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Abstract. Adhesion plays a key role in the mechanics of soft matter, where materials are highly deformable and 

viscoelastic. Classical adhesion theories originate from Griffith’s (1921) concept of crack equilibrium, which balances 

elastic energy release with the work of adhesion needed to form new surfaces. This principle was later adapted by 

Johnson, Kendall, and Roberts (1971), who treated the boundary of adhesive contact as equivalent to a Griffith crack. 

Although elegant, the energy balance framework is strictly valid only for elastic bodies. In viscoelastic systems, 

additional work must be performed against dissipative forces, motivating the introduction of an “effective work of 

adhesion,” as in the velocity-dependent models of Barquins and Maugis. However, these treatments remain largely 

empirical. This paper uses a more physically grounded understanding of adhesion in viscoelastic contacts, based on the 

scale separation of the processes of detachment and relaxation of material. As an example, the adhesive contact of a 

parabolic indenter and a viscoelastic half-space is analyzed across a wide range of pull-off velocities. The results show 

that the relationship between normal force and contact radius remains universal and velocity-independent, matching the 

JKR form; however, it exhibits a strongly increased effective work of adhesion. In contrast, the force–indentation 

response exhibits strong velocity dependence: at high detachment speeds, the contact separates at positive indentation 

depths within the indentation “well.” 

INTRODUCTION 

High adhesion typically occurs in systems involving highly deformable materials – soft matter – that are 

generally viscoelastic in nature [1]. Therefore, when discussing adhesion, it is essential to consider the role of 

viscoelasticity. In 1921, Alan Griffith formulated a theory of cracks in elastic bodies [2]. His theory was based on 

the consideration of the energy balance of elastic energy getting free due to a small advancement of the crack tip and 

the work needed to create new fresh surfaces, the work of adhesion. 50 years later, in 1971, Johnson, Kendall and 

Roberts realized that the boundary of an adhesive contact is equivalent to the Griffith’ crack and applied the same 

criterion of energy balance to adhesive contacts [3]. In its original formulation, the energy balance criterion is 

strictly valid for purely elastic bodies. Nevertheless, owing to its conceptual simplicity and generality, it is often 

extended to describe crack propagation – or equivalently, the evolution of adhesive contacts – in dissipative media. 

In such cases, the true work of adhesion is replaced by an effective work of adhesion, which accounts not only for 

the energy required to create new surfaces but also for the additional work expended against dissipative mechanisms 

such as viscoelastic or plastic deformation. For example, Barquins and Maugis introduced the concept of an 

effective work of adhesion that depends on the crack propagation velocity [4]. In [5], it was argued that energetic 

criterion can be applied to viscoelastic contacts in the straightforward and rigorous way – under assumption of 

energetic (non-entropic) adhesive interactions in the interface. To address the contact mechanics aspect of the 

problem, the Method of Dimensionality Reduction (MDR) [6] was used in [5].  In the previous paper [5], the 

energetic criterion was only applied to quasistatic indentation and detachment. In the present paper, we investigate 

detachment with a finite velocity. 
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MODEL 

We begin by briefly recalling the procedure of the Method of Dimensionality Reduction (MDR). Consider the 

contact between an axisymmetric indenter indenter with profile z=r2/(2R) and an elastic half-space. Here z is normal 

coordinate, r is the in-plane radius, and R the radius of curvature of the profile. In the first step, this three-

dimensional shape is replaced by a plane shape z=g(x) using the Abel transformation: 
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This profile is indented by the depth d into one-dimensional elastic foundation – a series of springs with spacing x 

and stiffness kz = E* x where  E* is defined as: 
* 1 2 2

1 1 2 2(1 ) / (1 ) /E E E − = − + − .  E1 and E2 are Young’s moduli 

and ν1 and  ν2 are Poisson numbers of contacting bodies. In the case of a contact with viscoelastic medium, the 

springs must be replaced by corresponding rheological elements [7]. In the present paper, we consider for simplicity 

the "standard viscoelastic body" [1] which in MDR is represented by rheological elements shown in FIGURE 1. G0 

is the instant (glass) modulus of the medium, while the static shear modulus is given by G0G1/(G0+G1). For real 

elastomers G0>>G1, so that their reaction to instant loading is very stiff and to static loading very soft.  

 

FIGURE 1. Rheological element corresponding to the "standard viscoelastic body". 

 

The basic idea of application of energetic criterion to viscoelastic bodies was first formulated in [8] within the 

context of MDR. Equivalent idea has been suggested much earlier by Greenwood and Johnson [9] and elaborated in 

detail by Barthel [10]. It is based on the time scale separation of detachment and relaxation processes. For 

performing the work of adhesion, only energy can be used which can be relaxed almost instantly (on the molecular 

time scale), and this is the energy which is stored in the spring G0 in Figure 1. A small decrease in contact radius by 

x corresponds in the MDR representation to detachment of two edge rheological elements. The released elastic 

energy 2·(1/2)·(4G0x)u0
2 should be equated to the work of adhesion γ·2πa∆x providing equation for the critical 

elongation 
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where a is the contact radius, γ is specific work of adhesion (per unit area), and u0,crit is the critical elongation of the 

spring G0 representing the glass modulus of the medium. At this point, we recall that the assumption of scale 

separation implies that the detachment process occurs on the molecular scale which suggests a "non-entropic 

interactions" between the contacting surfaces [8]. Even in the case of non-entropic interactions, there exist further 

applicability conditions analyzed in the paper [5], which, however, are mostly fulfilled during the detachment phase. 

Let us consider the process consisting of indentation up to the depth d0, followed by a long relaxation time and 

finally pull-off with a constant velocity v0. In the following, as a reference state at t=0, we consider the starting time 

of detachment from the relaxed state at the depth d0.   

The elongation of the spring G0 can be calculated analytically (see for detailed derivation in [8]): 

 ( )
0

2
/

1 0 0 0 0

0 1

1
1t

G

x
u G d v t G v e

G G R

 −
  

= − − + −  
+   

. (3) 

where τ = η1/(G0+G1). The detachment criterion (2) reads 

 ( )
2

/

1 0 0 0 0

0 1 0

1
1

2

ta a
G d v t G v e

G G R G

  
 −

   
− − + − =  

+   
. (4) 

Integrating forces of all rheological elements in contact according to general rules of the Method of Dimensionality 

Reduction [7], we get the total normal force  
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Introducing notation  
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we can rewrite equations (5) and (6) in the form 
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Note that these equations coincide with equations of the JKR theory [3], 
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 (with E* being effective elastic modulus), provided we make the following substitutions: 
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For determining the dependence of the normal force on the contact area from (7), we eliminate the variable 

( )d t . This yields a universal relationship that is independent of the detachment velocity, since the latter appears 

only in the definition of ( )d t ) in Eq. (6). The resulting dependence coincides with the JKR solution using the static 

(soft) modulus E* = 4G0G1/(G0+G1).  and a significantly increased effective specific work of adhesion 

γeff,2=γ(G0+G1)/G1 (see Fifure 2).  

 

FIGURE 2. Normalized normal force vs normalized contact radius. The dashed line describes indentation (which is practically 

non-adhesive [5]). During detachment, the contact radius remains firstly constant (red line, corresponding to the "stick zone" 

[11]), followed by the JKR solution with very high effective work of adhesion (green line). Both parts of the detachment curve do 

not depend on the detachment velocity.  

 

The dependence of the normal force on the indentation depth, on the contrary, strongly depends on the 

detachment velocity. Figure 3 shows an example of force-indentation dependence for a small detachment velocity. 

At reversing the indentation, first a very quick drop of the force is seen, followed by a linear dependency. A more 
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detailed view provided by insert shows that both the drop and the linear part are not really vertical and linear 

dependencies but show continuous transition.  

 

FIGURE 3. Normalized force vs normalized indentation depth. Simulations have been carried out in dimensional variables with 

the following parameters: d0 = 5·10-3 m, R = 5·10-2 m, G0 = 109 Pa, G1 = 106 Pa, τ = 10-7 s, γ = 0.2 J/m2, v0 = 1 m/s, η1 = 100.1 

Pa·s. 

 

FIGURE 4. Normalized force vs normalized indentation depth for three different retraction velocities: At v0 = 0.1 m/s, there is 

practically no initial drop (corresponds to almost quasistatic detachment); at v0 = 1 m/s, a small initial drop of force is observed; 

for  v0 = 10 m/s a substantial drop is observed. Drop and linear stage both form the "sticking zone" where the contact radius does 

not change. The same parameters as in Figure 3 have been used in the simulation. 

 

Note that at large pulling velocities detachment occurs at positive indentations (that means inside the "well" 

formed during the indentation phase) – see Figure 5. At even larger pulling velocities, the detachment will occur 

without changing the contact radius (as in the case of a flat-ended cylinder). This behavior is, in fact, almost self-

evident. When the pull-off time is much shorter than the characteristic relaxation time of the elastomer, the material 

responds elastically. During such rapid detachment, the viscoelastic component of the deformation effectively 

behaves as a “frozen” or quasi-permanent deformation, analogous to plastic strain. The elastic displacement remains 

uniform across the entire contact area, leading to a detachment process equivalent to that of a flat-ended cylinder 
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separating from an elastic half-space. Although the limiting behavior at high retraction velocities follows directly 

from these considerations, the present theoretical framework explicitly describes and quantifies the transition from 

the quasi-static to the dynamic pull-off regime. 

 

 

FIGURE 5. The last configuration of the contact before complete detaching in the case of very rapid detachment. In this case, the 

linear part of the force-indentation dependence disappears completely.  

CONCLUSION 

The present work uses an extension of the Griffith’ energetic criterion to adhesive contacts involving viscoelastic 

media. Method of Dimensionality Reduction (MDR) is used to reduce the three-dimensional problem to a problem 

of a plane contact with "viscoelastic foundation" – a series of independent viscoelastic elements. As an example, we 

considered contact between a parabolic indenter and an elastomer described with the standard linear viscoelastic 

model. Our analysis shows that while the force–contact radius relationship remains universal and independent of 

detachment velocity, the force–indentation behavior exhibits pronounced velocity dependence. At low retraction 

speeds, the response approaches the quasistatic JKR limit, whereas higher detachment velocities lead to force drops 

and eventual separation within the indentation “well.” These findings quantify the role of viscoelastic dissipation in 

adhesive contacts. 

Future work may extend this approach to more complex rheological models and to cases involving entropic 

surface interactions, where additional dissipative mechanisms become significant. 
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