

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Analytical Investigation of the Transient Dynamic Response of a Continuum with Discrete Inclusions

AIPCP25-CF-AMSMT2025-00006 | Article

PDF auto-generated using **ReView**

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 Walt Whitman Road, Suite 110, Melville, NY 11747-4300 USA; Phone 516-576-2434; ext. 2434; Email: rights@aip.org.

Article Title ("Work"): **Analytical Investigation of the Transient Dynamic**

Response of a Continuum with Discrete Inclusions

(Please indicate the final title of the Work. Any substantive changes made to the title after acceptance of the Work may require the completion of a new agreement.)

All Author(s): **Todor Zhelyazov**

(Please list all the authors' names in order as they will appear in the Work. All listed authors must be fully deserving of authorship and no such authors should be omitted. For large groups of authors, attach a separate list to this form.)

Title of Conference: **Advanced Mechanics: Structure, Materials, Tribology 2025**

Name(s) of Editor(s) **Valentin L. Popov & A. Z. Khasanov**

All Copyright Owner(s), if not Author(s):

(Please list all copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(ies) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript file.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approved of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #3 below):

Todor Zhelyazov

12. X. 2025

Author(s) Signature

Print Name

Date

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner Authorized Signature and Title Date

3. If an Author is a U.S. Government employee, such Author must please sign below. The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature Print Name Date

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract #(s) _____ [1.16.1]

Analytical Investigation of the Transient Dynamic Response of a Continuum with Discrete Inclusions

Todor Zhelyazov^{1, 2, a)}

¹ Structural Engineering and Composites Laboratory—SEL, Reykjavik University, Menntavegur 1, IS-102 Reykjavik, Iceland

² National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 3, 1113 Sofia, Bulgaria

^{a)} Corresponding author: elovar@yahoo.com

Abstract. Scattering of non-stationary waves propagating in a continuum by inclusion is discussed. More precisely, the reflection of a plane pulse by a cylindrical void in an elastic medium is considered. An analytical approach presuming the construction of a non-stationary problem based on a solution for a harmonic wave is borrowed. In the initial approximation, a P-wave incident on the cylinder generates reflected P- and SV waves. The potentials of the incident and reflected waves give rise to a displacement and stress field in the continuum. In the reported study, the displacement field is considered. The solution obtained for a given frequency of the incident wave is generalized for a plane pulse by applying the Fourier integral. The displacement time history at a specified location is then monitored. The study appears as part of a numerical investigation into the transient wave process in a continuum due to the presence of scatterers, offering an alternative point of view to that based on finite-element analysis.

INTRODUCTION

A number of models have been proposed recently to assess the dynamic properties of composites based on the scattering properties of the inclusions. Liu et al. [1] developed a numerical Green's function-based approach to characterize the attenuation in two-phase matrix-inclusion microstructures. The authors compared the outcomes of the numerical and analytical solutions for various cases defined, assuming both phases are isotropic, with a constant density, and by varying density and elasticity. The authors concluded that numerical and analytical approaches are in good agreement if presuming differences in elastic properties only. Kulkarni et al. [2] investigated the propagation of ultrasonic waves in a polymer matrix composite with a dispersed phase of inclusions, using the finite element method. The effect of various factors (such as size, volume fraction of inclusions, and addition of interphase layer) on the attenuation characteristics of ultrasonic longitudinal waves in the matrix was investigated for harmonic waves by varying their frequency in the range of 1 - 4 MHz. Kamalnia et al. [3] presented a derivation of upwind numerical fluxes for the space discontinuous Galerkin finite-element method, for numerical modeling of wave propagation in multidimensional coupled acoustic/elastic media. They performed an eigenanalysis to highlight the eigenmodes of wave propagation and 'upwind' numerical fluxes on the interfaces (acoustic/acoustic and acoustic/elastic), in terms of exact solutions of relevant Riemann problems. Dorval et al. [4] conducted numerical simulations of longitudinal and shear waves' propagation through small representative elementary volumes to estimate velocity- and scattering-induced attenuation in an effective homogeneous material. Numerical results were compared to an established theoretical attenuation model. A model, recently proposed by Ru [5], defined an explicit framework for the dynamic behavior of fiber-reinforced unidirectional composites subjected to P-, SV-, and SH-waves. The approach was further refined by Basiri et al. [5] to accurately predict the dynamic behavior of composites at higher frequencies, near and beyond the bandgap region, by considering wave radiation damping. According to the Authors, the model is in good agreement with known numerical results presented in the literature.

To account for additional phenomena, i.e., to investigate the wave propagation in viscoelastic materials, the Volterra formalism has been implemented in the equations of elasodynamics [7, 8]. For this purpose, models employing fractional derivatives or fractional order operators have also been proposed [9, 10]. In some works [11-14], the linear viscoelastic behavior was determined by applying an integral Laplace transform in time, finding the solution in the space of images, and projecting it back (in the space of originals).

The investigation reported in this contribution complements a numerical analysis of the non-stationary wave process modification that results from the presence of scatterers in the continuum. The analytical modeling of the

scattering of a pulse propagating in an elastic continuum by an inclusion within a representative cell (analogous to a representative volume element) provides an alternative standpoint to that one may have based on the output of a finite-element analysis. Apart from using the Laplace transform in time, the nonstationary solution can be constructed based on a solution for a specified frequency through the evaluation of its Fourier integral [15, 16]. This approach is illustrated below.

THE PLANE PULSE IN A REPRESENTATIVE VOLUME CELL

The problem of interest is the propagation of a plane pulse in an elastic medium containing inclusions, more precisely cylindrical voids, as shown in Fig. 1.

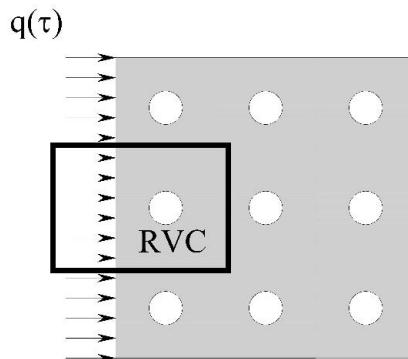


FIGURE 1. Elastic continuum with regularly distributed cylindrical voids.

where

$$q(\tau) = C \cdot (1 - e^{-s_0 \tau}), \quad \tau > 0, \quad (1)$$

C is a constant and $\tau = t/t_0$, $t_0 = a/(2c_L)$ (a shown in Fig. 2),

$$c_L = \sqrt{(\lambda + 2\mu)/\rho}, \quad (2)$$

λ, μ are the Lamé parameters,

$$\lambda = \frac{E \cdot \nu}{(1+\nu)(1-2\nu)}, \quad \mu = \frac{E}{2(1+\nu)} \quad (3)$$

ρ is the material density, E is the elasticity modulus, and ν is the Poisson's ratio.

It can be solved by applying a numerical algorithm, for example, finite-element analysis. On the other hand, for a representative volume cell (RVC), the solution can be relatively easily obtained by using an analytical approach (with numerical implementation). Therefore, an auxiliary problem is defined by isolating the RVC (Fig. 2).

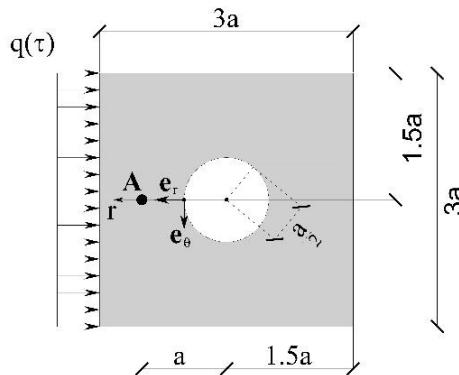


FIGURE 2. Representative volume cell for the continuum with inclusions.

In the auxiliary problem, an incident harmonic wave of amplitude A and frequency ω is be represented as follows:

$$P^{(i)} = A \sum_{n=0}^{\infty} \varepsilon_n \cdot i^n \cdot J_n(\alpha r) \cdot \cos(n\theta) \cdot e^{-i\omega t} \quad (4)$$

where J_n denotes the Bessel function of the first kind and $\alpha = \omega / c_L$. After having reached the cylindrical void, the incident P wave gives rise to reflected P- and SV waves:

$$P^{(r)} = \sum_{n=0}^{\infty} C_1 \cdot H_n^{(1)}(\alpha r) \cdot \cos(n\theta) \cdot e^{-i\omega t} \quad (5)$$

$$SV^{(r)} = \sum_{n=0}^{\infty} C_2 \cdot H_n^{(1)}(\beta r) \cdot \sin(n\theta) \cdot e^{-i\omega t} \quad (6)$$

In equations (5) and (6), $H_n^{(1)}$ denotes the Hankel function of the first kind and $\beta = \omega / c_t$, $c_t = \sqrt{\mu / \rho}$. The displacement field in the matrix can be defined by leveraging the potentials P^i (equation 2), P^r , and SV^r :

$$u_r = \frac{1}{r} \sum_{n=0}^{\infty} \left\{ A \cdot \varepsilon_n \cdot i^n \cdot \Psi_1 + C_1 \cdot \Psi_2 + C_2 \cdot n \cdot H_n^{(1)}(\beta r) \right\} \cos(n\theta) \cdot e^{-i\omega t} \quad (7)$$

with

$$\Psi_1 = \alpha r J_{n-1}(\alpha r) - n J_n(\alpha r), \quad (8)$$

$$\Psi_2 = \alpha r H_{n-1}(\alpha r) - n H_n(\alpha r). \quad (9)$$

The constants C_1 and C_2 are to be defined based on the boundary conditions on the interface between the scatterer and the matrix. Taking into account that for the void boundary, the free-surface conditions apply,

$$\sigma_{rr} = 0 \quad \text{and} \quad \sigma_{r\theta} = 0, \quad (10)$$

expressions for the corresponding stress components are required. The stress components are also defined by using the potentials defined in equations (7)-(9):

$$\sigma_{rr} = \frac{2\mu}{r^2} \sum_{n=0}^{\infty} \left\{ A \cdot \varepsilon_n \cdot i^n \cdot F_{11}^{(1)}(\alpha r) + C_1 F_{11}^{(3)}(\alpha r) + C_2 F_{12}^{(3)}(\beta r) \right\} \cos(n\theta) \cdot e^{-i\omega t}, \quad (11)$$

$$\sigma_{r\theta} = \frac{2\mu}{r^2} \sum_{n=0}^{\infty} \left\{ A \cdot \varepsilon_n \cdot i^n \cdot F_{41}^{(1)}(\alpha r) + C_1 F_{41}^{(3)}(\alpha r) + C_2 F_{42}^{(3)}(\beta r) \right\} \sin(n\theta) \cdot e^{-i\omega t}. \quad (12)$$

For the scattering boundary (i.e., $r = a / 2$) one finds:

$$F_{11}^{(1)}(\alpha r) = \left(n^2 + n - \frac{1}{2} \beta^2 \left(\frac{a}{2} \right)^2 \right) J_n \left(\alpha \frac{a}{2} \right) - \alpha \frac{a}{2} J_{n-1} \left(\alpha \frac{a}{2} \right), \quad (13)$$

$$F_{11}^{(3)}(\alpha r) = \left(n^2 + n - \frac{1}{2} \beta^2 \left(\frac{a}{2} \right)^2 \right) H_n^{(1)} \left(\alpha \frac{a}{2} \right) - \alpha \frac{a}{2} H_{n-1}^{(1)} \left(\alpha \frac{a}{2} \right), \quad (14)$$

$$F_{12}^{(3)}(\beta r) = -n(n+1) H_n^{(1)} \left(\beta \frac{a}{2} \right) + n\beta \frac{a}{2} H_{n-1}^{(1)} \left(\beta \frac{a}{2} \right), \quad (15)$$

$$F_{41}^{(1)}(\alpha r) = n(n+1) J_n \left(\alpha \frac{a}{2} \right) - n\alpha \frac{a}{2} J_{n-1} \left(\alpha \frac{a}{2} \right), \quad (16)$$

$$F_{41}^{(3)}(\alpha r) = n(n+1) H_n^{(1)} \left(\alpha \frac{a}{2} \right) - n\alpha \frac{a}{2} H_{n-1}^{(1)} \left(\alpha \frac{a}{2} \right), \quad (17)$$

$$F_{42}^{(3)}(\beta r) = - \left(n^2 + n - \frac{1}{2} \beta^2 \left(\frac{a}{2} \right)^2 \right) H_n^{(1)} \left(\beta \frac{a}{2} \right) + \beta \frac{a}{2} H_{n-1}^{(1)} \left(\beta \frac{a}{2} \right), \quad (18)$$

From equations (10)-(12), with (13)-(18), the constants C_1 and C_2 are defined:

$$C_1 = \frac{N_1}{D}, \quad C_2 = \frac{N_2}{D}, \quad (19)$$

$$N_1 = -A \cdot \varepsilon_n \cdot i^n \left[F_{11}^{(1)} \left(\alpha \frac{a}{2} \right) F_{42}^{(3)} \left(\beta \frac{a}{2} \right) - F_{12}^{(3)} \left(\beta \frac{a}{2} \right) F_{41}^{(1)} \left(\alpha \frac{a}{2} \right) \right], \quad (20)$$

$$N_2 = -A \cdot \varepsilon_n \cdot i^n \left[F_{11}^{(3)} \left(\alpha \frac{a}{2} \right) F_{41}^{(1)} \left(\alpha \frac{a}{2} \right) - F_{11}^{(1)} \left(\alpha \frac{a}{2} \right) F_{41}^{(3)} \left(\alpha \frac{a}{2} \right) \right], \quad (21)$$

$$D = F_{11}^{(3)} \left(\alpha \frac{a}{2} \right) F_{42}^{(3)} \left(\beta \frac{a}{2} \right) - F_{12}^{(3)} \left(\beta \frac{a}{2} \right) F_{41}^{(3)} \left(\alpha \frac{a}{2} \right), \quad (22)$$

Thus, the radial component of the displacement takes the form:

$$u_r = \frac{1}{r} \sum_{n=0}^{\infty} A \cdot \varepsilon_n \cdot i^n \cdot \left[\frac{\Psi_1 D - \Omega_1 \Psi_2 - \Omega_2 \cdot n \cdot H_n^{(1)}(\beta r)}{D} \right] \cos(n\theta) \cdot e^{-i\omega t}, \quad (23)$$

$$\Omega_1 = F_{11}^{(1)} \left(\alpha \frac{a}{2} \right) F_{42}^{(3)} \left(\beta \frac{a}{2} \right) - F_{12}^{(3)} \left(\beta \frac{a}{2} \right) F_{41}^{(1)} \left(\alpha \frac{a}{2} \right), \quad (24)$$

$$\Omega_2 = F_{11}^{(3)} \left(\alpha \frac{a}{2} \right) F_{41}^{(1)} \left(\alpha \frac{a}{2} \right) - F_{11}^{(1)} \left(\alpha \frac{a}{2} \right) F_{41}^{(3)} \left(\alpha \frac{a}{2} \right). \quad (25)$$

The above solution obtained for a specific value of ω can then be converted into a solution for a plane pulse as follows:

$$u_r = \frac{1}{4\pi c_1} \sum_{n=0}^{\infty} \varepsilon_n \cdot i^{n+1} \cdot \cos(n\theta) \cdot \int_{-\infty}^{\infty} \frac{1}{z} e^z \cdot U^* \cdot e^{-iz\tau} dz, \quad (26)$$

where

$$U^* = \frac{\Psi_1 D - \Omega_1 \Psi_2 - \Omega_2 \cdot n \cdot H_n^{(1)}(\beta r)}{D}. \quad (27)$$

The results are displayed in Fig. 3. For the elastic homogeneous medium, a model material is employed with elasticity modulus $E = 210000 \text{ MPa}$, Poisson's ratio $\nu = 0.3$, and density $\rho = 7850 \text{ kg/m}^3$.

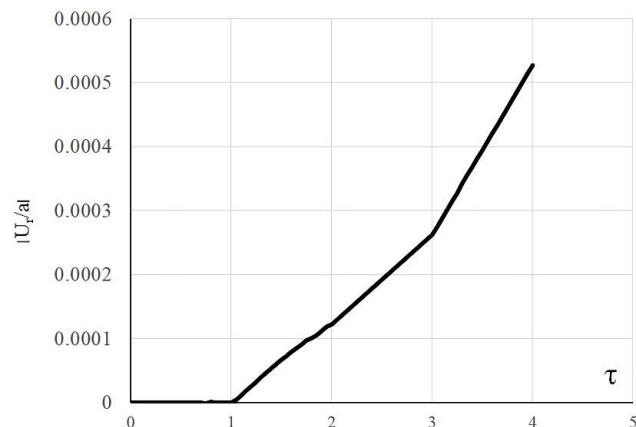


FIGURE 3. Radial displacement at point A (as defined in Fig. 2).

The displacement time history is obtained for $\Delta\tau = 0.01$. At location A, the wave arrives at $\tau = 1$ (given that the disturbance propagates with a speed c_L); at $\tau = 2$, the incident pulse reaches the void, and at $\tau = 3$, the displacement field is obtained as a superposition of components resulting from the incident disturbance and an effect due to the scattering by the void.

CONCLUSION

An analytical approach aimed at determining the non-stationary wave process in an elastic continuum generated by a plane pulse has been discussed. Specifically, a disturbance provoked by a plane pulse, as well as its scattering by an inclusion (void) of a predefined form, has been considered.

The approach prescribes to construct the non-stationary solution via a Fourier integral, leveraging the fields of interest (i.e., displacement and stress fields) obtained for the potentials associated with harmonic incident and scattered waves. As an illustration, the displacement evolution at a specified location has been obtained.

Within the forthcoming research works, the analytical approach will be enriched to take into consideration viscoelasticity and plasticity. A comparison with results obtained by finite element analysis is also presumed.

REFERENCES

1. F. Liu, A. P. Argüelles, C. Peco, A Green's function-based method for wave attenuation on random matrix-inclusion microstructures with local isotropy. *Computer Methods in Applied Mechanics and Engineering* **446**, 118334 (2025). <https://doi.org/10.1016/j.cma.2025.118334>
2. S. S. Kulkarni, A. Tabarraei, P. P. Ghag, "A finite element approach for study of wave attenuation characteristics of epoxy polymer composite," in ASME International Mechanical Engineering Congress and Exposition 52149 (American Society of Mechanical Engineers 2018, November), pp. V009T12A042
3. H. Kamalinia, A. Barbarulo, B. Tie, A coupled acoustic/elastic discontinuous Galerkin finite element method: Application to ultrasonic imaging of 3D-printed synthetic materials. *Computers & Structures* **291**, 107208 (2024). <https://doi.org/10.1016/j.compstruc.2023.107208>
4. V. Dorval, N. Leymarie, A. Imperiale, E. Demaldent, P. E. Lhuillier, Numerical estimation of ultrasonic phase velocity and attenuation for longitudinal and shear waves in polycrystalline materials. *Ultrasonics* **148**, 107517.7 (2025). <https://doi.org/10.1016/j.ultras.2024.107517>
5. C. Q. Ru, A direct method for wave propagation in elastic fiber composites. *Mathematics and Mechanics of Solids* **28**(10), 2242-2255 (2023). <https://doi.org/10.1177/10812865231158589>
6. A. Basiri, C. Q. Ru, P. Schiavone, A refined analytical model for acoustic waves in elastic fiber composites. *Mathematics and Mechanics of Solids*, 10812865251336256 (2025). <https://doi.org/10.1177/10812865251336256>

7. Y. N. Rabotnov, *Elements of Hereditary Solid Mechanics* (Nauka Publishers, Moscow, 1977). [in Russian]
8. M. H. Ilyasov, Dynamical torsion of viscoelastic cone. TWMS J. Pure Appl. Math **2**(2), 203-220 (2011).
9. Y. A. Rossikhin, M. V. Shitikova, and P. T. Trung, Analysis of the Viscoelastic Sphere Impact against a Viscoelastic Uflyand-Mindlin Plate considering the Extension of Its Middle Surface. Shock and Vibration, **2017**(1), 5652023 (2017). <https://doi.org/10.1155/2017/5652023>
10. F. Mainardi, *Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models* (World Scientific, 2022).
11. L. A. Igumnov, E. A. Korovaytseva, and S. G. Pshenichnov, (2021) “Dynamics, Strength of Materials and Durability in Multiscale Mechanics,” in *Advanced Structured Materials-2021*, (Springer Nature, Switzerland AG, 2021), 137, pp. 89-96.
12. I. Colombaro, A. Giusti, F. Mainardi, On transient waves in linear viscoelasticity. Wave Motion **74**, 191-212 (2017). <https://doi.org/10.1016/j.wavemoti.2017.07.008>
13. R. Christensen, *Theory of viscoelasticity: an introduction* (Elsevier, 2012).
14. J. D. Achenbach, Vibrations of a viscoelastic body. AIAA journal **5**(6), 1213-1214 (1967). <https://doi.org/10.2514/3.4173>
15. S. K. Kanaun, V. M. Levin, and F. J. Sabina, Propagation of elastic waves in composites with random set of spherical inclusions (effective medium approach). Wave motion **40**(1), 69-88 (2004). <https://doi.org/10.1016/j.wavemoti.2003.12.013>
16. A. C. Eringen, E. S. Suhubi, *Elastodynamics, vol. II* (Academic Press, New York, 1975).