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Abstract. Scattering of non-stationary waves propagating in a continuum by inclusion is discussed. More precisely, the 

reflection of a plane pulse by a cylindrical void in an elastic medium is considered. An analytical approach presuming the 

construction of a non-stationary problem based on a solution for a harmonic wave is borrowed. In the initial 

approximation, a P-wave incident on the cylinder generates reflected P- and SV waves. The potentials of the incident and 

reflected waves give rise to a displacement and stress field in the continuum. In the reported study, the displacement field 

is considered. The solution obtained for a given frequency of the incident wave is generalized for a pane pulse by 

applying the Fourier integral. The displacement time history at a specified location is then monitored. The study appears 

as part of a numerical investigation into the transient wave process in a continuum due to the presence of scatterers, 

offering an alternative point of view to that based on finite-element analysis. 

INTRODUCTION 

A number of models have been proposed recently to assess the dynamic properties of composites based on the 

scattering properties of the inclusions. Liu et al. [1] developed a numerical Green’s function-based approach to 

characterize the attenuation in two-phase matrix-inclusion microstructures. The authors compared the outcomes of 

the numerical and analytical solutions for various cases defined, assuming both phases are isotropic, with a constant 

density, and by varying density and elasticity. The authors concluded that numerical and analytical approaches are in 

good agreement if presuming differences in elastic properties only. Kulkarni et al. [2] investigated the propagation 

of ultrasonic waves in a polymer matrix composite with a dispersed phase of inclusions, using the finite element 

method. The effect of various factors (such as size, volume fraction of inclusions, and addition of interphase layer) 

on the attenuation characteristics of ultrasonic longitudinal waves in the matrix was investigated for harmonic waves 

by varying their frequency in the range of 1 - 4 MHz. Kamalinia et al. [3] presented a derivation of upwind 

numerical fluxes for the space discontinuous Galerkin finite-element method, for numerical modeling of wave 

propagation in multidimensional coupled acoustic/elastic media. They performed an eigenanalysis to highlight the 

eigenmodes of wave propagation and ‘upwind’ numerical fluxes on the interfaces (acoustic/acoustic and 

acoustic/elastic), in terms of exact solutions of relevant Riemann problems. Dorval et al. [4] conducted numerical 

simulations of longitudinal and shear waves’ propagation through small representative elementary volumes to 

estimate velocity- and scattering-induced attenuation in an effective homogeneous material. Numerical results were 

compared to an established theoretical attenuation model. A model, recently proposed by Ru [5], defined an explicit 

framework for the dynamic behavior of fiber-reinforced unidirectional composites subjected to P-, SV-, and SH-

waves. The approach was further refined by Basiri et al. [5] to accurately predict the dynamic behavior of 

composites at higher frequencies, near and beyond the bandgap region, by considering wave radiation damping. 

According to the Authors, the model is in good agreement with known numerical results presented in the literature. 

To account for additional phenomena, i.e., to investigate the wave propagation in viscoelastic materials, the 

Volterra formalism has been implemented in the equations of elasodynamics [7, 8]. For this purpose, models 

employing fractional derivatives or fractional order operators have also been proposed [9, 10]. In some works  [11- 

14], the linear viscoelastic behavior was determined by applying an integral Laplace transform in time, finding the 

solution in the space of images, and projecting it back (in the space of originals).  

The investigation reported in this contribution complements a numerical analysis of the non-stationary wave 

process modification that results from the presence of scatterers in the continuum. The analytical modeling of the 
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scattering of a pulse propagating in an elastic continuum by an inclusion within a representative cell (analogous to a 

representative volume element) provides an alternative standpoint to that one may have based on the output of a 

finite-element analysis. Apart from using the Laplace transform in time, the nonstationary solution can be 

constructed based on a solution for a specified frequency through the evaluation of its Fourier integral [15, 16]. This 

approach is illustrated below. 

THE PLANE PULSE IN A REPRESENTATIVE VOLUME CELL 

The problem of interest is the propagation of a plane pulse in an elastic medium containing inclusions, more 

precisely cylindrical voids, as shown in Fig. 1. 

 

FIGURE 1. Elastic continuum with regularly distributed cylindrical voids. 

where 

 ( ) ( )501q C e  −=  − ,   0  , (1) 

C  is a constant and 0/t t = ,  ( )0 / 2 Lt a c=  ( a  shown in Fig.2),  

 ( )2 /Lc   = + , (2) 

,   are the Lamé parameters, 
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 is the material density, E  is the elasticity modulus, and   is the Poisson’s ratio. 

It can be solved by applying a numerical algorithm, for example, finite-element analysis. On the other hand, for a 

representative volume cell (RVC), the solution can be relatively easily obtained by using an analytical approach 

(with numerical implementation). Therefore, an auxiliary problem is defined by isolating the RVC (Fig. 2). 
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FIGURE 2. Representative volume cell for the continuum with inclusions. 
 

In the auxiliary problem, an incident harmonic wave of amplitude A  and frequency   is be represented as 

follows: 
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where 
nJ  denotes the Bessel function of the first kind and / Lc = . After having reached the cylindrical void, the 

incident P wave gives rise to reflected P- and SV waves: 
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In equations (5) and (6), ( )1
nH  denotes the Hankel function of the first kind and / tc = , /tc  = . The 

displacement field in the matrix can be defined by leveraging the potentials Pi (equation 2), Pr, and SVr: 
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with  
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 ( ) ( )2 1n nrH r nH r  − = − . (9) 

 

The constants 
1C  and 

2C  are to be defined based on the boundary conditions on the interface between the scatterer 

and the matrix. Taking into account that for the void boundary, the free-surface conditions apply,  

 0rr =    and    0r = , (10) 

expressions for the corresponding stress components are required. The stress components are also defined by using 

the potentials defined in equations (7)-(9): 
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For the scattering boundary (i.e., / 2r a= ) one finds: 
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From equations (10)-(12), with (13)-(18), the constants 
1C  and 

2C  are defined: 
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Thus, the radial component of the displacement takes the form: 
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The above solution obtained for a specific value of   can then be converted into a solution for a plane pulse as 

follows: 

( )1

01

1 1
cos *

4

n z iz

r n

n

u i n e U e dz
c z

 



+ −

= −

=       , (26) 

where 
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The results are displayed in Fig. 3. For the elastic homogeneous medium, a model material is employed with 

elasticity modulus 210000E MPa= , Poisson’s ratio 0.3 = , and density  
37850 /kg m = . 
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FIGURE 3. Radial displacement at point A (as defined in Fig. 2). 
 

The displacement time history is obtained for 0.01 = . At location A, the wave arrives at 1 =  (given that the 

disturbance propagates with a speed 
Lc ); at 2 = , the incident pulse reaches the void, and at 3 = , the 

displacement field is obtained as a superposition of components resulting from the incident disturbance and an effect 

due to the scattering by the void. 

CONCLUSION 

An analytical approach aimed at determining the non-stationary wave process in an elastic continuum generated 

by a plane pulse has been discussed. Specifically, a disturbance provoked by a plane pulse, as well as its scattering 

by an inclusion (void) of a predefined form, has been considered.  
The approach prescribes to construct the non-stationary solution via a Fourier integral, leveraging the fields of 

interest (i.e., displacement and stress fields) obtained for the potentials associated with harmonic incident and 

scattered waves. As an illustration, the displacement evolution at a specified location has been obtained. 
Within the forthcoming research works, the analytical approach will be enriched to take into consideration 

viscoelasticity and plasticity. A comparison with results obtained by finite element analysis is also presumed. 
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