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Abstract. Simple unified analytical solution is presented for the lifetime of cylindrical, spherical, and toroidal vessels 

subjected to one- or double-sided mechanochemical corrosion under internal and external pressure. This solution provides 

sufficiently accurate results for perfect cylindrical and spherical vessels, while for toroidal vessels it gives approximate 

estimates based on the weakest cross-section principle. The obtained solution reflects the difference in the hoop stresses at 

the inner and outer surfaces of the vessels and the effect of hydrostatic pressure (i.e. minimum of the internal and external 

pressures) on the vessel lifetime. It is shown that high hydrostatic pressure may noticeably reduce the durability of the 

vessels or, on the contrary, slightly increase it. The need for an integrated approach – using different methods – to solving 

such problems is emphasized. 

INTRODUCTION 

Most structures are routinely exposed to both chemically active environment and mechanical loads. This often 

causes general or localized corrosion of materials, facilitated by mechanical stresses. Some other stress-assisted 

processes of material degradation were discussed, e.g., in [1–6]. The present paper concerns mechanochemical 

corrosion that is general anodic dissolution of metals, accelerated by elastic stresses [7], assuming electrochemical 

homogeneity of the entire surface.  

Corrosion Kinetics Models 

One of the first models of mechanochemical corrosion kinetics is the phenomenological model of Dolinskii [8]: 

 ( ) ( )v s a m s= +  (1) 

where v  is the corrosion rate at point s  of the corroding surface, a  (the corrosion rate of unstressed metal) and m  

are empirical constants,   is an equivalent stress which is usually accepted as either the first principal stress (or that 

of the maximum absolute value) or the von Mises stress. 

Well-known Gutman’s model [7] 
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was obtained from theoretical considerations and confirmed by direct experimental measurements; here, 0v  is the 

corrosion rate of unstressed metal, V  is the molar volume of the material, gR  is the universal gas constant, and T  

is the absolute temperature. Later, this model was combined with the Arrhenius type law (referring to [9]) to more 

accurately reflect the temperature effect [10]: 
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c
E  and 

0c
E  are the effective activation energy of the corrosion process 

and its reference value, respectively, 
c

T  and 
0T  are the absolute temperature and its reference value; 

0v  is the 

corrosion rate of non-stressed material at 0c cE E=  and 0T T= .  

The Dolinskii model was also extended to reflect the temperature effect when temperature T  exceeds a certain, 

experimentally determined, threshold thT  [11]:  
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Here,   is an empirical constant. 

To reflect the effect of the corrosion inhibition with time t , an exponential factor (e.g., with an empirical 

coefficient b ) is often introduced [12]; in combination with model (1) this yields: 

 ( )( ) ( ) exp( )v s a m s bt= + −  (5) 

Pavlov [12]  also established the existence of the threshold stress th  such that  
0( )v s v=  at 

th   and (1) holds 

at
th  , where 

0

tha v m= − , 
0v  is the corrosion rate of unstressed metal; he emphasized that, in general, the 

constants m   and  th  are different for tensile and compressive stresses and sign signm =   [12]. However, according 

to Gutman, the concept of "a threshold stress" for the general corrosion may be raised not for scientific reasons but 

because of the limited sensitivity of measuring equipment. Most authors accept it being equal to zero. This does not 

contradict with the existing solutions involving arbitrary th  (e.g., [13]): this constant can be set equal to zero or 

treated as an adjustable parameter in approximations of non-linear dependences of corrosion rate on the stress (e.g., 

introduced in [7,14], or other ones describing experimental data) by a pies-wise function.  

Several models were developed incorporating the effect of anti-corrosion protective coatings. Among them is the 

model [15] 
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where d , c , and   are the long-term thickness of the corrosion wastage, coating life, and the transition time, 

correspondingly. Comparing (6) with Pavlov’s factor exp( )bt−  yields 1/b =  . In this and other models (e.g. [16]), 

it is assumed that corrosion does not occur for a certain period c , whereas fuzzy model [17] of corrosive wear, 

accounting for the gradual decrease in coating protective properties, assumes that the wear occurs even under coatings. 

Some issues related to the stability of coatings are considered in [18,19]. Authors of [16] generalized model (6) : 
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 (7) 

which may reflect non-monotonic behavior of corrosion rate with time (although it was originally intended to describe 

somewhat different effects). 

All the considered factors may be combined in the following generalized model: 
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where ( )g t  is defined by the second line of the right-hand side of eq. (7) if    , or ( ) constg t =  ( a or 
0v ) if 

corrosion does not decrease with time ( =  ); in a particular case of monotonous decay of corrosion rate ( 1 = ), 

one can use Dolinskii and Pavlov’s designation: ( )( ) exp [ ]cg t a b t = − − . Function ( , )f T  is defined by the right-

hand side of one of eqs. (1), (4) normalized to a  or eqs. (2), (3) normalized to 
0v   [20]. The constant   entering (4) 

may also be a function of the temperature (since formation of the protective layer of corrosion products or precipitates 

may be accelerated by higher temperature). 
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Note that the linear dependence (1) of corrosion rate on stress may be considered as a linear approximation of 

dependence (2), where 
0a v=  and m  is determined from the expansion of the right-hand side of (2) in a Taylor series 

[21]. 

There also exist several models taking into account plastic deformations, but since we focus on the elastic behavior 

of pressure vessels, we do not list them here. 

SOLUTIONS FOR THE LIFETIME OF PRESSURE VESSELS SUBJECTED TO 

MECHANOCHEMICAL CORROSION 

Usually, mechanochemical corrosion of structures is simulated using various numerical procedures. However, for 

some special shapes, closed-form solutions may be found. Due to structural instability of the problems of general 

stress-assisted corrosion, they are often solved assuming a specific shape of a corroding surface or under the 

assumption of the constancy of the mid-surface of elements [10,11,22–28]. For local corrosion, the shape of pittings 

is also often predefined [29–32] (note that the models discussed in the present paper are only applicable to general 

corrosion). Modeling corrosion without such assumptions significantly complicates the problem [33,34].   

Analytical Solutions  

First closed-form solutions for thin-walled cylindrical and spherical vessels under pressure, utilizing models (1) or 

(2) were reported (in Russian) by Gutman, Karpunin and Kornishin, Ovchinnikov and Petrov with co-authors 

[22,23,35]. Elegant solutions for thick-walled cylindrical and spherical vessels using model (2) were obtained in [35],  

with   being the mean hydrostatic stress. Paper [10] presents the solution for a thin-walled sphere utilizing model 

(3), thermoelastic stresses not being involved in the analysis. The above-mentioned solutions do not reflect the change 

in stresses across the shell thickness and therefore its effect – albeit weak – on the corrosion rates on the internal and 

external surfaces. The approach to accounting for these changes, as well as some other factors, in analytical solutions 

was proposed by Pronina [36,37]; we mention some of these solutions and their features: 

 

• Accurate solutions [36,38] for thick-walled cylindrical and spherical vessels with additional account for the 

elasto-plastic transition and corrosion inhibition, utilizing model (5) with the von Mises stress for the 

equivalent one; 

• Unified accurate solutions [39] for thick-walled cylindrical and spherical vessels with additional account for 

various temperature effects (including thermoelastic stresses), presence of anti-corrosion coatings, and 

possible corrosion inhibition, utilizing combination of models (4) and (6) with the maximum principal stress 

for the equivalent one;  

• Unified simplified solutions [20] for thin-walled cylindrical and spherical vessels with additional account for 

various temperature effects (including thermoelastic stresses and thermal softening of the material), anti-

corrosion coatings, non-monotonic corrosion inhibition, and effect of hydrostatic component of the internal 

and external pressures, utilizing general model (8) (various combinations involved) with the maximum 

principal stress for the equivalent one. 

 

These results include previously obtained solutions as simple special cases.  

There also exist a couple of approximate closed-form estimates for more complex shapes of pressure vessels. 

Сlosed-form solution for a short thin-walled cylindrical vessel with elliptical cross-section and variable wall thickness 

was obtained by Gutman with co-authors [24], utilizing model (2). Ilyin and Pronina [34] found approximate analytical 

solutions for toroidal shells under pressure, using model (1). 

Since the present article focuses on the effect of hydrostatic pressure (minimum of the internal and external 

pressures) on the lifetime of pressure vessel, the equivalent stress entering into eq. (1) should be chosen as the 

maximum, in absolute value, principal stress (using the von Mises stress in eq. (1) does not allow one to account for 

the effect of hydrostatic pressure [40]). For comparative analysis we consider simplest solutions that do not take into 

account effects of inhibition, protective coatings and various temperature effects.  
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Formulation of the problem 

We consider a thin-walled pressure vessel of cylindrical, spherical or toroidal shape under internal 
ip  and external 

op  pressure. Let the instantaneous thickness of the vessel be denoted by ( )h h t=  and the mean radius of the cross-

section by 
cr , which is assumed to be constant (the effects of this assumption was studied in [34,39]). Mean toroidal 

radius (radius of curvature of the axis of the torus pipe) is denoted by R . Edge effects are not taken into account. 

Thickness h  decreases with time t  due to double-sided mechanochemical corrosion with the rates described by eq. 

(1), where 
ia , 

oa im , and 
om  are the corrosion kinetics constants for the inner (marked with subscript i) and outer 

(marked with subscript o) surfaces of the vessels, correspondingly. Important that for cylindrical and spherical vessels, 

the thickness decreases uniformly over the entire mid-surface of the shell, whereas the decrease in the thickness of the 

toroidal shell depends on the circumferential coordinate of its cross-section. To obtain closed-form estimates of its 

lifetime (approximate solution), the principle of “the weakest cross-section” is used, considering cases when the 

maximum, in absolute value, principal stress is at the torus intrados (points closest to the axis of the torus revolution); 

the range of physical parameters satisfying this condition is determined in [34]. The maximum, in absolute value, 

principal stress is used as the equivalent stress in eq. (1), considering only the cases when it is the hoop stress. 

Unified solution of the problem 

Detailed solutions of these problems and discussion of the range of their applicability are presented in [20] for 

cylindrical and spherical vessels and in [34] for toroidal ones. Here we present the combination of these solutions for 

vessels of the three types in the unified form: 
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For a torus (“thick-shell” solution) 
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  is the Poisson ratio.  

In cases of one-sided corrosion, the corresponding corrosion kinetics constants should be equated to zero ( ia  and 

im  for external corrosion; oa  and om  for internal one). For the stress-independent corrosion ( 0i om m= = ), the last 

term in the right-hand-side of eq. (9) disappears and the solutions are the same for all the vessels with the same cross-

section geometry. 

Equation (9) provides one-to-one correspondence between the thickness h  and time t . Stresses at any time t can 

then be calculated by the refined formulas of the shell theory presented in [20,34]; for example, maximum stresses at 

the internal surface can be written in the unified form as follows 

 
ic

h

p r
Y =


+   (15) 

where Y  and 
i  are defined by the above equations for cylinder (11), sphere (12), and torus (13) or (14). 
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The lifetime of the vessel may be estimated by substituting for h  in eq. (9) – the critical value of the thickness 

equal to  *

minmax ,h h , where 
minh  is the minimum allowable thickness and 

*h is the thickness corresponding to the 

maximum allowable stress *  in the vessel. The latter is given by the equation 

 
*

* i

cpr
h Y

 



−
=  (16) 

which is obtained by equating (15) to * . Note that there is a misprint in similar eq. (67) in [20]: the factor Y  is lost. 

Important that these solutions reflect the effects of the hydrostatic pressure  min ,
i o

p p p=  and the difference in 

stresses on the inner and outer surfaces.  

Results based on these solutions for cylindrical and spherical vessels are practically coincide with the accurate 

solutions [39], while solutions for toroidal vessels are approximate, reflecting its behavior only at the intrados and 

neglecting gradual increase in stress concentration and possible local bending (relative errors for both solutions are 

discussed in [34]; note, however, that computational results for mechanochemical wear in [34] provide noticeably 

underestimated lifetime, and the difference between the numerical and analytical predictions is mostly caused by 

inaccuracy of the numerical solution; our refined computational scheme gives the results more close to the analytical 

one). 

Notes on Numerical Solutions 

Due to structural instability of the problems of mechanochemical corrosion, computational procedures often do 

not converge, unless additional simplifying hypotheses (for example, the ones of thin shell theory) are accepted.  

Modeling the behavior of compound pressure vessels including toroidal part, based on the numerical solution of the 

equations of thin-shell theory, is presented, e.g., in [28]. In general cases, since corrosion kinetics models are very 

sensitive to stress fluctuations caused by both physical reasons and inaccuracies of numerical methods (e.g., FEM), 

the challenging problem is separating the “true” (physically justified) mechanochemical effect from the “false” one 

(caused by inherent errors of a numerical method). Accumulation of errors for thousands of time steps may result in 

the false loss of stability of the shape of the corroding surface (local intensification of corrosion – see Fig. 1, or even 

formation of loops on the boundary). Some problems of FEM-based corrosion modeling using as an example toroidal 

vessels under pressure are discussed in [34]. Even relatively minor changes in computational procedures incorporating 

FEM may result in different predictions for the same problem (even when reproducibility of results for each scheme 

was observed on several meshs). Another major factor adding to unreliability of results is human factor (which 

manifested itself in the numerical results in [34]). This emphasizes the role of analytical solutions which provide 

quantitative estimates of parameters of interest, and highlights the need for an integrated approach – using different 

methods – to solving such problems. Some approaches to modeling stress-dependent dissolution without accepting 

simplifying assumptions were proposed in [33,41]. Note, however, that models of general corrosion are not applicable 

to simulation of microscale defects or roughness in metals. For this reason, the models considered in the present paper 

may be used until the noticeable localization of corrosion develops.  

We add that in scientific literature, the term localization may be understood in different meanings:  

• Chemical reaction occurs only on part of the surface (e.g. pitting corrosion [42]); 

• Reaction covers the entire surface, but is more intense on some parts of it [43,44].  

• Volumetric chemical reactions are localized at the front of the phase transformation zone [5]. 

 

 
 

FIGURE 1. Example of false loss of stability of the shape of an initially circular corroding surface. 
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RESULTS OF COMPUTATIONS 

Figure 2 shows the dependences of the vessels thickness and the maximum, in absolute values, stresses on time 

for spherical, cylindrical, and toroidal vessels at constant p  and various  min ,
i o

p p p= . The following parameters 

were used for calculations: 0.1[ / ]i o c ca a l t= = ; / 200[ / ( )]i o c c cm m a l t p= = ; 80[ ]c cr l= , 
0 / 20ch r= , and * 300[ ]cp = , 

where , ,c c cl t p  are conventional units of length, time, and stress. 

In contrast to solutions based on conventional formulas of thin shell theory, the unified analytical solution 

presented in the previous section reflects the effect of hydrostatic component of internal and external pressures

 min ,
i o

p p p= . Pressure  min ,
i o

p p p=  shortens the lifetime of the vessels at the negative p  and prolongates at 

the positive one, however, at small p this effect is weak. As one can see from the comparison of dependences ( )h t  and 

( )t  in Fig. 2, under the considered conditions, the ultimate stress *  is reached in the vessels when their thickness 

is relatively small, therefore, their lifetime should be defined by the criterion of minimal allowable thickness, i.e. by 

points of intersection of the dependences ( )h t  with the line minh h=  (in Fig. 2 
min 0 / 2h h= ).  

Another important circumstance is that at  0p  , buckling of shells may occur. According to the classical theory 

of shell stability, under the considered conditions, spherical and toroidal vessels are stable at 
0 / 2h h , but at smaller 

*

0[ , / 2]h h h , the toroidal shells will lose their stability. Straight cylindrical vessel is unstable even at 
0 / 2h h . Note 

that the critical minimum shell thickness corresponding to the loss of stability of shells of non-uniform thickness may 

be larger than that calculated for shells with uniform wall thickness. Thus, the lifetime of a shell should be determined 

as the minimum  

  *
,min ,h st
tt t , (17) 

where 
*
, ,h

tt  and 
stt  are times corresponding to the maximum allowable stress 

* , the minimum allowable thickness 

minh , and buckling of the shell, correspondingly. Estimates of the lifetime in accordance with any other criteria may 

be added into (17), including manufacturer's warranty period. 

The presented solutions are sufficiently accurate for perfectly circular cylindrical and spherical vessels, but in case 

of even slight imperfections, lifetime of the vessels may be essentially shorter [45]. For toroidal vessels, lifetime 

determined by this solution is also overestimated, because of the non-uniformity of the corrosive wear and increasing 

stress concentration [34]. Despite the fact that the estimated lifetime of toroidal vessels of relatively large mean 

toroidal radii R  are close to the lifetime of pipes of the same cross-section (which may be considered as tori of an 

infinite radius R ), it is reasonable to evaluate it also using numerical methods (e.g. by FEM-based procedures) to 

assess the possibility of corrosion localization and bending of the vessel wall. 

CONCLUSION 

Simple unified analytical solution is presented for the lifetime of cylindrical, spherical, and toroidal vessels 

subjected to one- or double-sided mechanochemical corrosion under internal and external pressure. Since the stress 

state of a torus depends on the circumferential coordinate, this solution gives an approximate estimate of its lifetime 

based on the principle of the weakest cross-section, considering its behavior in the intrados and neglecting gradual 

stress concentration increase and possible local bending. For perfectly circular cylindrical and spherical vessels, this 

solution provides sufficiently accurate results. The obtained solution reflects the difference in the hoop stresses at the 

inner and outer surfaces of the vessels and the effect of hydrostatic pressure (i.e. minimum of the internal and external 

pressures) on the vessel lifetime. It is shown that high hydrostatic pressure may noticeably reduce the durability of the 

vessels, or, on the contrary, slightly increase it. The need for an integrated approach – using different methods – to 

solving such problems is emphasized. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

FIGURE 2. Dependences of the vessels thickness h  normalized to 0h  and maximum, in absolute values, hoop stresses   

normalized to *  on time t  for spherical (a), cylindrical (b) and toroidal vessels of 5
c

R r=  (c) and 2
c

R r=  (d).  

Dashed lines: 3[ ]cp p = − ; 50, 10, 0[ ]i cp p p= =  (for curves from left to right).  

Solid lines: 3[ ]cp p = ; 0, 10[ ]o cp p p= =  (for curves from left to right). 
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