure, Materials, Tribology", 2025

Name(s) of Editor(s) Editors: Valentin L. Popov, Jasminka Starcevic

All Copyright Owner(s), if not Author(s): Editors: Valentin L. Popov, Jasminka Starcevic

(Please list all copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(es) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript file.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approval of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #3 below):

Sen Jiang

Author(s) Signature

Qiang Li

Print Name

29.05.2025

Date

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner

Authorized Signature and Title

Date

3. If an Author is a U.S. Government employee, such Author must please sign below. The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature

Print Name

Date

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract #(s) _____ [1.16.1]

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University, <http://arxiv.org>.

Commercial and noncommercial scholarly use: Noncommercial scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. Commercial uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrdclist>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is *not* considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.