

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Indentation of Axisymmetric Bodies into a Plastic Half-Space

AIPCP25-CF-AMSMT2025-00015 | Article

PDF auto-generated using **ReView**

Indentation of Axisymmetric Bodies into a Plastic Half-Space

Israel Karimov^{1, a)}, Ismail Safarov^{1, b)}, Muhsin Teshayev^{2, c)},
Akhtam Rustamov^{3, d)}

¹*Tashkent Chemical-Technological Institute, Uzbekistan*

²*Branch of the Institute of Mathematics named after V.I. Romanovsky of the Academy of Sciences of the Republic of Uzbekistan, Uzbekistan*

³*Navoi State Pedagogical University, Uzbekistan.*

^{a)} Corresponding author: israel.karimov@mail.ru
^{b)} safarov54@mail.ru
^{c)} muhsin_5@mail.ru
^{d)} akhtamrustamov@gmail.com

Abstract. The process of an axisymmetric introduction of absolutely rigid bodies of rotation in an ideal rigid-plastic half-space is studied in the framework of the present paper. The yield condition of Tresca and the corresponding flow law are considered and in this way we can describe the plastic zone that starts when ultimate indentation force is apparent. To address the issue, the characterization technique is applied to come up with the field of slip lines and find out the distribution of stress and velocity in plastic region. The paper takes into account an effect of friction coefficient, die shape (cone, ball, cylinder with a flat base) and alterations of the free surface shape to the value of the ultimate pressure. The results of numerical analysis are compared with the known experimental data and showed good agreement, which confirms the correctness of the model. The principles of complete and incomplete plasticity are reexamined and conversion between plastic and elastic states are examined. The resulting solutions show the development of the area of plasticity and the effects of the parameters on the final load.

INTRODUCTION

Issues of contact interaction and die embedding in a deformable medium are classical issues of continuum mechanics and plasticity [1, 2, 3]. They are practically significant to the work of hardness testing of materials, stamping, pressing, and other technologies of pressure processing. A major addition to the axisymmetric plasticity problem solution was made by A.Y. Ishlinsky [4] who was the first to use the characterization approach to the Brinell sample problem, with very good agreement between theory and experiment. The model of an ideal rigid-plastic body is used in the paper because the stresses in the body meet the Tresca yield criterion, and the strains meet the flow law. Of special concern are states of full and incomplete plasticity in the light of the influences of friction and changes in free surfaces. Hyperbolic systems of equations are solved by numerical techniques like the method of characteristics and successive approximations. Examination of the stress-strain state arising under the indenter is used to identify the mechanical properties of materials, predict their destruction and optimize technological processes. Particular cases of cone, ball and cylinder embedding are explored, with an examination of the impact of friction coefficient and embedding depth upon the final load. The aim of the current work is to develop analytical and numerical model of axisymmetric introduction of bodies of rotation of different shapes into an ideal plastic half-space and to observe the effect of friction, die shape and free surface deformation on the nature of plastic flow.

MATERIAL AND METHODS

We consider an ideal rigid-plastic medium for which the deformations obey the Tresk yield condition. The cylindrical coordinate system (r, φ, z) is used, and the axial symmetry of the problem is assumed: the stress components $\sigma_r, \sigma_z, \tau_{rz}$ and strain rates depend only on the r and z coordinates. The relationship between the components of the stress and strain rate tensors is determined using the associated flow law. The analysis of flows in different modes corresponding to the faces and edges of the Tresk prism was carried out by R. Schild [5]. The system of equations corresponding to the regime $\sigma_\varphi = \sigma_1$ for the stress state was studied by Genki. This system consists of the differential equations of equilibrium, the plasticity condition $\sigma_1 - \sigma_3 = 2\tau_s$ and the equality $\sigma_\varphi = \sigma_1$. Using the Levy transformation

$$\sigma_r = p - \tau_s \sin 2\theta; \sigma_z = p + \tau_s \sin 2\theta; \tau_{rz} = \tau_s \cos 2\theta,$$

where $p = (\sigma_r + \sigma_z)/2$, $\theta = (l, r) - \pi/4$, (l, r) is the angle between the first principal direction and the Or axis, the equations of equilibrium take the following form with respect to the unknown functions p :

$$\begin{aligned} \frac{\partial p}{\partial r} - 2\tau_s \frac{\partial}{\partial \varphi} \left(\frac{\partial q}{\partial r} + \sin 2\theta \frac{\partial q}{\partial z} \right) &= \frac{\tau_s}{r} (1 + \sin 2\theta), \\ \frac{\partial p}{\partial z} - 2\tau_s \frac{\partial}{\partial \varphi} \left(\frac{\partial q}{\partial z} - \cos 2\theta \frac{\partial q}{\partial r} \right) &= \frac{\tau_s}{r} \cos 2\theta. \end{aligned}$$

As it is known [6], this system is hyperbolic and has two families of characteristic lines coinciding with slip lines (a slip line is a line tangent at each point to which coincides with the area of maximum tangential stress).

Along the characteristic lines for the determination of p, θ there are the relations

$$\begin{cases} d(p - q) = \frac{dr + dz}{2}, & \text{on the } a \text{ line,} \\ d(p + q) = \frac{dr - dz}{2}, & \text{on the } b \text{ line.} \end{cases}$$

Here and hereafter, all stresses are referred to $2\tau_s$. The velocities v_r, v_z are found from the incompressibility conditions and the condition of coaxiality of stress and strain rate tensors. The system of equations with respect to the two unknowns v_r, v_z also belongs to the hyperbolic type, and its characteristics coincide with the slip lines.

$$\begin{cases} du - v dq = -\frac{udr - v dz}{2r}, & \text{on the } a \text{ line,} \\ dv + u dq = -\frac{udz + v dr}{2r}, & \text{on the } b \text{ line.} \end{cases}$$

where u, v are displacement velocities along and - slip lines, respectively. The constraints from the flow law ensure the consistency of stress and velocity fields.

The slip line field is constructed numerically, starting from the boundaries where stresses (e.g., on the free surface) or friction conditions (on the contact surface) are known. The plastic deformation region is partitioned into a grid, at the nodes of which the values of p, θ, v_r and v_z are iteratively determined.

Friction accounting and boundary conditions. On the contact surface between the indenter and the medium, Coulomb's law of dry friction is taken into account, which limits the tangential stress τ_n to a value proportional to the normal stress σ_n ($|\tau_n| \leq m|\sigma_n|$), where m is the coefficient of friction. When the maximum value ($\tau_n = 0.5$) is reached, the so-called "sticking" occurs. These conditions determine the angle of the slip lines at the contact surface. When the body is partially roughened, a stagnant area is formed - an area that moves with the body. The size of the zone depends on the coefficient of friction and shape. The zone boundary is defined by the slip line intersecting the axis under /4.

A state of incomplete plasticity. In the process of indentation, the material undergoes a transition from an elastic state to a plastic state. The model based on the Haar-Karman hypothesis [7, 8] allows us to distinguish between two states:

Incomplete plasticity. The Tresca yield condition ($\sigma_1 - \sigma_3 = 1$) is satisfied, but the intermediate principal stress σ_2 is strictly between σ_1 and σ_3 ($\sigma_1 > \sigma_2 > \sigma_3$). In this state the deformations along the σ_2 direction are elastic:

$$s_2 = \frac{3K}{1+n} \dot{\varepsilon} e + (1-2n)e_2 \dot{u}$$

where K is the bulk compression modulus referred to $2\tau_s$, v is the Poisson's ratio, ε is the volume strain.

Full plasticity. The additional condition $\sigma_2 = \sigma_1$ or $\sigma_2 = \sigma_3$ is fulfilled. All deformations become plastic.

System of equations of incomplete plasticity

$$\begin{aligned} \frac{p}{r} - \cos 2q \frac{q}{r} - \sin 2q \frac{q}{z} &= \frac{1}{r} \frac{\sin 2q}{2} - 3(p - K_e) \dot{u} \\ \frac{p}{z} - \sin 2q \frac{q}{r} + \cos 2q \frac{q}{z} &= - \frac{\cos 2q}{2r}, \\ \frac{u_r}{r} - \frac{u_z}{z} \cos 2q + \frac{u_r}{z} + \frac{u_z}{r} \sin 2q &= 0, \\ \frac{u_r}{r} + \frac{u_z}{z} + 2n \frac{u_z}{r} &= \frac{2(1+n)}{3K} p. \end{aligned}$$

is solved by the method of successive approximations starting from the full plastic solution. Iterations are continued until convergence of the force on the die.

RESULTS AND DISCUSSION

Construction of slip line meshes. Based on the methodology outlined in the source material, slip line meshes were constructed for different types of indenters:

Slip line fields were calculated for the smooth and rough cone (Fig. 1).

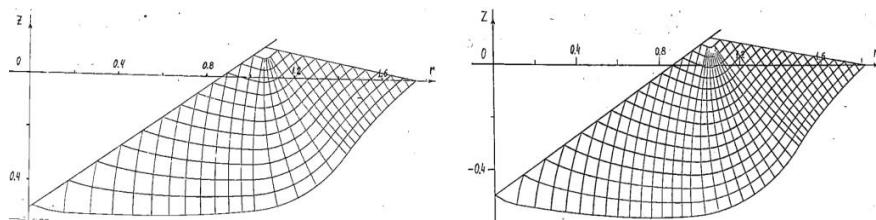


FIGURE 1. Grid of slip lines for smooth and rough ($m=0.05$) cone

Calculations have shown that this algorithm works for a wide range of variation in the values of angle β and friction coefficient m , but for angles smaller than 50° the consistency of stress and velocity fields is not fulfilled. This means that the condition of full plasticity for such angles is not realized in the whole plastic region.

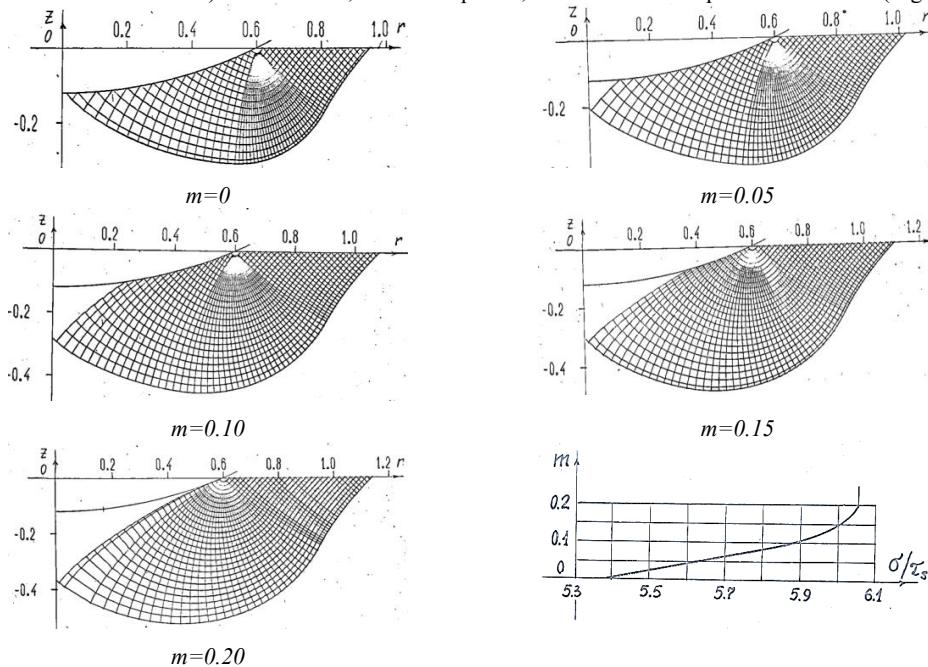
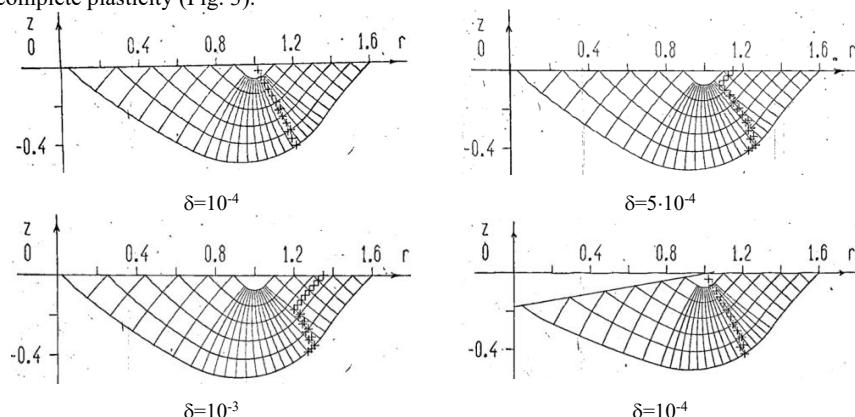

Comparison of the calculated data with the experimental results of Dugdale [9] for half-shell angles of 50° and 60° showed good agreement (Table 1).

TABLE 1. Comparison of calculated data with experimental data

	$\beta = 50^\circ$		$\beta = 60^\circ$	
	Experiment	Calculation	Experiment	Calculation
$\frac{\sigma}{2\tau_s}$	2,13 (Fe) 2,29 (Cu) 2,24 (Al)	a) 2,37 b) 2,14	2,18 (Fe) 2,47 (Cu) 2,40 (Al)	a) 2,48 b) 2,30
$\frac{h \cdot 100}{2r}$	6,90 (Fe) 8,47 (Cu) 9,02 (Al)	7,33	4,08 (Fe) 5,80 (Cu) 6,67 (Al)	5,36
$\frac{r_L}{r}$	2,20 (Fe) 1,53 (Cu) 1,65 (Al)	1,72	1,76 (Fe) 1,53 (Cu) 1,43 (Al)	1,65

In Table 1, letter (a) means the average pressure for the cone without taking into account the change of the free surface; (b) corresponds to the average pressure calculated by the above algorithm. h is the height of the bulging part of the medium, counted from the initial level; r is the cone radius at the level of intersection of the cone surface with the free surface; r_L is the maximum radius of the plastic region.


Calculations were performed for ball indentation at different friction coefficients ($m = 0; 0.05; 0.1; 0.15; 0.2$). It was found that as the coefficient of friction increases, the volume of the stagnant zone (the area under the indenter that moves with it as a unit) increases and, as a consequence, the mean ultimate pressure increases (Fig. 2).

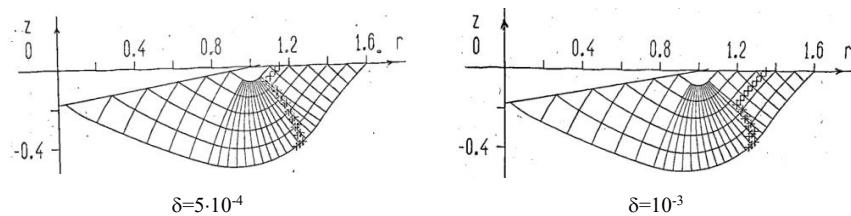


FIGURE 2. A grid of slip lines for smooth and rough ball.
Dependence of average pressure on the value of friction coefficient

The mesh analysis shows that the indenter geometry and the friction coefficient on the contact surface dramatically affect the plastic flow pattern of the material. In particular, the presence of friction leads to distortion of slip lines at the indenter surface and formation of stagnant zones.

States of complete and incomplete plasticity. The regions of complete and incomplete plasticity are separated by surfaces where σ_2 becomes equal to one of the extreme principal stresses. Calculations show that with increasing depth of introduction the region of incomplete plasticity decreases, and eventually the entire plastic zone passes to the state of complete plasticity (Fig. 3).

FIGURE 3. Grid of slip lines and boundary of zones of complete and incomplete plasticity

The initial isotropic material becomes anisotropic during plastic deformation. This occurs due to the formation of a mesh of weakened sliding surfaces. Shear resistance along these surfaces drops, while elastic coupling is maintained in other directions. This deformational nature of anisotropy is a key feature of the plastic behavior of materials.

CONCLUSION

The conducted study confirmed that the method of characteristics is an effective tool for solving problems of axisymmetric introduction of bodies of rotation into plastic medium. Despite idealizing assumptions (rigid-plastic material model), this approach allows to describe with high accuracy key aspects of the indentation process: formation of plastic zones, influence of indenter geometry and friction, and occurrence of stagnant zones. The obtained results can be used in engineering calculations and for verification of numerical methods.

REFERENCES

1. H. Hencky, “Über einige statisch bestimmte Fälle des Gleichgewichts in plastischen Körpern.” (1923), ZAMM **3** (4): 241–251. <https://doi.org/10.1002/zamm.19230030401>
2. L. Prandtl, O tvyordosti plasticheskikh materialov i sопротивлениi rezaniyu [On the hardness of plastic materials and resistance to cutting], in Teoriya plastichnosti [Theory of Plasticity] (IL, Moscow, 1948), pp. 70–79.
3. R. Hill, The Mathematical Theory of Plasticity (Oxford University Press, Oxford, 1950).
4. A. L. Ishlinsky, “The problem of plasticity with axial symmetry and Brinell’s test.” *J. Appl. Math. Mech.* **8**, pp. 201–224 (1944).
5. R. T. Shield, “On the plastic flow of metals under conditions of axial symmetry.” Proc. R. Soc. London, Ser. A **233** (1193), pp. 267–287 (1955). <https://doi.org/10.1098/rspa.1955.0262>
6. D. D. Ivlev, The Theory of Ideal Plasticity (Nauka, Moscow, 1966).
7. A. Haar and T. von Kármán, “Zur theorie der spannungszustände in plastischen und sandartigen medien.” *Nachr Gesellsch Wissensch öttingen, Math-phys Klasse* 1909: 204–218.
8. S. A. Khristianovich & E. I. Shemyakin, On the theory of ideal plasticity. *Mechanics of Solids*, **4**, pp. 86–97, (1967).
9. D. S. Dugdale, Cone Indentation Experiments. *Journal of the Mechanics and Physics of Solids*, **2**(4), pp. 265–277 (1954). [https://doi.org/10.1016/0022-5096\(54\)90015-0](https://doi.org/10.1016/0022-5096(54)90015-0)

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 Walt Whitman Road, Suite 300, Melville, NY 11747-4300 USA; Phone 516-576-2268; Email: rights@aip.org.

Article Title ("Work"): [Indentation of Axisymmetric Bodies into a Plastic Half-Space](#)

(Please indicate the final title of the Work. Any substantive changes made to the title after acceptance of the Work may require the completion of a new agreement.)

All Author(s):

Israel Karimov, Ismail Safarov, Muhsin Teshayev, Akhtam Rustamov

(Please list **all** the authors' names in order as they will appear in the Work. All listed authors must be fully deserving of authorship and no such authors should be omitted. For large groups of authors, attach a separate list to this form.)

[International Conference Advanced Mechanics: Structure, Materials,](#)

Title of Conference: [Tribology 22-26 September 2025 Venue: Samarkand State University](#)

Name(s) of Editor(s) [Prof. Dr. Valentin L. Popov Technische Universität Berlin
Germany](#)

All Copyright Owner(s), if not Author(s):

(Please list **all** copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(ies) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approval of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #3 below):

Israel Karimov

30.09.2025

Author(s) Signature

Print Name

Date

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner

Authorized Signature and Title

Date

3. If an Author is a U.S. Government employee, such Author must please sign below.

The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature

Print Name

Date

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract #(s) _____ [1.16.1]

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University, <http://arxiv.org/>.

Commercial and noncommercial scholarly use: *Noncommercial* scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. *Commercial* uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrdclist/>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is *not* considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.