

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Comprehensive Study of Plastic Deformation of Road Asphalt Concrete Pavement in Climatic Conditions of South Kazakhstan

AIPCP25-CF-AMSMT2025-00004 | Article

PDF auto-generated using **ReView**

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 Walt Whitman Road, Suite 300, Melville, NY 11747-4300 USA; Phone 516-576-2268; Email: rights@aip.org.

Article Title ("Work"):

Comprehensive Study of Plastic Deformation of Road Asphalt Concrete Pavement in Climatic Conditions of South Kazakhstan

(Please indicate the final title of the Work. Any substantive changes made to the title after acceptance of the Work may require the completion of a new agreement.)

All Author(s):

Bagdat Teltayev, Umir Kalybayev, Yerbol Aitbayev, Azamat Zhaisanbayev

(Please list **all** the authors' names in order as they will appear in the Work. All listed authors must be fully deserving of authorship and no such authors should be omitted. For large groups of authors, attach a separate list to this form.)

Title of Conference: AMSMT 2025

Name(s) of Editor(s) Valentin L. Popov

All Copyright Owner(s), if not Author(s):
(Please list **all** copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(es) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript file.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approval of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #3 below):

Author(s) Signature

Bagdat Teltayev

November 25, 2025

Date

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner

Authorized Signature and Title

Date

3. If an Author is a U.S. Government employee, such Author must please sign below. The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature

Print Name

Date

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract #s _____ [1.16.1]

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University, <http://arxiv.org/>.

Commercial and noncommercial scholarly use: *Noncommercial* scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. *Commercial* uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrdclist/>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is *not* considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.

Comprehensive Study of Plastic Deformation of Road Asphalt Concrete Pavement in Climatic Conditions of South Kazakhstan

Bagdat Teltayev^{1, a)}, Umir Kalybayev^{2, b)}, Yerbol Aitbayev^{1, c)},
Azamat Zhaisanbayev^{3, d)}

¹*U. Joldasbekov Institute of Mechanics and Engineering, Almaty, Kazakhstan*

²*Kazakh Automobile and Road Institute named after L. B. Goncharov (KazADI), Almaty, Kazakhstan*

³*Road Research and Production Center, Almaty, Kazakhstan*

- a) Corresponding author: bagdatbt@yahoo.com
- b) Lifeking_86@mail.ru
- c) erbolae@mail.ru
- d) azamatsz10@gmail.com

Abstract. This paper presents the results of a comprehensive study of rutting (plastic deformation) of an asphalt concrete road pavement in the climatic conditions of the south (Shymkent city) of Kazakhstan. By opening the road pavement structure, the geometric characteristics of rutting, types of materials and soils, and thicknesses of the road pavement layers were determined. The intensity and composition of the traffic flow were determined and analyzed. Using a special measuring system with sensors, non-stationary temperature regimes of the road pavement were determined. Using the solution of the problem of the elasticity theory for a multilayer system and the correlation model of the Asphalt Institute (USA), actual parameters of transport facilities loading and measured temperature values in the layers of the road pavement, stresses and strains in the pavement structure were calculated, and destructive (rutting) effects of the transport facilities were established.

Keywords: asphalt concrete pavement, rutting, temperature, traffic flow, relative rutting effect.

INTRODUCTION

Rutting is one of the main types of failure of road asphalt concrete pavements [1-3]. Many years of road operation experience and the results of specialized comprehensive studies show that rutting is caused by several factors and their combinations:

- a weak pavement structure;
- low rutting resistance of asphalt concrete layers;
- heavy vehicle loads and their excessive numbers;
- high temperatures.

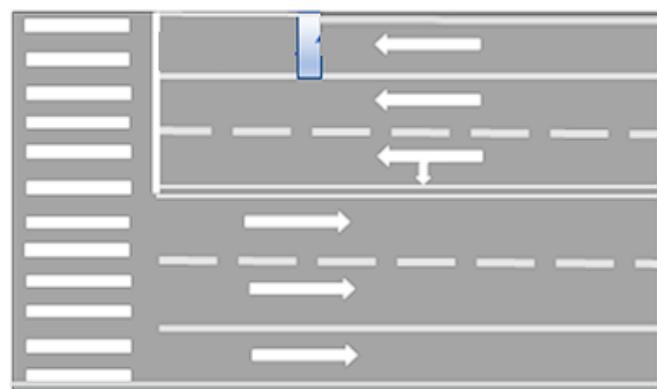
In Kazakhstan (especially in the south of the country), rutting has recently become a significant problem on both urban and public roads.

This paper presents some of the results of a comprehensive study of plastic deformation (rutting) on an asphalt concrete pavement in the climatic conditions of southern Kazakhstan (in the city of Shymkent).

Shymkent is located in southern Kazakhstan. In summer, air temperatures rise to 45-47°C, and an asphalt concrete surface heats up to 65-67°C. The city has recently become a metropolis. It is developing rapidly. The population and the amount of heavy public and freight transport on the city's roads are growing rapidly. The combination of these factors is the main cause of rutting.

EXPERIMENTAL SECTION

An experimental section for studying rutting was selected on the A2 highway connecting the city with its airport (Fig. 1).

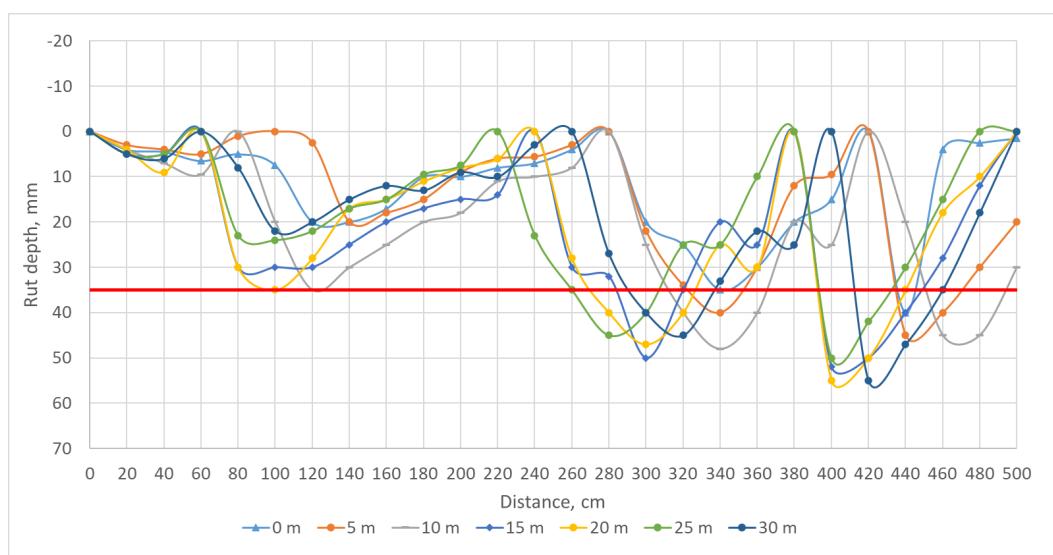

FIGURE 1. General view of the experimental section

A pavement structure on the experimental section was determined by opening it up (Fig. 2).

FIGURE 2. Measuring thicknesses of the pavement layers

The location of the pavement structure opening is shown in Fig. 3.

FIGURE 3. Piece of opening of the pavement structure of the experimental section


It has been established that the existing pavement structure on the experimental section has the following layers: 1 – old asphalt concretes, total thickness $h_1=17$ cm; 2 – a sand and gravel mixture, $h_2=70$ cm; soil - loam.

It can be seen that the existing pavement structure is very weak, and the asphalt concrete layers are old. As will be discussed later, this pavement structure does not meet the actual loading conditions (intensity and composition of the traffic flow).

RUT CHARACTERISTICS

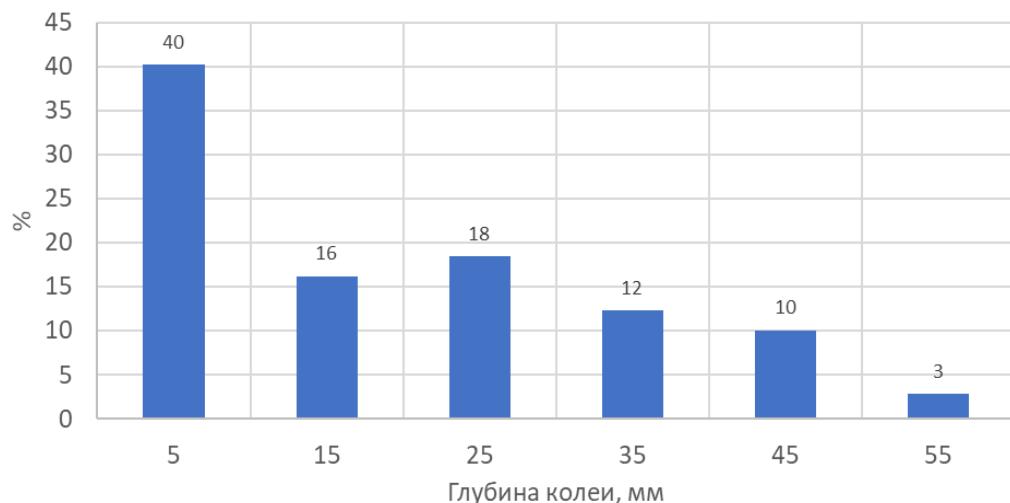

Before opening the pavement structure on the experimental section rut depth values were measured. The rut depths were measured using a three-meter ruler on lines located perpendicularly at distances of 0, 5 m, 10 m, 15 m, 20 m, 25 m and 30 m from the stop line before the intersection.

Figure 4 shows the distribution curves of the rut depth along the wheelpatch width at different distances. Figure 5 presents a histogram that shows the distribution of the rut depth values on intervals.

FIGURE 4. Graph of rut depth distribution on the asphalt concrete pavement surface at different distances

These figures show that on the outer wheelpatch all the measured rut depths are greater than the permissible value of 35 mm [4], 60% of them are greater than 10 mm. In accordance with the requirements of the regulatory document [4], such road sections cannot be operated. They must be repaired immediately.

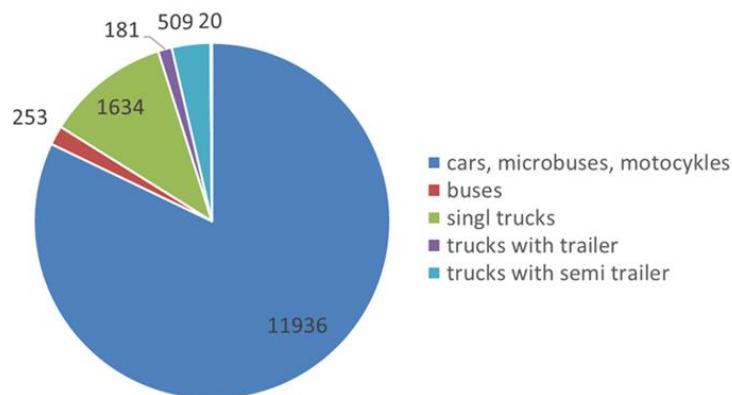


FIGURE 5. Histogram of distribution of rut depth on the asphalt concrete surface on the experimental section

TRAFFIC FLOW

The composition and intensity of the traffic flow were determined by recording them on a NEOLINE G-TECH X76 digital video camera. The measurement results were analyzed by the Traffic Flow Software.

On the experimental section in the direction of "Airport - Shymkent city" the intensity of the transport flow is 14533 units/day. The composition of the transport flow (Fig. 6): cars, minibuses, and motorcycles – 11936 units/day; buses – 253 units/day; single trucks – 1634 units/day; trucks with trailers – 181 units/day; trucks with semi-trailers – 509 units/day; tractors – 20 units/day.

FIGURE 6. Composition of the traffic flow

The compositions of buses and single trucks are presented in Table 1.

TABLE 1. Compositions of buses and single trucks

Buses, units/day		Single trucks, units/day				
middle	heavy	<2 tons	2-5 tons	5-10 tons	10-20 tons	20-40 tons
68	185	732	326	192	196	188
253		1634				

As can be seen in Fig. 6 and Table 1, the number of trucks and buses in the traffic flow that cause rutting is 2,597 units/day (18%); the intensity of heavy trucks is 710 units/day. The existing pavement structure cannot withstand such loads.

NEW PAVEMENT STRUCTURE

A new pavement structure is proposed (Table 2) to ensure the passage of actual traffic flow.

TABLE 2. A new pavement structure

Layer number	Material	Thickness, cm
1	Stone mastic asphalt concrete + polymer	5
2	Porous asphalt concrete + polymer	6
3	Upper part of base of treated materials	40
4	Lower part of base of a gravel and sand mix	25
5	Subgrade soil - loam	-

TEMPERATURE

Figure 7 shows the temperature distribution graphs at the points of the pavement and soil base on July 6, 2025. The temperature values were obtained from the temperature and moisture monitoring system installed on the al-Farabi Street in 2024.

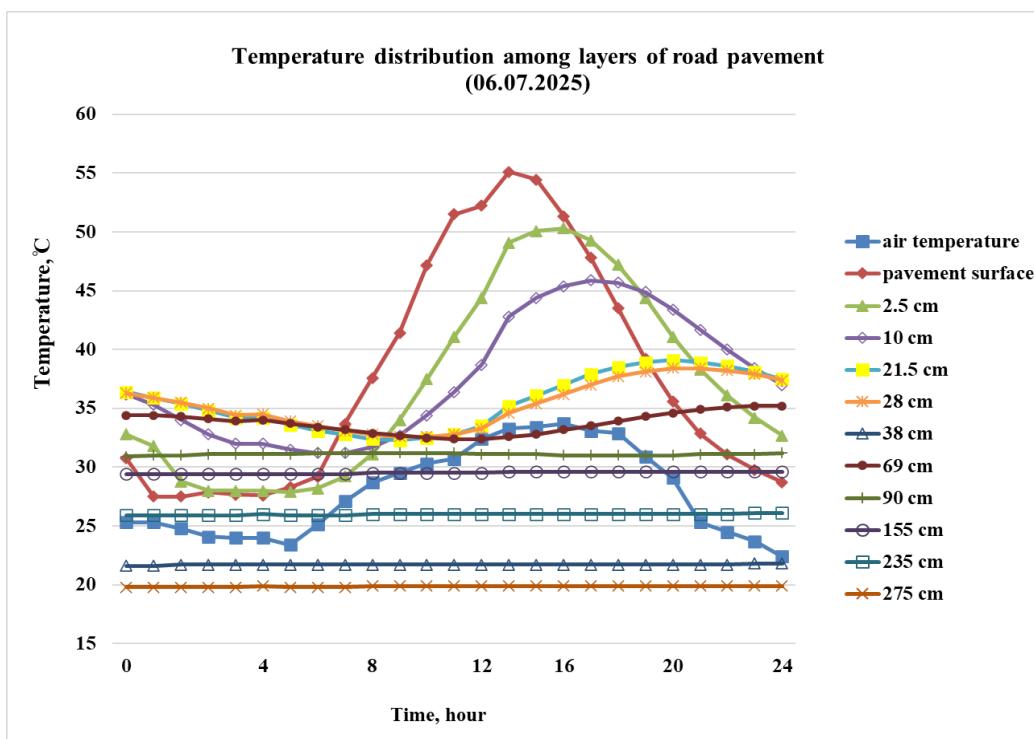


FIGURE 7. Temperature distribution at the pavement and soil base points on July 6, 2025

RUT ACCUMULATION MODEL

The rut depth values in the asphalt concrete layers of the new pavement structure are determined using the Asphalt Institute (USA) model [5]:

$$\varepsilon_p = \varepsilon_r \cdot k_1 \cdot 10^{-3,4488} \cdot \left(\frac{9}{5} \cdot T + 32 \right)^{1,5606} \cdot N^{0,479244}, \quad (1)$$

where

ε_p - plastic strain;

ε_r - elastic strain;

T – temperature;

N – number of equivalent axle;

k_1 – a coefficient that depends on the layer thickness and point depth.

MODEL OF MULTILAYER DEFORMABLE MEDIUM

To calculate the values of elastic strains in the two upper asphalt concrete layers with polymers in the new pavement structure under the action of the design load A1, trolleybuses, buses and trucks, a model of a multilayer deformable medium is used [6]. The design scheme of the multilayer pavement is presented in Fig. 8.

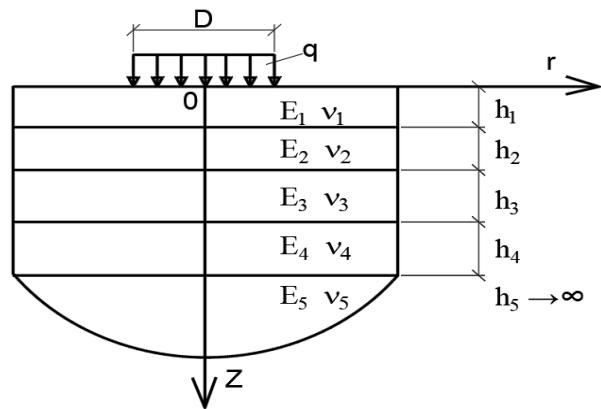


FIGURE 8. Design scheme of the pavement structure

According to this model, the materials of all layers of the pavement and soil are considered to be elastic and linearly deformable. Therefore, the mechanical behavior of the materials and soil is described by the following two characteristics: E is the modulus of elasticity, MPa; v is the Poisson's ratio. The values of the mechanical characteristics of the materials of the pavement layers and soil are assigned according to the regulatory documents [5, 7]. The temperature values are assigned according to Fig. 7.

The layers of the pavement have a finite thickness: h_1 , h_2 , h_3 , and h_4 . The soil base is modeled as an elastic half-space, i.e., it has an infinite thickness: $h_5 \rightarrow \infty$.

The surface of the first layer is subjected to a load (stress) q (MPa), which is evenly distributed within a circle of diameter D (cm).

CALCULATION OF RUT ACCUMULATION

The following transport facilities were selected for calculating stresses and strains in the new pavement structure: design load A1, Youngman JNP6120GDZ trolleybus, Golden Dragon XML6185J13C bus, YUTONG ZK6118HGA bus, SAM AUTO LE 60 bus, Shahman truck, KAMAZ 65115 truck, and GAZEL truck.

Figure 9 shows the accumulation of ruts on the surface of the asphalt concrete pavement (the total depth of the ruts in the two upper asphalt concrete layers with polymers) of the new pavement structure.

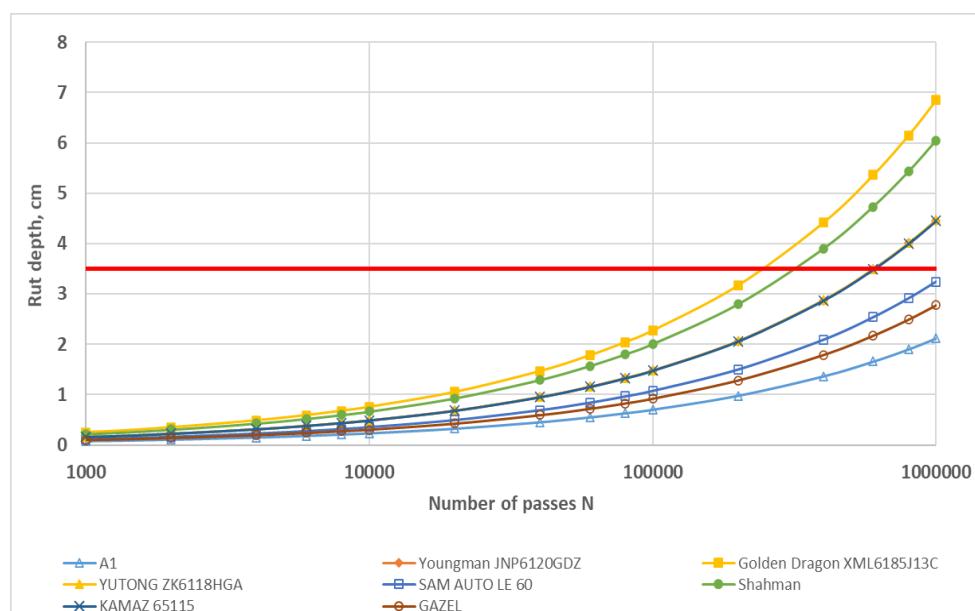


FIGURE 9. Graphs of the total rut on the surface of the asphalt concrete pavement

Figure 9 shows the permissible number of passes and the relative rutting effects (RRE) of the transport facilities considered, which are listed in Table 3.

TABLE 3. Permissible number of passes and relative rutting effects of transport facilities

Transport facilities	Permissible number of passes (rut depth of 3.5 cm)	Relative rutting effect (RRE)
Design load A1	710 000	1.00
Youngman JNP6120GDZ	138 000	5.14
Golden Dragon XML6185J13C	49 000	14.49
YUTONG ZK6118HGA	145 000	4.90
SAM AUTO LE 60	287 000	2.47
Shahman	76 000	9.34
KAMAZ 65115	150 000	4.73
GAZEL	260 000	2.73

An analysis of the data in Table 3 shows that the Golden Dragon XML6185J13C bus has the greatest RRE of the transport facilities considered (RRE=14.49); the second largest RRE is the Shahman truck (RRE=9.34); the Youngman JNP6120GDZ trolleybus, the YUTONG ZK6118HGA bus and the KAMAZ 65115 truck have approximately the same the RRE values, which are 5.14, 4.9 and 4.73, respectively; the RRE of the SAM AUTO LE 60 bus (2.47) and the GAZEL truck (2.73) are almost the same.

The above-mentioned values of the relative rutting effects (RRE) of transport facilities are recommended for use in predicting the accumulation of ruts on asphalt concrete pavements.

CONCLUSIONS

1. The traffic conditions (load) of the transport flow on the experimental section are severe. In the transport flow, trucks and buses that cause rutting amount to 2597 units/day; the intensity of heavy trucks is 710 units/day.
2. On the wheelpatch in the experimental section, all measured values of the rut depth are greater than the permissible value of 35 mm.
3. The existing pavement structure, consisting of old asphalt concrete layers with a total thickness of 17 cm and a base made of a mixture of sand and gravel with a thickness of 70 cm, is very weak and does not meet the actual loading conditions.
4. A new more durable pavement structure consisting of the following layers has been proposed: 1 – a stone mastic asphalt concrete with a polymer, 5 cm; 2 – a porous asphalt concrete with a polymer, 6 cm; 3 – an upper part of the base of treated materials, 40 cm; 4 – a lower part of the base of a gravel and sand mix, 25 cm
5. The Golden Dragon XML6185J13C bus has the greatest RRE of the transport facilities considered (RRE=14.49); the second largest RRE is the Shahman truck (RRE=9.34); the Youngman JNP6120GDZ trolleybus, the YUTONG ZK6118HGA bus and the KAMAZ 65115 truck have approximately the same the RRE values, which are 5.14, 4.9 and 4.73, respectively; the RRE of the SAM AUTO LE 60 bus (2.47) and the GAZEL truck (2.73) are almost the same.

The above-mentioned values of the relative rutting effects (RRE) of transport facilities are recommended for use in predicting the accumulation of ruts on asphalt concrete pavements.

REFERENCES

1. B. Teltayev, A. Iskakbayev, A. Massanov, Y. Aitbayev and A. Zhaisanbayev, *Investigation Of Rut Formation In Asphalt Concrete Pavement*, Proceedings of the 5th International Conference on Transportation Geotechnics (ICTG) 2024, Lecture Notes in Civil Engineering, Vol. 3 (Springer, 2025), DOI:[10.1007/978-981-97-8221-5_7](https://doi.org/10.1007/978-981-97-8221-5_7).
2. B. Teltayev, Y. Aitbayev and A. Zhaisanbayev, *To The Study Of Plastic Deformation Of Road Asphalt Concrete Pavement*, AIP Conference Proceedings 3177, 050008-1–050008-6 (2025).
3. B. Teltayev, Y. Aitbayev and A. Zhaisanbayev, *Problems Of Rutting On Asphalt Pavements*, Vibroengineering Procedia 55 (Sept. 2024). ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479. DOI:[10.21595/vp.2024.24088](https://doi.org/10.21595/vp.2024.24088)
4. PR RK 218-27-2014, *Instructions For Diagnosing And Assessing The Transport And Operational Condition Of Highways* (Astana, 2014).
5. *Guide For Mechanistic-Empirical Design Of New And Rehabilitated Pavement Structures. Final Report. Part 3. Design Analysis. Chapter 3. Design Of New And Reconstructed Flexible Pavements*, Na-

tional Cooperative Highway Research Program, Transportation Research Board, National Research Council, Washington, DC (2004).

- 6. A. K. Privarnikov, *Spatial Deformation Of A Multilayer Base*, in *Stability And Strength Of Structural Elements* (Dnepropetrovsk State University, Dnepropetrovsk, 1973), pp. 27–45.
- 7. SP RK 3.03-104-2014*, *Design Of Flexible Pavements* (Astana, 2019).