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Abstract. This article examines estimates of internal force factors for the bending of three-layer plates freely lying on an 

elastic half-space. An elastic filler layer is installed between the plates, which transmits reactive pressures to the plates of 

the constituent layer. The top plate is loaded with generally symmetrical external loadings related to the middle of the 

plate. To study the stress-strain state of three-layer plates interacting with elastic half-spaces, a mathematical model and 

an analytical method for solving the problem based on orthogonal polynomials have been developed. An analytical solu-

tion to the problem has been obtained, which has a refined calculation algorithm for calculation and project work. Based 

on the results of theoretical studies and numerical calculations of the test example, conclusions were drawn about the in-

fluence of the filler on the internal forces of the plates.  

Keywords. Three-layer plate, elastic filler, half-space, integra-differential equation, orthogonal polynomials, closed sys-

tem of equations, internal forces. 

INTRODUCTION 

Research into the stress-strain state of mutually contacting bodies, which depends on many structural elements, 

is one of the pressing issues of mechanics. A structure interacting with a deformable base belongs to such contacting 

bodies. 

Researchers develop a variety of models and solution methods to assess various factors affecting critical parts of 

engineering structures. The performance of engineering structures is directly related to the need to improve the level 

and quality of their design. When constructing any structures, it is necessary to take into account the multifactorial 

interactions of structural elements given in the relevant design and calculation works. The foundations of industrial 

and civil buildings, as well as the coverings of airfields, railways, roads, pedestrian roads and many others belong to 

such structures. The noted shows the need to develop multifactor effective mathematical models and calculation 

methods for the implementation of design and calculation work, as well as during the construction of objects. The 

proposed models and calculation methods should lead to more economical solutions for the construction of struc-

tures. 
In the work [1], the study of the time response of an elastic thin plate interacting with multilayer transversally 

isotropic soils was carried out. This proposes an effective theoretical method for solving the issue. 

In the work [2], a study of nonlinear vibrations of pure polymer plates of three types of polymer composite plates 

was carried out; in [3, 4], both experimental and numerical analyzes were carried out to study the ultimate strength 

to model stiffeners and a support plate. 

In [5, 6], the issues of bending of multilayer strip-plates lying on an elastic foundation were studied. Estimates of 

internal forces in plates are given based on the approximation of orthogonal polynomials.   
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In [7], an interaction function was constructed based on axial compression (tension) and shear loads of ortho-

tropic plates, and in [8] an approach to dynamic modeling of a multi-plate structure connected by nonlinear hinges 

was presented. Linear modes have been proven to play an important role in dynamic analysis. 

In [9], an algorithm and program for the numerical solution of wave issues using the method of characteristics 

and the finite difference method were developed.  In works [10,25], the vibrations of a rod protected from vibrations 

under the influence of kinematic excitations were studied, and in work [11] the stress-strain state of asymmetrically 

layered plates with controlled forces interacting with a sandy base was considered. 

In [12], the process of free and forced vibrations of two beam systems with intermediate supports was studied. 

Analytical solutions were obtained to ensure effective results in design work.  

 [13] investigated the dynamic strain localization of plastic polymer bars under large tensile strains up to failure, 

and the study [14] proposed a unified procedure to analyze the free and transient vibration behavior of a composite 

laminated beam subjected to general boundary conditions in a thermal scenario.  

In [15], the propagation of oscillatory waves and assessment of the level of their impact with various objects 

were studied. Mathematical models and methods for assessing the levels of vibration waves at various distances 

from the soil base have been developed. 

In [16,17], a mathematical model was obtained and an analytical method was used to solve the problem. Orthog-

onal polynomials were used to estimate the internal forces of the plates. Corresponding conclusions are presented on 

the influence of base and filler pressure on internal forces in plates. 

In [18], a mathematical model was developed for assessing the stress-strain state of ground dams using a spatial 

model based on the variational Lagrange equation, taking into account the real geometry, material properties and 

heterogeneous design features of structures. 

In [19,20], modifications of the structure made from composite laminate plates were studied. The results of ex-

perimental and numerical analysis affecting the structural connection relationships are presented. 

Article [21] presents a model analysis of a honeycomb structure, structure for various parametric conditions us-

ing the finite element method.  

The work [22] presents a numerical algorithm for solving odd differential equations using the Runge-Kutte 

method, which is suitable for dynamic systems. 

In [23, 28], based on the bending of the slab, the internal force factors of layer plates in contact with elastic 

foundations were studied. Using an analytical method, the influence of the filler on the stress-strain states of the 

plate was determined under various external loads. 

It is known that numerous researchers have developed many different calculation methods, which are described 

by various models. Despite the progress achieved in this area, there is a need to develop analytical calculation meth-

ods based on modeling the operation of structures taking into account their interaction with the soil foundation. 

METHODS 

MATHEMATICAL MODEL    

Let us consider two rectangular plates lying on an elastic half-space, located symmetrically, one above the other, 

in the form of a layered system. We assume that an elastic filler layer is installed between the plates, which transmit 

reactive pressures to the plates of the constituent layer.  Such structures can be called three-layer plates that have 

contact relationships with elastic half-spaces. For the geometric and mechanical parameters of the plates, we intro-

duce the following notations: 

ℎ is height; 2𝑙 is width;  𝑏 is length; 𝐸 is modulus of elasticity; 𝜈 is Poisson's ratio. 

On the upper (second) plate, from the top there is an external load, a generally symmetrical effect relative to the 

middle of the plate at a certain distance (Fig. 1, a), and from the bottom - the normal reactive pressure of the filler 

layer 𝑝𝑧. The lower (first) plate is affected from above by the filler pressure 𝑝𝑧, and from below by the normal reac-

tive pressures of the base 𝑝. We assume that the reactive pressure of the filler is proportionally equal to the deflec-

tion differences of the plates, i.e.: 

𝑝𝑧=𝑘(𝑦2-𝑦1). 
where 𝑦1, 𝑦2 are accordingly, the deflections of the first and second plates; 𝑘 is the coefficient of proportionality, 

which in the future we will call the coefficient of stiffness of the filler. 

 



 

FIGURE 1. Design diagram of three-layer slabs (a) and three-layer beam slabs loaded (b) with symmetrical external loads. 

 

For mathematical modeling of the issue of bending a three-layer plate having continuous, two-sided, contact re-

lationships with an elastic half-space, a fragment of a three-layer plate with a width of one is considered and operat-

ing according to the scheme of three-layer beam plates. Then, the task is reduced to the study of the stress-strain 

state of three-layer beam plates lying on an elastic base when loaded with generally symmetrical external loads (Fig. 

1, b). 

For convenience, we set the origin of the Cartesian coordinates in the center of the symmetry of the beam plate 

(Fig. 1, b) and the problem is considered on the segment [-𝑙, 𝑙] along the abscissa axis 𝑂𝑥 (i.e. on -𝑙 ≤ 𝑥 ≤ 𝑙). The 

deflections of the beam plate𝑦1, 𝑦2, the external load q, as well as the base pressure p, are functions of the variable x. 

For deflection of beam plates, the following systems of fourth-order differential equations can be written, under 

the above assumptions, conditions and notations:  

𝐷𝑦2
𝐼𝑉=𝑞-𝑘(𝑦2-𝑦1),    𝐷𝑦1

𝐼𝑉=𝑘(𝑦2-𝑦1)-𝑝.                                         (1) 
Where 

𝐷= 
𝐸ℎ3

12(1-𝜈2)
. 

To determine the precipitation of a homogeneous base 𝑉, according to the Gorbunov-Posadov hypothesis, we 

use the following formula: 

𝑉=𝐷0∫ 𝑙𝑛
1

|𝑥-𝑠|
∙ 𝑝(𝑠)

𝑙

-𝑙

𝑑𝑠.                                                             (2) 

Here, 𝐷0=
2(1-𝜈0

2)

𝜋𝐸0
, 𝐸0 and 𝜈0 are respectively, the modulus of elasticity and the Poisson's ratio of the base materi-

al. 

Let's assume that there is a two-way connection between the surface of the first plate and the base. In this case, 

the relationship between the structure and the base, as contact conditions, is written as: 

𝑦1(𝑥)=𝑉(𝑥),  -𝑙 ≤ 𝑥 ≤ 𝑙 .                                                               (3) 
Thus, the study of the stress-strain state of a three-layer beam plate, according to the problem statement, leads to 

the solution of a system of integra-differential equations (1), (2) and (3). Equation (1) and relation (2), (3) constitute 

a closed system of equations with respect to the unknowns of the issue under consideration. 

In the future, when solving the issue, we will use the dimensionless coordinate x, which is equal to the ratio of 

the absolute coordinate to the half-length of the beam plate, i.e. |𝑥| 𝑙⁄ . 

SOLUTION METHOD 

The analytical solution of the system of differential equations (1) in a generalized form is presented in the fol-

lowing form  

𝑦1=
𝑙4

2𝐷
{∑𝐶𝑖

4

𝑖=1

𝑥4-𝑖+𝑓𝑞(𝑥)-𝑓𝑝(𝑥)-
𝐷

𝑙4
[∑𝐵𝑖

4

𝑖=1

𝑢𝑖(𝛼𝑥)+𝜑𝑞(𝑥)+𝜑𝑝(𝑥)]};                         (4) 

𝑎
) 

 

b

) 

 



𝑦2=
𝑙4

2𝐷
{∑𝐶𝑖

4

𝑖=1

𝑥4-𝑖+𝑓𝑞(𝑥)-𝑓𝑝(𝑥)+
𝐷

𝑙4
[∑𝐵𝑖

4

𝑖=1

𝑢𝑖(𝛼𝑥)+𝜑𝑞(𝑥)+𝜑𝑝(𝑥)]}.                        (5) 

Where 𝐶𝑖 , 𝐵𝑖  are constant integrations determined from the boundary conditions of the issue under consideration;  

𝑢1(𝑥)=𝑐𝑠ℎ𝑥𝑐𝑜𝑠𝑥;  𝑢2(𝑥)=𝑠𝑛ℎ𝑥𝑐𝑜𝑠𝑥+𝑐𝑠ℎ𝑥𝑠𝑖𝑛𝑥; 
𝑢3(𝑥)=𝑠𝑖𝑛𝑥𝑠𝑛ℎ𝑥;  𝑢2(𝑥)=𝑠𝑛ℎ𝑥𝑐𝑜𝑠𝑥-𝑐𝑠ℎ𝑥𝑠𝑖𝑛𝑥;   

𝑓𝑞
𝐼𝑉(𝑥)=𝑞(𝑥);   𝑓𝑝

𝐼𝑉(𝑥)=𝑝(𝑥);   𝛼4=
𝑘𝑙4

2𝐷
 ;                                                              (6) 

𝜑𝑞(𝑥)=
1

4𝛼3
∫ 𝑢4[𝛼(𝑥-𝑠)]𝑞(𝑠)𝑑𝑠;
𝑥

0

                                                                        (7) 

𝜑𝑝(𝑥)=
1

4𝛼3
∫ 𝑢4[𝛼(𝑥-𝑠)]𝑝(𝑠)𝑑𝑠;  
𝑥

0

                                                                     (8) 

Due to the symmetry of the external loads, the reactive base pressure is sought in the form of a series of even 

terms of Chebyshev polynomials of the first kind [23]: 

𝑝(𝑥)=(1-𝑥2)-
1
2∑𝐴2𝑛

∞

𝑛=0

𝑇2𝑛(𝑥)                                                                       (9) 

Here, 𝐴2𝑛 - are the unknown coefficients to be determined; 𝑇2𝑛(𝑥) – an orthogonal Chebyshev polynomial of the 

first kind. 

The equilibrium equations of the beam plate can be written in the following form: 

𝑙 ∫ 𝑝(𝑥)
1

-1

𝑑𝑥=𝑃𝑠;     𝑙
2∫ 𝑥𝑝(𝑥)𝑑𝑥=𝑀𝑠.

1

-1

                                                     (10) 

Here through 𝑃𝑠 and 𝑀𝑠 – indicated accordingly, the sum of all vertical forces and the sum of their moments 

relative to the middle of the beam plate. 

Substituting (9) into (10), while taking into account the orthogonality of the Chebyshev polynomials, we deter-

mine the first unknown coefficients of series (12) in the form: 

𝐴0=
2(𝑞+𝑃)

𝜋𝑙
  .                                                                                (11) 

Substituting (9) into (2), we obtain the following expression for determining the base settlement: 

𝑉=𝑙𝐷0 [-𝐴0𝑙𝑛2+∑
𝐴2𝑛
2𝑛

∞

𝑛=1

𝑇2𝑛(𝑥)] .                                                         (12) 

Here the following formulas were used: 

∫ (1-𝑠2)-
1
2𝑇0

1

-1

(𝑠)𝑙𝑛
1

|𝑥-𝑠|
𝑑𝑠=-𝜋𝑙𝑛2;  ∫ (1-𝑠2)-

1
2𝑇2𝑘

1

-1

(𝑠)𝑙𝑛
1

|𝑥-𝑠|
𝑑𝑠=

𝜋

2𝑘
𝑇2𝑘(𝑥). 

The deflections of the beam plate (7) and (8), taking into account (12), will take the following form: 

𝑦1=
𝑙4

2𝐷
{∑𝐶𝑖𝑥

4-𝑖+𝑓𝑞

4

𝑖=1

(𝑥)-
𝐷

𝑙4
[∑𝐵𝑖𝑢𝑖(𝛼𝑥)+𝜑𝑞

4

𝑖=1

(𝑥)] -
𝐷

𝑙4
∑𝐴2𝑛

∞

𝑛=0

[
𝑙4

𝐷
𝑓𝑝,2𝑛(𝑥)+𝜑𝑝,2𝑛(𝑥)]} ;         (13) 

𝑦2=
𝑙4

2𝐷
{∑𝐶𝑖𝑥

4-𝑖+𝑓𝑞

4

𝑖=1

(𝑥)+
𝐷

𝑙4
[∑𝐵𝑖𝑢𝑖(𝛼𝑥)+𝜑𝑞

4

𝑖=1

(𝑥)] -
𝐷

𝑙4
∑𝐴2𝑛

∞

𝑛=0

[
𝑙4

𝐷
𝑓𝑝,2𝑛(𝑥)-𝜑𝑝,2𝑛(𝑥)]} .         (14) 

Here, 

𝜑𝑝,2𝑛(𝑥)=
1

4𝛼4
∫ 𝑢4

𝑥

0

[𝛼(𝑥-𝑧)](1-𝑧2)-
1
2𝑇2𝑛(𝑧)𝑑𝑧;                                        (15) 

𝑓𝑝,2𝑛(𝑥)=
1

32𝑛(2𝑛-1)(2𝑛-2)(2𝑛-3)
(1-𝑥2)

7
2𝑃2𝑛-4

(
7
2
,
7
2
)
(𝑥), 𝑛>2,                  (16) 

where  𝑃𝑗
(𝛽1,𝛽2)(𝑥) – Jacobi polynomials [7,16]. The form of the function 𝑓𝑝,𝑛(𝑥) for 𝑛 ≤ 3 is determined based on 

the explicit form of Chebyshev polynomials [23], i.e. for the case when 𝑛=0,1 it has the form:  

𝑓𝑝,0(𝑥)=
1

12
(3𝑥+2𝑥3)𝑎𝑟𝑐𝑠𝑖𝑛𝑥+

1

36
(4+11𝑥2)(1-𝑥2)

1
2;     

𝑓𝑝,2(𝑥)=
1

8
𝑥𝑎𝑟𝑐𝑠𝑖𝑛𝑥+

1

120
(8+9𝑥2-2𝑥4)(1-𝑥2)

1
2.   



Based on the above formulas (13) and (14), the factors of internal forces of three-layer beam plates, i.e. the angle 

of rotation, bending moments and cutting forces, can be represented as:  

𝜑𝑖(𝑥)=
𝐷

𝑙
𝑦𝑖
′(𝑥);  𝑀𝑖(𝑥)=-

𝐷

𝑙2
𝑦𝑖
′′(𝑥);  𝑄𝑖(𝑥)=-

𝐷

𝑙3
𝑦𝑖
′′(𝑥), 𝑖=1,2.               (17) 

The draft of the base (12) and the deflections of the beam plate (13) and (14) are expressed in terms of unknown 

coefficients 𝐴2𝑛. To determine the coefficients 𝐴2𝑛, the contact condition (3) is used. 

RESULTS AND DISCUSSION 

Expressions (16) and (17) defining the deflections of the beam plate, taking into account (21), for each section 

separately, are presented in the following form: 

𝑦1
𝐼=
𝑙4

2𝐷
[∑𝐶𝑖

𝐼𝑥4-𝑖+
𝑞𝑥4

24

4

𝑖=1

] -
1

2
[∑𝐵𝑖

𝐼𝑢𝑖(𝛼𝑥)-
𝑞

4𝛼4

4

𝑖=1

(1-𝑢1(𝛼𝑥))] - 

-
1

2
∑𝐴2𝑛

∞

𝑛=0

[
𝑙4

𝐷
𝑓𝑝,2𝑛(𝑥)+𝜑𝑝,2𝑛(𝑥)] , 𝑥 ∈ [-𝑎; 𝑎];                                                    (18) 

𝑦1
𝐼𝐼=

𝑙4

2𝐷
∑𝐶𝑖

𝐼𝐼𝑥4-𝑖

4

𝑖=1

-
1

2
∑𝐵𝑖

𝐼𝐼𝑢𝑖(𝛼𝑥)

4

𝑖=1

-
1

2
∑𝐴2𝑛

∞

𝑛=0

[
𝑙4

𝐷
𝑓𝑝,2𝑛(𝑥)+𝜑𝑝,2𝑛(𝑥)] , 𝑥 ∈ [-1; -𝑎] ∪ [𝑎; 1];      (19) 

𝑦2
𝐼=
𝑙4

2𝐷
[∑𝐶𝑖

𝐼𝑥4-𝑖+
𝑞𝑥4

24

4

𝑖=1

]+
1

2
[∑𝐵𝑖

𝐼𝑢𝑖(𝛼𝑥)-
𝑞

4𝛼4

4

𝑖=1

(1-𝑢1(𝛼𝑥))] - 

-
1

2
∑𝐴2𝑛

∞

𝑛=0

[
𝑙4

𝐷
𝑓𝑝,2𝑛(𝑥)-𝜑𝑝,2𝑛(𝑥)] , 𝑥 ∈ [-𝑎; 𝑎];                                              (20) 

𝑦2
𝐼𝐼=

𝑙4

2𝐷
∑𝐶𝑖

𝐼𝐼𝑥4-𝑖

4

𝑖=1

+
1

2
∑𝐵𝑖

𝐼𝐼𝑢𝑖(𝛼𝑥)

4

𝑖=1

-
1

2
∑𝐴2𝑛

∞

𝑛=0

[
𝑙4

𝐷
𝑓𝑝,2𝑛(𝑥)-𝜑𝑝,2𝑛(𝑥)] , 𝑥 ∈ [-1; -𝑎] ∪ [𝑎; 1].   (21) 

Here, the symbols I and II indicate the values corresponding (Fig.2b) to the sections -𝑎 ≤ 𝑥 ≤ 𝑎 and -1 ≤ 𝑥 ≤
-𝑎,  𝑎 ≤ 𝑥 ≤ 1. In this case, arbitrary constants 𝐶𝑖

𝐼 , 𝐶𝑖
𝐼𝐼 , 𝐵𝑖

𝐼 , 𝐵𝑖
𝐼𝐼 , (𝑖=1,2,3,4) are determined from the following 

boundary conditions: 

1. When 𝑥=0, 
𝑄1
𝐼(0)=0;  𝑄2

𝐼(0)=0;  𝜑1
𝐼(0)=0;  𝜑2

𝐼 (0)=0.   

2. When 𝑥= ± 1, 
𝑄1
𝐼(±1)=0;  𝑄2

𝐼(±1)=0;  𝑀1
𝐼(±1)=0;  𝜑2

𝐼 (±1)=0.   

3. When 𝑥= ± 𝑎  (conditions for connecting sections) internal force factors satisfy the following equality: 

𝑄1
𝐼(±𝑎)-𝑄1

𝐼𝐼(±𝑎)=𝑃;   𝑄2
𝐼 (±𝑎)=𝑄2

𝐼𝐼(±𝑎);    
𝑀1
𝐼(±𝑎)-𝑀1

𝐼𝐼(±𝑎)=𝑀;   𝑀2
𝐼(±𝑎)=𝑀2

𝐼𝐼(±𝑎);    
𝜑1
𝐼(±𝑎)=𝜑1

𝐼𝐼(±𝑎);  𝜑2
𝐼 (±𝑎)=𝜑2

𝐼𝐼(±𝑎) 
𝑦1
𝐼(±𝑎)=𝑦1

𝐼𝐼(±𝑎);   𝑦2
𝐼(±𝑎)=𝑦2

𝐼𝐼(±𝑎).   
The relative deflections of the beam plate satisfying the boundary conditions are represented in the following 

form: 

𝑦1(𝑥)=𝐹1(𝑥)+∑𝐴2𝑛𝐹1,2𝑛(𝑥);

∞

𝑛=0

                                                               (22) 

𝑦2(𝑥)=𝐹2(𝑥)+∑𝐴2𝑛𝐹2,2𝑛(𝑥).

∞

𝑛=0

                                                        (23) 

The following designations are introduced here:                            

𝐹1(𝑥)=
𝑙4

2𝐷
(𝐶2

𝐼𝑥2+
𝑞𝑥4

24
) -
1

2
[𝐵1

𝐼𝑢1(𝛼𝑥)+𝐵3
𝐼𝑢3(𝛼𝑥) -

𝑞

4𝛼4
(1-𝑢1(𝛼𝑥))] ,  𝑤ℎ𝑒𝑛 𝑥 ∈ [-𝑎; 𝑎],

𝐹1(𝑥)=
𝑙4

2𝐷
𝐶2
𝐼𝐼𝑥2-

1

2
[𝐵1

𝐼𝐼𝑢1(𝛼𝑥)+𝐵3
𝐼𝐼𝑢3(𝛼𝑥)],  𝑤ℎ𝑒𝑛 𝑥 ∈ [-1; -𝑎] ∪ [𝑎; 1].

}
 
 

 
 

    (24) 

 



𝐹2(𝑥)=
𝑙4

2𝐷
(𝐶2

𝐼𝑥2+
𝑞𝑥4

24
) +

1

2
[𝐵1

𝐼𝑢1(𝛼𝑥)+𝐵3
𝐼𝑢3(𝛼𝑥) -

𝑞

4𝛼4
(1-𝑢1(𝛼𝑥))] ,  𝑤ℎ𝑒𝑛𝑥 ∈ [-𝑎; 𝑎],

𝐹2(𝑥)=
𝑙4

2𝐷
𝐶2
𝐼𝐼𝑥2+

1

2
[𝐵1

𝐼𝐼𝑢1(𝛼𝑥)+𝐵3
𝐼𝐼𝑢3(𝛼𝑥)],  𝑤ℎ𝑒𝑛 𝑥 ∈ [-1; -𝑎] ∪ [𝑎; 1].

}
 
 

 
 

 (25) 

𝐹1,2𝑛(𝑥)=-
1

2
[
𝑙4

𝐷
𝑓𝑝,2𝑛(𝑥)+𝜑𝑝,2𝑛(𝑥)] ;                                                              (26) 

  𝐹2,2𝑛(𝑥)=-
1

2
[
𝑙4

𝐷
𝑓𝑝,2𝑛(𝑥)-𝜑𝑝,2𝑛(𝑥)] ;                                                             (27)  

𝐶2
𝐼𝐼=
𝜋

4
𝐴0;  𝐶2

𝐼=
1

1+2𝛼2
(
𝜋

4
𝐴0) -

𝑞𝑎2𝛼2

2
; 

𝐵1
𝐼𝐼=

𝐴0
2𝛼3𝑏1

[𝑢1(𝛼)𝜑0
′′′(1)+𝛼𝑢4(𝛼)𝜑0

′′(1)];  𝐵3
𝐼𝐼=

𝐴0
2𝛼3𝑏1

[𝑢3(𝛼)𝜑0
′′′(1)-𝛼𝑢2(𝛼)𝜑0

′′(1)];   

 

𝐵1
𝐼=

1

2𝛼3𝑏2
[(-2𝑃+

𝑙4

𝐷
𝑞𝑎)𝑢1(𝛼𝑎)+(-2𝑀+

𝑙4

𝐷
2𝛼3 (2𝐶2

𝐼+
𝑞𝛼2

2
)𝑢3(𝛼𝑎))] -

𝑞

4𝛼4
+   

+
𝐴0

2𝛼3𝑏1
[𝑢1(𝛼)𝜑0

′′′(1)+𝛼𝑢4(𝛼)𝜑0
′′(1)]; 

𝐵3
𝐼=

1

2𝛼3𝑏2
[(-2𝑃+

𝑙4

𝐷
𝑞𝑎)𝑢3(𝛼𝑎)+(-2𝑀+

𝑙4

𝐷
2𝛼3 (2𝐶2

𝐼+
𝑞𝛼2

2
)𝑢1(𝛼𝑎))]+  

+
𝐴0

2𝛼3𝑏1
[𝑢3(𝛼)𝜑0

′′′(1)-𝛼𝑢2(𝛼)𝜑0
′′(1)]; 

𝑏1=𝑢1(𝛼)𝑢2(𝛼)+𝑢3(𝛼)𝑢4(𝛼);   𝑏2=𝑢1(𝛼𝑎)𝑢2(𝛼𝑎)+𝑢3(𝛼𝑎)𝑢4(𝛼𝑎).  
As noted above, the contact conditions (3) are used to determine the unknown coefficients 𝐴2𝑛. To do this, we 

substitute expressions (12) and (22) into equality (3), then multiply both parts of the equalities by expression (1-

𝑥2)-1 2⁄ 𝑇2𝑗(𝑥) and integrate in the range from -1 to 1.  

When integrating, we take into account the orthogonality of the polynomials and obtain an infinite system of lin-

ear algebraic equations with an infinite number of unknown relatively unknown coefficients 𝐴2𝑛, in the form: 

𝑎2𝑗+∑𝑎2𝑛,2𝑗

∞

𝑛=0

𝐴2𝑛=𝑐2𝑗𝐴2𝑗, 𝑗=1,2,3,4, …                                                       (28) 

Where 

𝑐2𝑗=
𝜋(1-𝜈0

2)𝑙

𝐸0𝑗
;  𝑎2𝑗=

𝑙4

2𝐷
∫ 𝐹1(𝑥)(1-𝑥2)-

1
2𝑇2𝑗(𝑥)𝑑𝑥;

1

-1

                              (29) 

𝑎2𝑛,2𝑗=-
𝑙4

2𝐷
∫ 𝐹1,2𝑛(𝑥)
1

-1

(1-𝑥2)-
1
2𝑇2𝑗(𝑥)𝑑𝑥.                                      (30) 

By integrating integrals (29) and (30) in parts, we can get rid of the singularity: 

𝑎2𝑗=
𝑙4

2𝐷
(-
1

4𝑗
)∫ 𝐹1

′(𝑥)(1-𝑥2)
1
2𝑃
2𝑗-1

(
1
2
,
1
2
)
(𝑥)𝑑𝑥,

1

-1

 

𝑎2𝑛,2𝑗=-
𝑙4

2𝐷
(-
1

4𝑗
)∫ 𝐹1,2𝑛

′ (𝑥)(1-𝑥2)
1
2𝑃
2𝑗-1

(
1
2
,
1
2
)
(𝑥)𝑑𝑥.

1

-1

 

𝐹1
′(𝑥)=

𝑙4

2𝐷
(2𝐶2

𝐼𝑥+
𝑞𝑥3

6
) -
1

2
[-𝐵1

𝐼𝛼𝑢4(𝛼𝑥)+𝐵3
𝐼𝛼𝑢2(𝛼𝑥) -

𝑞

4𝛼3
𝑢4(𝛼𝑥)] ,  𝑤ℎ𝑒𝑛 𝑥 ∈ [-𝑎; 𝑎],

𝐹1
′(𝑥)=

𝑙4

2𝐷
𝐶2
𝐼𝐼2𝑥-

1

2
[-𝐵1

𝐼𝐼𝛼𝑢4(𝛼𝑥)+𝐵3
𝐼𝐼𝛼𝑢2(𝛼𝑥)],  𝑤ℎ𝑒𝑛 𝑥 ∈ [-1; -𝑎] ∪ [𝑎; 1].

}
 
 

 
 

  

𝐹2𝑛
′ (𝑥)=-

1

2
[
𝑙4

𝐷
𝑓𝑝,2𝑛
′ (𝑥)+𝜑𝑝,2𝑛

′ (𝑥)] ;      

𝑓𝑝,2𝑛
′ (𝑥)=

1

16𝑛(2𝑛-1)(2𝑛-2)
(1-𝑥2)

5
2𝑃2𝑛-3

(
5
2
,
5
2
)
(𝑥), 𝑛>1;    

𝜑𝑝,2𝑛
′ (𝑥)=

1

2𝛼3
∫ 𝑢3

𝑥

0

[𝛼(𝑥-𝑧)](1-𝑧2)-
1
2𝑇2𝑛(𝑧)𝑑𝑧. 



The resulting formulas have a convenient form and it becomes possible to implement calculations using comput-

er technology.  

The solution of the system (28) is determined by the reduction method. Based on the principle of the reduction 

method, we limit ourselves to a few first-order unknowns 𝐴2, 𝐴4, … , 𝐴2𝑟 with corresponding r equations, systems of 

equations (28). We determine the solutions 𝐴2, 𝐴4, … , 𝐴2𝑟from the compiled system and, substituting them in (22) 

and (23), we find the deflections of the beam plate. Then, using deflection formulas, it is possible to calculate the 

internal forces of the beam plate based on formulas (17). Here it can be easily seen that the constraints, respectively, 

by r equations with r unknowns in system (28), uniquely correspond to those taken in place of the infinite series (9) 

in the form of a finite series consisting of r terms. 

TEST CASE 

Let's consider a numerical example to illustrate the presented methodology. The calculation is carried out in the 

following mechanical and geometric parameters:  

 for soil -  𝐸0=5 ∙ 10
2 𝑘𝑔

𝑠𝑚2 ;    𝜈0=3 ∙ 10
-1. 

 for plates -  𝐸=1,25 ∙ 105
𝑘𝑔

𝑠𝑚2 ;  𝜈=1,67 ∙ 10
-1; 𝑙=4 ∙ 102𝑠𝑚; ℎ=2,5 ∙ 10 𝑠𝑚. 

 for the stiffness coefficient of the filler 𝑘, having the dimension 
𝑘𝑔

𝑠𝑚3   - 

1 ∙ 10-1; 1,5 ∙ 10-1;   2 ∙ 10-1;   2,5 ∙ 10-1;  3 ∙ 10-1;  3,5 ∙ 10-1;   4 ∙ 10-1; 4,5 ∙ 10-1;   5 ∙ 10-1. 
To carry out calculations in series (18), we take the first four terms with unknown coefficients. The numerical 

values of the unknown coefficients 𝐴0,  𝐴2,  𝐴4,  𝐴6corresponding to different values of the filler stiffness coefficient 

k are given in Table 1. 

TABLE 1. Numerical values for solving algebraic equations 

k
 

𝐴0𝑙(𝑎(𝑞+𝑃))
-1 𝐴2𝑙(𝑎(𝑞+𝑃))

-1 𝐴4𝑙(𝑎(𝑞+𝑃))
-1 𝐴6𝑙(𝑎(𝑞+𝑃))

-1 

0.10 0.636619734 -0.087965346 -0.006879273 0.000589234 

0.15 0.636619734 -0.088674923 -0.007182671 0.000577423 

0.20 0.636619734 -0.089776138 -0.007326346 0.000576461 

0.25 0.636619734 -0.091682197 -0.007581275 0.000577862 

0.30 0.636619734 -0.093138624 -0.007813469 0.000571349 

0.35 0.636619734 -0.094386526 -0.008095364 0.000569784 

0.40 0.636619734 -0.095163543 -0.008274618 0.000568126 

0.45 0.636619734 -0.096857319 -0.008337421 0.000561237 

0.50 0.636619734 -0.098976734 -0.008419263 0.000557329 

 

According to Table 1, it can be noted that:  

1. Changing the stiffness value of the aggregate does not lead to a noticeable change in the solution of the al-

gebraic equations and, similarly, does not lead to a change in the distribution of the base pressure.  

2. To ensure the necessary calculation accuracy with a uniform distribution of base pressure in the Chebyshev 

polynomial, it is sufficient to limit ourselves to the first four terms of the series.  

Based on the calculation results, Table 2 shows the maximum values of bending moments in beam plates with 

comparisons with the results [23], - 𝑀1(𝑞𝑙
2)-1, 𝑀2(𝑞𝑙

2)-1.  

TABLE 2. Maximum values of bending moments in beam plates 

k
 

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

𝑀1(𝑎𝑞𝑙
2)-1 0.076583 0.077361 0.079714 0.080675 0.082305 0.082576 0.082971 0.082987 0.083271 

𝑀1(𝑎(𝑞+𝑃)𝑙
2)-1 0.079321 0.080638 0.081275 0.082621 0.084019 0.085219 0.086233 0.087683 0.088624 

𝑀2(𝑎𝑞𝑙
2)-1 0.114672 0.112318 0.110623 0.108937 0.098601 0.092461 0.098119 0.098362 0.097876 

𝑀2(𝑎(𝑞+𝑃)𝑙
2)-1 0.119864 0.118638 0.115563 0.110695 0.109487 0.106228 0.101278 0.099264 0.098967 

 

Analyzing the data in Table 2, it can be noted that: 

1. An increase in the rigidity of the filler leads to the maximum values of bending moments in the plates ap-

proaching each other. 

2. Bending moments will increase to 10%. 



CONCLUSION 

Analyzing the results of the study, we can conclude: 

1. A mathematical model and an analytical method have been developed to evaluate the bending of three-layer 

plates interacting with elastic bases loaded with generalized symmetrical external loads.  

2. An improved algorithm for calculating three-layer plates lying freely on an elastic base is presented. 

3. The nature of the influence of the filler layer on the internal forces in three-layer plates lying on an elastic 

base is determined. 

4. Limits of numerical limitations have been established to ensure the accuracy of calculating practical calcu-

lations of three-layer plates having continuous contact with elastic half-spaces. 
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