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Abstract. This article derives filtration equations for the formation of a relaxing layer based on the laws of suspension 

conservation. The equations are solved numerically, utilizing the Stefan problem and the moving front capture method to 

model the layer's growth. The numerical results are then used to quantify how relaxation phenomena influence the material's 

filtration properties. 

INTRODUCTION  

Filtration of suspensions through porous media is of great practical importance. The processes of formation of a 

precipitate layer on the filter surface have been studied in the literature [1,2,3,4,5]. If the liquid (dispersion medium) 

surrounding the solid particles in the suspension is a polymer solution or a very dense liquid, then the suspension itself 

may exhibit non-Newtonian (i.e., viscosity is pressure-dependent) properties [6]. On a filter, suspensions exhibit 

properties characteristic of a porous medium. Crucially, the formed cake layer is not purely viscous; it displays 

viscoelastic behavior. While one could link filtration models to the rheological models of relaxing suspensions, it's 

more convenient to use relaxation filtration laws. This approach posits that the suspension's inherent relaxation 

properties are the direct source of the relaxation phenomena observed during filtration [7, 8, 9]. The relationship 

between the pressure gradient p  and the filtration velocity v


 defined by Darcy's Law often shows inconsistencies 

between experimental and theoretical results. This discrepancy suggests that v


 isn't simply proportional to p  under 

all conditions. The failure of the simple linear relationship is likely due to the liquid possessing non-equilibrium 

rheological properties (like viscoelasticity), as well as complex interactions within the porous medium. These factors 

include: (1) The interaction of the liquid with the porous matrix. (2) The adsorption of oil components onto the solid 

surfaces. (3) Filling and emptying of pores by large molecules, such as those in polymeric liquids [10]. These effects 

violate the law's underlying equilibrium nature, causing it to acquire a relaxing character [11-14]. Researchers have 

explored various approaches to generalize Darcy's law [15, 16]. For instance, a memory model for fluid movement in 

porous media was proposed, which successfully matched experimental flow velocities for water moving through sand 

[17]. Furthermore, another study introduced a memory formalism using fractional derivatives into the constitutive 

equations that govern pressure-flow and pressure-density relationships [18]. Collectively, experimental finding across 

this work is that memory effects cause a delay in flow velocity, with the maximum steady state only being reached at 

later times. 

In this paper aims to modify Darcy's law using established filtration theories to develop the governing equations 

for suspension filtration with cake formation. Since the cake layer thickness increases over time, the moving boundary 

between the suspension and the sediment must be tracked. This requires an additional equation, which leads to a 

Stefan-type differential problem. Consequently, the resulting system of equations is solved numerically. The primary 

steps involve formulating the appropriate mathematical model, obtaining the numerical solution, and then analyzing 

the results to describe key process parameters. Under pressure, a suspension is driven toward a porous medium (the 



filter). Since the solid particles are unable to pass through, they are completely retained on the upstream side, where 

they accumulate to form a filter cake. The liquid component, or filtrate, is separated and flows through both the cake 

and the filter medium. As filtration progresses, the thickness of the cake, ( )L t , continuously increases over time. 

EQUATIONS OF CAKE FILTRATION  

Let us suppose, what the filtration velocity of the liquid phase relative to the pressure gradient has a nonequilibrium 

nature. The nonequilibrium relationship is assumed to be in linear differential form 
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where q  
-  liquid phase velocity, k  - permeability coefficient,

 
  - viscosity, p  

- pressure in the liquid phase, p   
- relaxation time of filtration velocities, t  - time, x  - distance away from the medium.  

Given that the phase filtration rate is scale-dependent, relaxation events also occur within distinct time frames. 

This allows us to simplify the model by neglecting the relaxation contribution of the solid phase to the filtration rate, 

as it is considered minor compared to the effect exerted by the liquid phase [19, 20]. 

Using equation (1), a governing equation for 
sp  (compressive stress) is derived using conservation laws:  
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where 
Ap

 
- characteristic pressure, 0k  - value of k  at 0sp = ,  ,   - constants.   

The flow rate 
mq  is 
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The conservation law is expressed by the equation [3]  

 
( )

0
sq q

x

 +
=




.    

This means that in a given speed regime, the total flow rate ( sq q const+ = ) is constant. This is in sharp contrast to 

a system operating under a given pressure regime, where the total pressure ( sp p+ ) is not constant but rather a 

function of time, ( )sp p r t+ = , which must be determined while solving the problem. 

For the purposes of this analysis, we will focus on the given speed regime, where the total flow rate is constant: 

 0sq q v const+ = = .   

The initial and boundary conditions for equation (2) will then be set according to this regime. 
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where
 mR -

 
relative resistance of the filtering element. 

The equation of thickness growth for the cake layer ( )L t
 
 has the form  
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where 
0

s  
- solid content at zero pressure, 

0s - concentration of solid particles in suspension. 

From equation (5) we can determine a mobile front ( )L t
 
- the boundary between the suspension and the cake 

layer. This equation is solved together with the basic filtering equation (2) under the conditions (4) and ( )0 0L = . 

We introduce the following notations  



( )
1

1 s

s

A

p
a p

p

−
 

= + 
 

, ( ) 1 s

s

A

p
b p

p

 −
 

= + 
 

, ( )
0

1 s

s

A

pk
c p

p





−

 
= + 

 
, ( )

0
0

0

1 s

s

A
x

pk
c p

p





−

=

 
= + 

 
, 

0

1
Ak p

c


= ,

  

 0

0

2 0

s

s s

c


 
=

−
.  

With taking into account these notations equation (2) can be transformed into the following form 
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The equation for the mobile boundary ( )L t , (5), takes the form  
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where 
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To solve the problem (6), (7) with (4) and ( )0 0L =  we use the finite differences method [21, 22].   

We introduce a uniform grid by t  with the step    | , 0,1,..., ,jt t t j j N N T  = = = = = ,  and a non - uniform 

grid by coordinate x  [21, 22]  1| , 0,h i i i ix x x x h h −= = = + = 1,2,..., , 1, 1,..., Ni N N N x L= + + =  with the 

variable steps 0ih  . We are to choose the steps ih  from the interval [
1,i ix x +

] so, that the mobile boundary moves 

exactly on one step along the time grid. This approach is known as the method of catching the front in a grid node. 
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In Eq. (7),  1ihdL

dt 
+  after the approximation can be written in the form  
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Approximation of initial and boundary conditions (4) gives  
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The obtained set of equations (8) is nonlinear, so to solve it we use the method of simple iteration  
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  is the number of iteration. 

It can be seen that the system of equations (10) is now linear with respect to 
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Tomas’s algorithm [21]. As a condition to stop iteration procedure on this time layer, the following relationship can 

be used: 
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The equation (9) is used to determine the step 1ih +  and it can be written in the form  
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By solving this nonlinear equation for each temporal layer we can determine 1ih + . The system of linear algebraic 

equations (13) is solved by the Tomas’ algorithm 
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The starting values of the coefficients 
1  and 

1  are determined from the boundary condition (10), which have 
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NUMERICAL RESULTS AND DISCUSSION 

Numerical results with using (14), (15) were obtained with the following values of initial parameters:
 

4

0 10v −=

m/s, 
410Аp = Pa, 

1210mR = 1/m,
 

310 =
 
Pa·s, 0 130,8 10k −= 

 
m2,

 
0 0.20s = ,

0
0,0076s = , 0,13 = , 0,57 = . 

 

 

FIGURE 1. Dynamics of the cake thickness at 0p =  (1); 150  (2); 350  (3) c. 

 

Figure 1 graphically illustrates the dynamics of cake thickness, ( )L t , over time, t , for three different values of 

the relaxation time, p  : 

• Curve 1: 0p =  (no relaxation) 

• Curve 2: 150p =  

• Curve 3: 350p =  

The numerical results show that an increase in the relaxation time, p  , leads to a faster growth rate of the cake 

thickness at all other constant filtration conditions. 

CONCLUSION 

The results show that the relaxation properties of the flow have a significant effect on both the growth of the cake 

thickness and the overall filtration properties. In particular, the relaxation effects in the filtration laws reduce the 

distribution of the compressive pressure ( sp ) and the liquid pressure ( p ) inside the cake. However, when the process 

is sufficiently advanced, i.e., when the flow time significantly exceeds the characteristic relaxation time, the effect of 

relaxation phenomena ceases (or disappears).  
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