

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Methods of Assessing Technical Conditions of Earth Dams Based on Space Monitoring Data

AIPCP25-CF-AMSMT2025-00009 | Article

PDF auto-generated using **ReView**

Methods of Assessing Technical Conditions of Earth Dams Based on Space Monitoring Data

Karim Sultanov^{1, a)}, Sadillakhon Umarkhonov^{1, b)} and Farkhadjan Adilov^{1, c)}

¹*Institute of Mechanics and Seismic Stability of Structures named after M.T. Urazbaev, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan*

^{a)} Corresponding author: sultanov.karim@mail.ru

^{b)} umarkhonov@gmail.com

^{c)} adilovfarhadzan@gmail.com

Abstract. This scientific study investigates the stress-strain state of the Tashkent earth dam and presents a methodology for determining the strength characteristics of the dam's material. The displacements of the earth dam were assessed by comparing them with results from satellite monitoring. The rigidity of the dam was gradually increased until the displacements aligned with the satellite data, and this value was accepted as accurate.

INTRODUCTION

To assess the strength and stability of dams, it is essential to have reliable data on their geometric and physical-mechanical characteristics. In many cases, only the original design data concerning these attributes is available. Additionally, since many dams are quite old, their characteristics may have changed significantly over time, and information regarding these changes is often lacking.

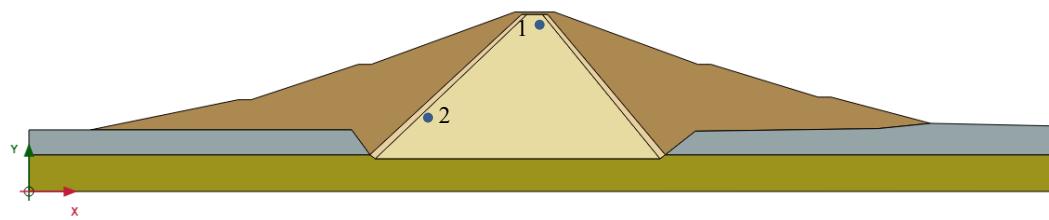
Since 2019, Uzbekistan has been continuously monitoring the condition of approximately 30 dams located in seismic areas using satellite technology. The results from this ongoing space monitoring indicate the displacement of specific points on the dam in two directions: vertically towards the base and horizontally along designated axes. These measurements of displacement are correlated with the water levels in the reservoirs. The data obtained reflect the actual static conditions caused by hydrostatic water pressure and the weight of the dam itself.

To further analyze the displacements, numerical methods were employed using the PLAXIS 2D software package. The displacement values recorded during the space monitoring were taken as accurate. By comparing these actual displacement values with those calculated numerically, and by adjusting the initial input data through a method of successive approximation, satisfactory agreement was achieved within specified accuracy limits. The initial data that aligned within a 5-10% accuracy range was considered to accurately represent the current technical conditions of the dam.

The stress-strain state of the dam was assessed using actual initial data. By considering the stress-strain conditions under various hydrostatic water pressures, Mohr-Coulomb circles were plotted. These circles help determine the strength characteristics of the soil, which are essential for calculating the stability of the slopes of an earth dam.

Using results from continuous monitoring, we can evaluate the technical condition of the dam and obtain values for the physical and mechanical characteristics of the soil. This information is critical for assessing the strength and stability of the dam, taking into account factors such as its weight, the moisture content of the soil, and the hydrostatic pressure exerted by the water in the reservoir.

Earth dams are vital for society, providing drinking water, electricity, and irrigation for agricultural lands. Given the enormous size of these structures, calculating their strength and stability presents practical challenges. Therefore, such large structures are primarily studied theoretically, and numerical models are developed and implemented to aid in this process. Numerous studies have been conducted around the world to date [1-16]. Models of soils have been created in elastic and elastic-plastic statements. When calculating the stress-strain state and stability of earth dams, the physical and mechanical properties of the materials play a crucial role. It is important to note that the properties


of earth dams at the time of their design often differ from those calculated years after construction. Consequently, it is necessary to reassess soil properties based on their current real state. This task requires specialized expertise and resources.

MATERIALS, METHODS, AND OBJECT OF STUDY

To analyze the stress-strain state of earth dams, several numerical methods were employed, including the finite difference method, the finite element method, and the boundary conditions method. In this study, the stress-strain state of the Tashkent earth dam was examined, taking into account both its weight and the water pressure acting on it. The Plaxis 2D software package, based on the finite element method, was utilized for this analysis.

Determining the Strength Characteristics of Earth Dams. The strength characteristics of earth dams were determined using the Mohr-Coulomb criterion, which is defined as:

$$\tau = \sigma \tan(\varphi) + c. \quad (1)$$

Point coordinates: 1 - (154,2; 50,6); 2 - (119,8; 25,1).

FIGURE 1. Selected points where plastic deformation occurs

The principal stresses are determined by the following formulas for each point (Fig. 1):

$$\begin{aligned} \sigma_1 &= \frac{1}{2} \left[(\sigma_x + \sigma_y) + \sqrt{(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2} \right], \\ \sigma_2 &= \frac{1}{2} \left[(\sigma_x + \sigma_y) - \sqrt{(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2} \right]. \end{aligned} \quad (2)$$

The coordinates of the points of the circles and the radii of the circles for plotting the Mohr-Coulomb graph are determined by the following formulas:

$$x_1 = \frac{\sigma_1^I + \sigma_2^I}{2}, \quad x_2 = \frac{\sigma_1^{II} + \sigma_2^{II}}{2}, \quad (3)$$

$$R_1 = \left| \frac{\sigma_1^I - \sigma_2^I}{2} \right|, \quad R_2 = \left| \frac{\sigma_1^{II} - \sigma_2^{II}}{2} \right|, \quad (4)$$

where x_1, x_2 are the coordinates of the center of the first and second circles, R_1 and R_2 are the radii, σ_1^I and σ_2^I are the principal stresses at the first point, σ_1^{II} and σ_2^{II} are the principal stresses at the second point.

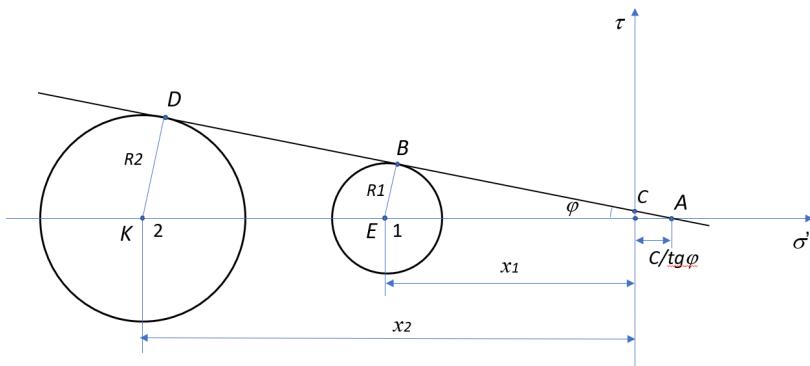


FIGURE 2. Plotting the Mohr-Coulomb circles by the values of the principal stresses at two points

From the right triangle ABE, we can write the following (Fig. 2):

$$\frac{R_1}{\frac{c}{\operatorname{tg}(\varphi)} + x_1} = \sin(\varphi), \quad (5)$$

$$R_1 = \left(\frac{c}{\operatorname{tg}(\varphi)} + \frac{\sigma_1^I + \sigma_2^I}{2} \right) \sin(\varphi), \quad (6)$$

$$\frac{\sigma_2^I - \sigma_1^I}{2} = \left(\frac{c}{\operatorname{tg}(\varphi)} + \frac{\sigma_1^I + \sigma_2^I}{2} \right) \sin(\varphi), \quad (7)$$

$$\sigma_2^I - \sigma_1^I = (\sigma_1^I + \sigma_2^I) \sin(\varphi) + 2c \cos(\varphi). \quad (8)$$

The same can be written from the right triangle ADK for the second point (Fig. 2):

$$\sigma_2^{II} - \sigma_1^{II} = (\sigma_1^{II} + \sigma_2^{II}) \sin(\varphi) + 2c \cos(\varphi). \quad (9)$$

Let us introduce the following notations:

$$\sigma_2^I - \sigma_1^I = a, \quad \sigma_1^I + \sigma_2^I = b, \quad (10)$$

$$\sigma_2^{II} - \sigma_1^{II} = d, \quad \sigma_1^{II} + \sigma_2^{II} = e, \quad (11)$$

then equations (8) and (9) take the following form:

$$\begin{aligned} a &= b \sin(\varphi) + 2c \cos(\varphi), \\ d &= e \sin(\varphi) + 2c \cos(\varphi). \end{aligned} \quad (12)$$

If we subtract the second equation from the first, we obtain:

$$a - d = (b - e) \sin(\varphi), \quad (13)$$

$$\varphi = \arcsin\left(\frac{a - d}{b - e}\right), \quad (14)$$

$$c = \frac{a - b \sin(\varphi)}{2 \cos(\varphi)}. \quad (15)$$

In Plaxis 2D, the total stress is expressed as follows (Terzaghi's principle):

$$\sigma_{total} = \sigma' + u, \quad (16)$$

Here σ_{total} - is the total stress, σ' is the effective stress, u -is the pore pressure (the pressure of water in the pores of the soil).

To create an algorithm for determining (c) and (ϕ), formulas (1) through (15) were utilized. If the effective stress components at any two points in the dam's cross-section are known, the principal stresses can be calculated using formulas (2) and (3). By sequentially applying equations (4) to (15), it is possible to determine the values of cohesion and the friction angle.

STATEMENT OF THE PROBLEM

An analysis was conducted on the stress-strain state of the dam at the Tashkent Reservoir, which is situated in the Tuyabogiz mound of the Urta-Chirchik district in the Tashkent region. The reservoir receives its water from the Akhangaron River and was filled in 1963. Along the northern shore of the reservoir, there is an urban-type settlement called Tuyabuguz. The Tashkent-Bekabad highway runs along the crest of the dam.

A static analysis was conducted to assess the stress-strain state of earth dams under the effects of their own weight and water pressure. The analysis considered a scenario where the water level reached 51.2 meters. The modulus of elasticity for the prism and the dam foundation was taken as $E_{prism} = 500$ MPa, $E_{base} = 700$ MPa. The strength of the earth dam was evaluated. The problem was analyzed using a two-dimensional coordinate system in a plane-strain formulation. The calculation scheme is illustrated in Fig. 3. The Mohr-Coulomb model was employed as the soil model, and the physical and mechanical parameters of the dam are summarized in Table 1.

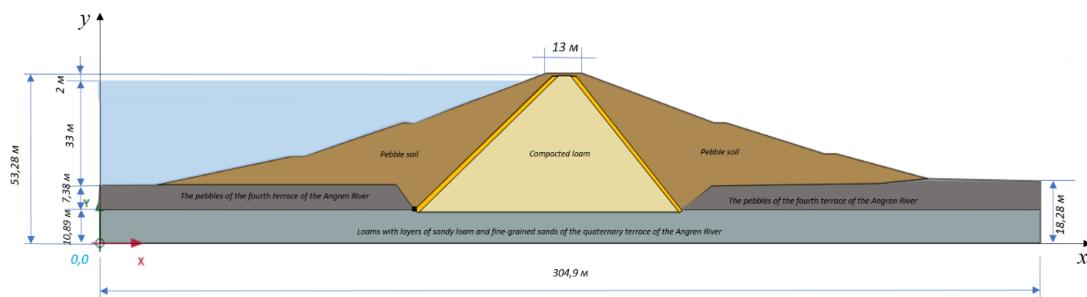
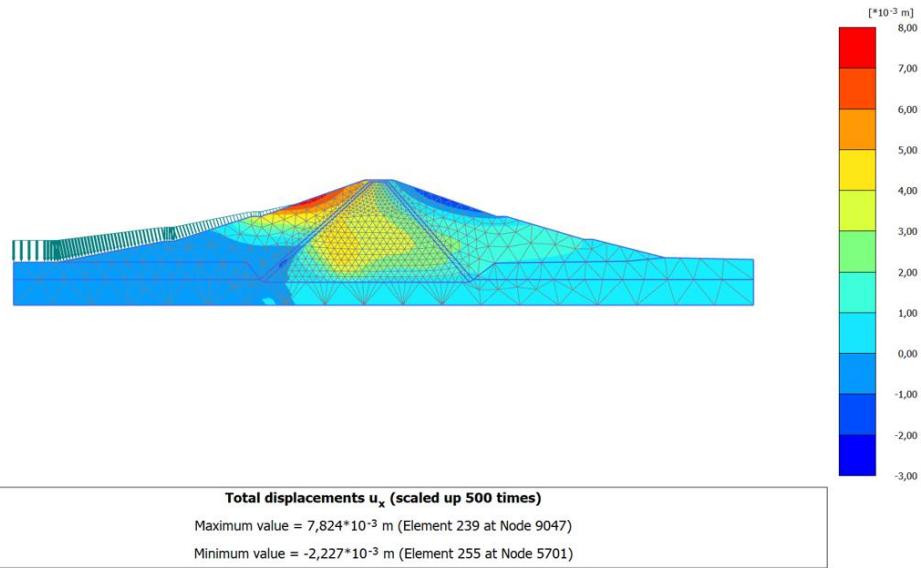
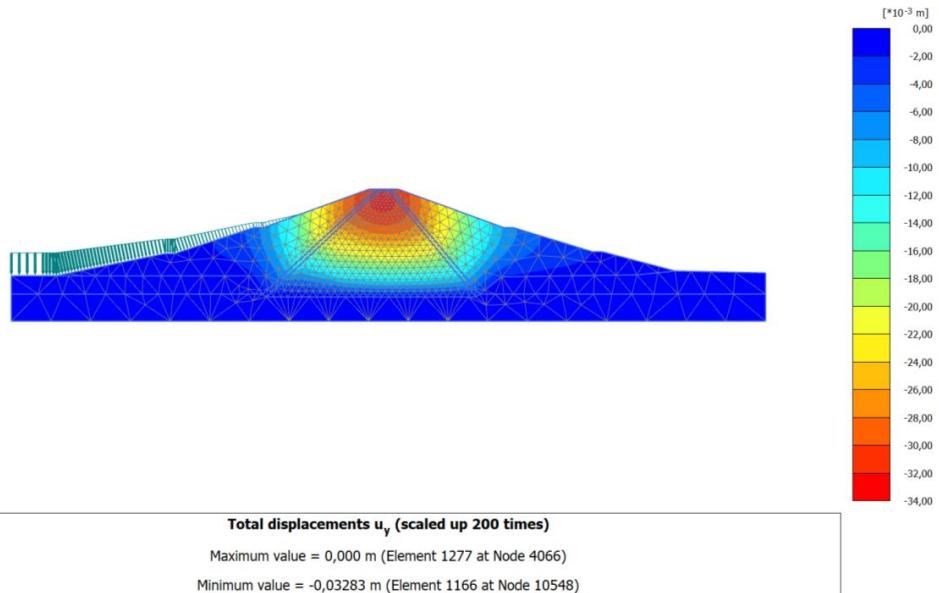


FIGURE 3. Calculation scheme of the Tashkent earth dam


TABLE 1. Physical and mechanical parameters of the Tashkent dam

Name of the dam and its elements	γ_{unsat} [kN/m ³]	γ_{sat} [kN/m ³]	k_x [m/day]	k_y [m/day]	E_{ref} [kN/m ²]	c_{ref} [kN/m ²]	ϕ [°]	ν
Tashkent	Core	15,9	18,1	0,1	30000	5,6	22,0	0,3
	Prism	17,5	20,4	10,0	50000	10	39,0	0,35
	Foundation	20	22	0,01	60000	15	17	0,3
	Foundation (Pebble)	22	24	100	70000	24	39,7	0,3
	Filter	17	19	49	40000	7	25,0	0,3


RESULTS

The reservoir covers an area of 20 km², with a total volume of 250 million m³. Under the influence of water pressure, the upper slope of the dam has experienced a horizontal displacement of 7 mm to the right. This value corresponds to the horizontal displacement recorded in the space monitoring system (Fig. 4). Additionally, the vertical

displacement of the dam crest is measured at 32 mm (Fig. 5), which aligns with the findings from the space monitoring system.

FIGURE 4. Isolines of horizontal displacement of the earth dam

FIGURE 5. Isolines of vertical displacement of the earth dam

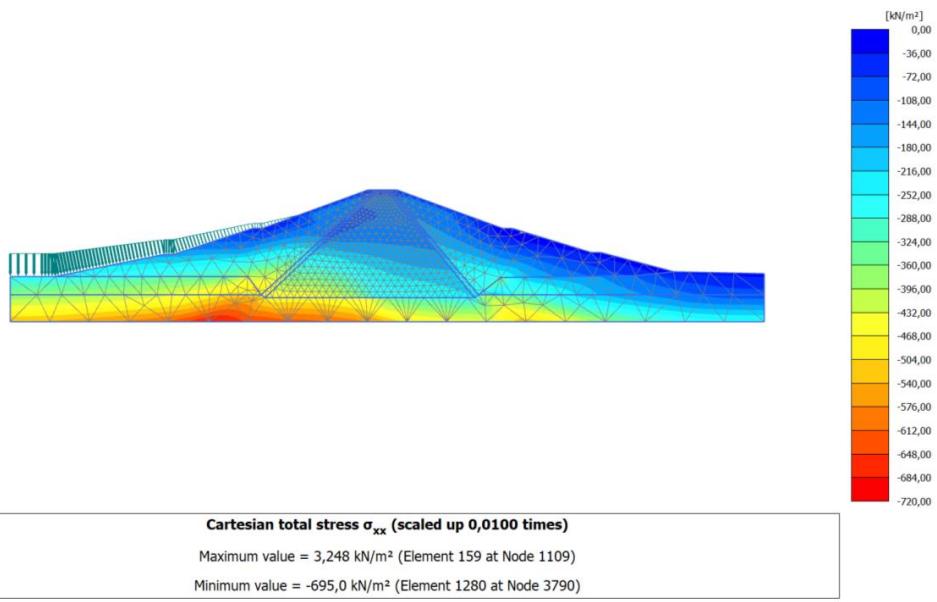


FIGURE 6. Isolines of horizontal stresses of the earth dam

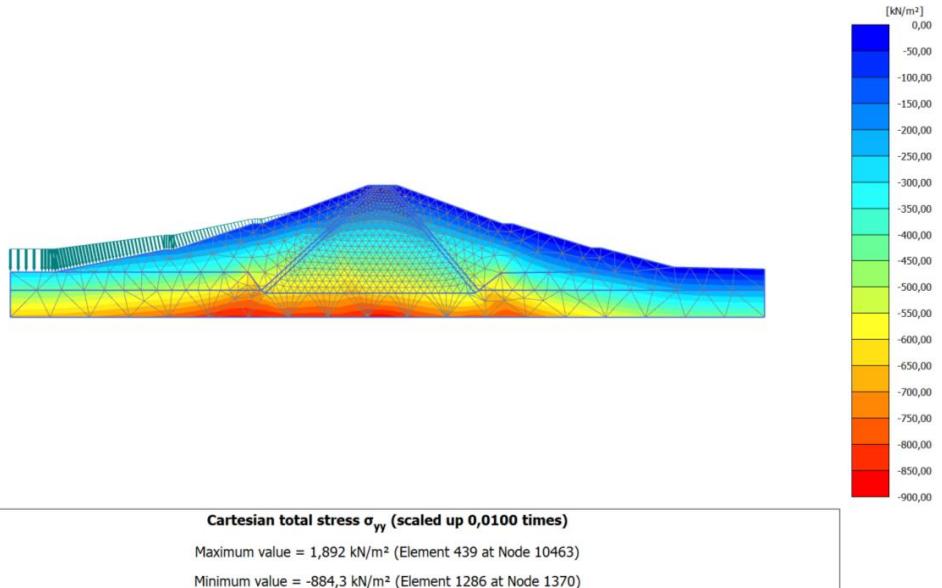


FIGURE 7. Isolines of vertical stresses of the earth dam

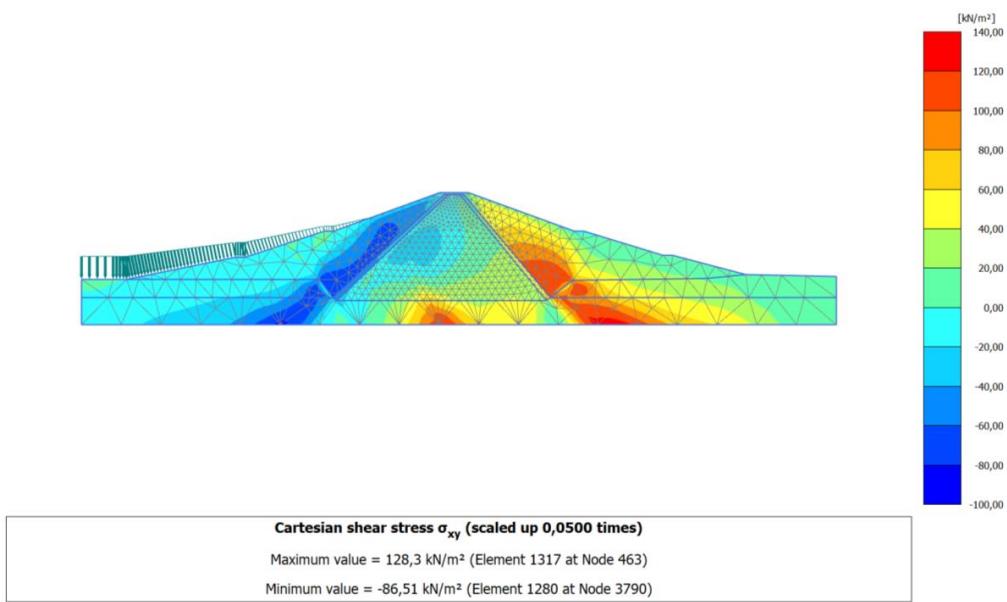


FIGURE 8. Isolines of shear stresses of the earth dam

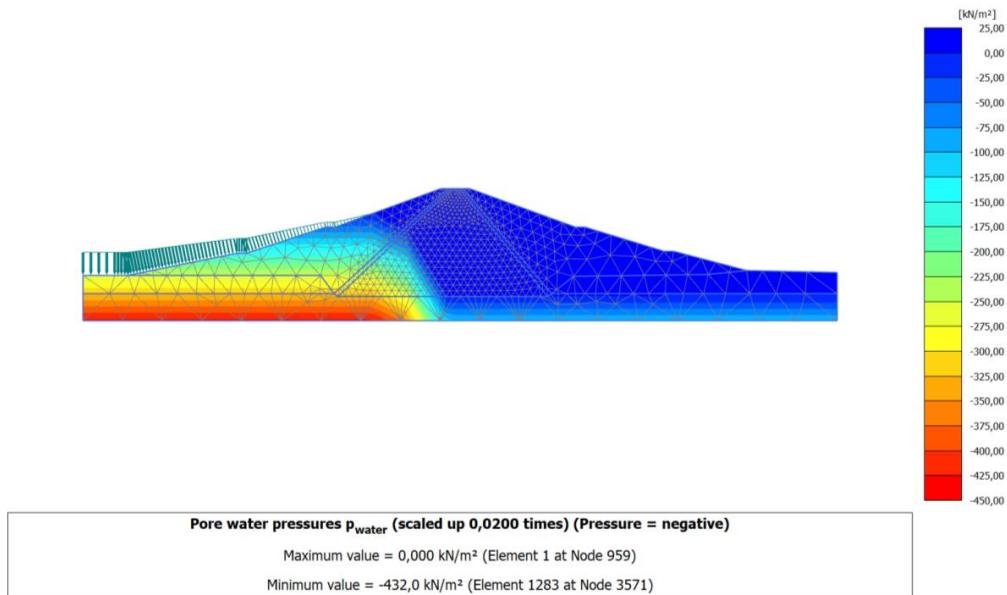


FIGURE 9. Isolines of water pressure of the earth dam

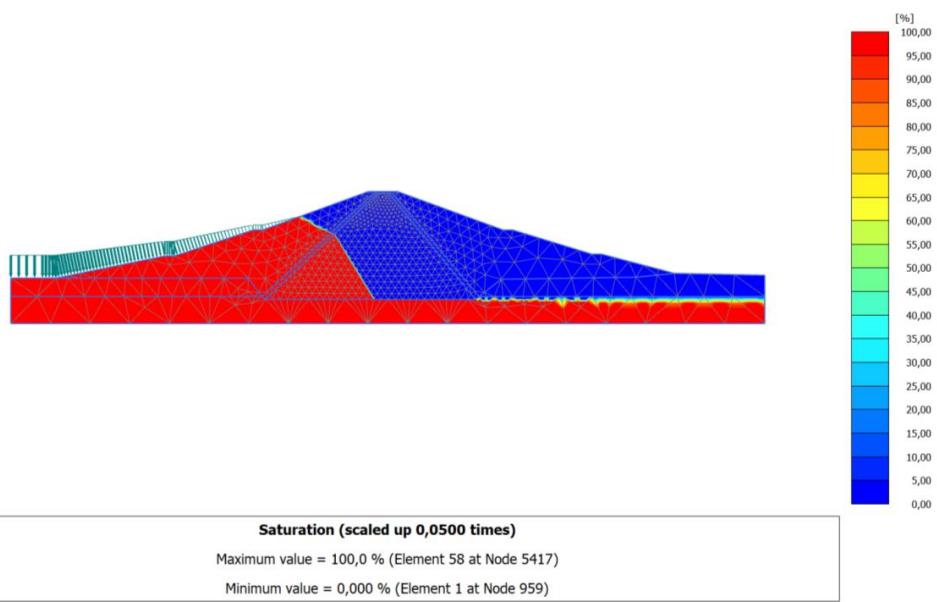


FIGURE 10. Isolines of moisture content of the earth dam

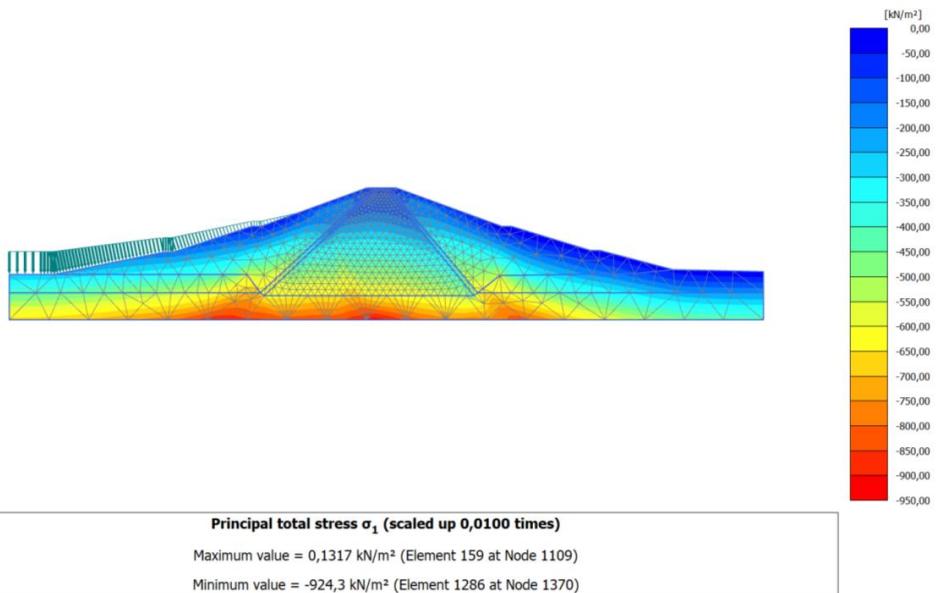
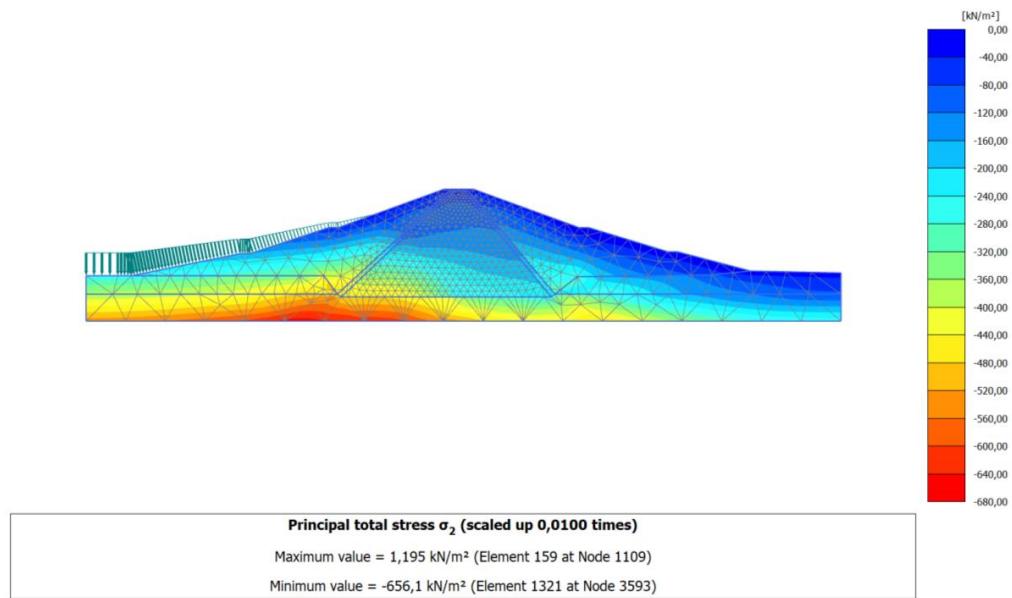



FIGURE 11. Isolines of principal stresses of the earth dam

FIGURE 12. Isolines of principal stresses of the earth dam

The isolines of horizontal and vertical stresses are presented in Figs. 6 and 7. These results indicate that the stresses take on specific values in areas where water is exerting pressure on the upper slope. Figure 9 illustrates the isolines of water pressure, while Fig. 10 displays the moisture content of the earth dam's cross-section. Figures 11 and 12 present the isolines of the principal stresses.

ANALYSIS OF RESULTS

When solving equations (4)-(15) using the values of the effective stress components at any two points, the friction angle of the soil and cohesion were determined. Remarkably, these values matched the original measurements. This indicates that if the stress-strain state of the dam is accurately known, we can use the provided formulas to calculate both the friction angle and cohesion of the soil. These formulas are applicable for theoretical calculations, and a precise specification of the stress-strain state allows for the determination of these parameters. This finding aligns with the results obtained experimentally.

Based on the findings from the study of the dam's stress-strain state, we developed an algorithm and a software program to calculate cohesion C and the friction angle φ . By utilizing this program and inputting the stress components from the stress-strain state of the dam, it is possible to derive the values of C and φ , allowing for an assessment of the dam's stability.

CONCLUSION

- The stress-strain state of the Tashkent earth dam was evaluated by considering both the water pressure and the dam's own weight.
- Isolines representing the displacement, stresses, and strain components of the earth dam were generated, taking water pressure into account.
- The displacement results obtained using PLAXIS 2D were compared with those from space monitoring. After analyzing these results, it was concluded that the displacement values closely align with those measured through space monitoring.
- An algorithm and program were developed to determine the angle of internal friction and cohesion of the soil based on the stress-strain state data of the earth dam. These values are crucial for assessing the dam's stability.

ACKNOWLEDGMENTS

This investigation was made possible through the budget funding provided by the Uzbekistan Academy of Sciences. We extend our deepest gratitude to the Academy for their unwavering support and commitment to advancing scientific research.

REFERENCES

1. K. Sultanov and S. Umakhonov, "Numerical calculation of an earth dam under elastic-plastic strain of soil subject to seismic impacts," in *International Conference: "Ensuring Seismic Safety and Seismic Stability of Buildings and Structures, Applied Problems of Mechanics"-2024*, AIP Conference Proceedings 3260, edited by R. A. Abirov *et al.* (AIP Publishing, 2025), pp. 030009. <https://doi.org/10.1063/5.0265101>
2. K. Sultanov, S. Umakhonov and S. Normatov, (2022). "Calculation of Earth Dam Strain under Seismic Impacts," in *International Conference On Actual Problems Of Applied Mechanics - Apam-2021*, AIP Conference Proceedings 2637, (AIP Publishing, 2022), pp. 030008. <https://doi.org/10.1063/5.0118430>
3. K. S. Sultanov and B. E. Khusanov, Equations of state of subsidence soils taking into account moisture content, Foundations. Foundations and soil mechanics. Volume **3**, 7–11 (2001).
4. K. S. Sultanov and B. E. Khusanov, Determination of subsidence of nonlinearly deformable soil massif under moistening, Foundations, foundations and soil mechanics. Volume **3**, 2–4 (2002).
5. Z. Ma, F. Dang, H. Liao and Y. Cheng, Seismic stability and failure process analysis of earth-filled dam. *Arab J Geosci. Letters* **13**, 827 (2020). <https://doi.org/10.1007/s12517-020-05851-4>.
6. Z. Kahot, R. Dkiouak and A. Khamlichi, Reliability analysis of slope stability in earthen dams following rapid drawdown. *Int. Rev. Appl. Sci. Eng.* **10(1)**, 101–112, (2019). <https://doi.org/10.1556/1848.2018.0011>.
7. A. T. Siacara, G. F. Napa-García, A. T. Beck and M. M. Futai, Reliability analysis of earth dams using direct coupling. *Journal of Rock Mechanics and Geotechnical Engineering*, **12(2)**, (2020). <https://doi.org/10.1016/j.jrmge.2019.07.012>
8. S. I. Umakhonov, Study dynamic behavior of earth dam with account non-linear characteristics of soil under seismic loads. *Europaische Fachhochschule*, No **9**, 48–52, (2015).
9. S. Liu, L. Wang, Z. Wang and E. Bauer, Numerical stress-deformation analysis of cut-off wall in clay-core rockfill dam on thick overburden. *Water Science and Engineering*, **9(3)**, 219–226(2016). <https://doi.org/10.1016/j.wse.2016.11.002>.
10. M. M. Zanjani, A. Soroush and M. Khoshini, Two-dimensional numerical modeling of fault rupture propagation through earth dams under steady state seepage. *Soil Dynamics and Earthquake Engineering*, **88**, 60–71, (2016). <https://doi.org/10.1016/j.soildyn.2016.05.012>
11. X. Yang and S. Chi, Seismic stability of earth-rock dams using finite element limit analysis. *Soil Dynamics and Earthquake Engineering*, **64**, 1–10, (2014). <https://doi.org/10.1016/j.soildyn.2014.04.007>.
12. C. Liu, L/ Zhang, B. Bai, J. Chen, and J. Wang, Nonlinear analysis of stress and strain for a clay core rock-fill dam with FEM. *Procedia Engineering*, **31**, 497–501, (2012). <https://doi.org/10.1016/j.proeng.2012.01.1058>.
13. H. Alateya and A. Ahangar Asr, Numerical investigation into the stability of earth dam slopes considering the effects of cavities. *Engineering Computations* (Swansea, Wales), **37(4)**, 1397–1421, (2020). <https://doi.org/10.1108/EC-03-2019-0101>.
14. B. Ebrahimian, Numerical analysis of nonlinear dynamic behavior of earth dams. *Frontiers of Architecture and Civil Engineering in China*, **5(1)**, 24–40, (2011). <https://doi.org/10.1007/s11709-010-0082-6>
15. M. M. Zanjani, A. Soroush, and M. Khoshini, Two-dimensional numerical modeling of fault rupture propagation through earth dams under steady state seepage. *Soil Dynamics and Earthquake Engineering*, **88**, 60–71, (2016). <https://doi.org/10.1016/j.soildyn.2016.05.012>
16. N. J. H. Al-Mansori, T. A.-F. J. M. Al-Fatlawi, N. Y. Othman and L. S. A. Al-Zubaidi, Numerical Analysis of Seepage in Earth-Fill Dams. *Civil Engineering Journal*, **6(7)**, 1336–1348, (2020). <https://doi.org/10.28991/cej-2020-03091552>

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 Walt Whitman Road, Suite 300, Melville, NY 11747-4300 USA; Phone 516-576-2268; Email: rights@aip.org.

Article Title ("Work"): Methods of assessing technical conditions of earth dam

based monitoring data

(Please indicate the final title of the Work. Any substantive changes made to the title after acceptance of the Work may require the completion of a new agreement.)

All Author(s): Karim Sultanov, Sadillakhon Umarkhonov,

Farkhadjan Adilov

(Please list **all** the authors' names in order as they will appear in the Work. All listed authors must be fully deserving of authorship and no such authors should be omitted. For large groups of authors, attach a separate list to this form.)

3rd International Conference

Title of Conference: "Advanced Mechanics: Structure, Materials, Tribology"

Name(s) of Editor(s) Prof. Dr. Valentin L. Popov

All Copyright Owner(s), if not Author(s):

(Please list **all** copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(ies) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript file.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approval of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #3 below):

Karim Sultanov

Author(s) Signature

Print Name

28.11.2025

Date

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner

Authorized Signature and Title

Date

3. If an Author is a U.S. Government employee, such Author must please sign below.

The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature

Print Name

Date

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract #(s) _____ [1.16.1]

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University. <http://arxiv.org/>.

Commercial and noncommercial scholarly use: *Noncommercial* scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. *Commercial* uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrdclist>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is *not* considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.