

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

A Problem of Relaxation Filtering of Suspensions with Forming a Cake Layer

AIPCP25-CF-AMSMT2025-00018 | Article

PDF auto-generated using **ReView**

A Problem of Relaxation Filtering of Suspensions With Forming a Cake Layer

Utkir A. Nishonov^{1 a)}, Usmonali J. Saydullaev^{1, b)}, Iroda Yo. Beknazarova²⁾, Diyora U. Juraeva²⁾

¹*Samarkand State University named after Sharof Rashidov, Samarkand, 140104, Uzbekistan , University Boulevard 15,*

²*Samarkand State Institute of Foreign Languages, Samarkand, 140104, Uzbekistan, Bustonsaray 93*

^{b)} Corresponding author: usmonali.jurayevich@gmail.com

Abstract. This article derives filtration equations for the formation of a relaxing layer based on the laws of suspension conservation. The equations are solved numerically, utilizing the Stefan problem and the moving front capture method to model the layer's growth. The numerical results are then used to quantify how relaxation phenomena influence the material's filtration properties.

INTRODUCTION

Filtration of suspensions through porous media is of great practical importance. The processes of formation of a precipitate layer on the filter surface have been studied in the literature [1,2,3,4,5]. If the liquid (dispersion medium) surrounding the solid particles in the suspension is a polymer solution or a very dense liquid, then the suspension itself may exhibit non-Newtonian (i.e., viscosity is pressure-dependent) properties [6]. On a filter, suspensions exhibit properties characteristic of a porous medium. Crucially, the formed cake layer is not purely viscous; it displays viscoelastic behavior. While one could link filtration models to the rheological models of relaxing suspensions, it's more convenient to use relaxation filtration laws. This approach posits that the suspension's inherent relaxation properties are the direct source of the relaxation phenomena observed during filtration [7, 8, 9]. The relationship between the pressure gradient ∇p and the filtration velocity \bar{v} defined by Darcy's Law often shows inconsistencies between experimental and theoretical results. This discrepancy suggests that \bar{v} isn't simply proportional to ∇p under all conditions. The failure of the simple linear relationship is likely due to the liquid possessing non-equilibrium rheological properties (like viscoelasticity), as well as complex interactions within the porous medium. These factors include: (1) The interaction of the liquid with the porous matrix. (2) The adsorption of oil components onto the solid surfaces. (3) Filling and emptying of pores by large molecules, such as those in polymeric liquids [10]. These effects violate the law's underlying equilibrium nature, causing it to acquire a relaxing character [11-14]. Researchers have explored various approaches to generalize Darcy's law [15, 16]. For instance, a memory model for fluid movement in porous media was proposed, which successfully matched experimental flow velocities for water moving through sand [17]. Furthermore, another study introduced a memory formalism using fractional derivatives into the constitutive equations that govern pressure-flow and pressure-density relationships [18]. Collectively, experimental finding across this work is that memory effects cause a delay in flow velocity, with the maximum steady state only being reached at later times.

In this paper aims to modify Darcy's law using established filtration theories to develop the governing equations for suspension filtration with cake formation. Since the cake layer thickness increases over time, the moving boundary between the suspension and the sediment must be tracked. This requires an additional equation, which leads to a Stefan-type differential problem. Consequently, the resulting system of equations is solved numerically. The primary steps involve formulating the appropriate mathematical model, obtaining the numerical solution, and then analyzing the results to describe key process parameters. Under pressure, a suspension is driven toward a porous medium (the

filter). Since the solid particles are unable to pass through, they are completely retained on the upstream side, where they accumulate to form a filter cake. The liquid component, or filtrate, is separated and flows through both the cake and the filter medium. As filtration progresses, the thickness of the cake, $L(t)$, continuously increases over time.

EQUATIONS OF CAKE FILTRATION

Let us suppose, what the filtration velocity of the liquid phase relative to the pressure gradient has a nonequilibrium nature. The nonequilibrium relationship is assumed to be in linear differential form

$$q_\ell = -\frac{k}{\mu} \left(1 + \lambda_{p\ell} \frac{\partial}{\partial t} \right) \frac{\partial p_\ell}{\partial x}, \quad (1)$$

where q_ℓ - liquid phase velocity, k - permeability coefficient, μ - viscosity, p_ℓ - pressure in the liquid phase, $\lambda_{p\ell}$ - relaxation time of filtration velocities, t - time, x - distance away from the medium.

Given that the phase filtration rate is scale-dependent, relaxation events also occur within distinct time frames. This allows us to simplify the model by neglecting the relaxation contribution of the solid phase to the filtration rate, as it is considered minor compared to the effect exerted by the liquid phase [19, 20].

Using equation (1), a governing equation for p_s (compressive stress) is derived using conservation laws:

$$\frac{\partial p_s}{\partial t} = \frac{k^0 p_A}{\mu \beta} \left(1 + \frac{p_s}{p_A} \right)^{1-\beta} \frac{\partial}{\partial x} \left[\left(1 + \frac{p_s}{p_A} \right)^{\beta-\delta} \left(1 + \lambda_{p\ell} \frac{\partial}{\partial t} \right) \left(\frac{\partial p_s}{\partial x} \right) \right] - q_{\ell m} \frac{\partial p_s}{\partial x}, \quad (2)$$

where p_A - characteristic pressure, k^0 - value of k at $p_s = 0$, β , δ - constants.

The flow rate $q_{\ell m}$ is

$$q_{\ell m} = \frac{k}{\mu} \left(1 + \lambda_{p\ell} \frac{\partial}{\partial t} \right) \frac{\partial p_s}{\partial x} \Big|_{x=0}. \quad (3)$$

The conservation law is expressed by the equation [3]

$$\frac{\partial (q_\ell + q_s)}{\partial x} = 0.$$

This means that in a given speed regime, the total flow rate ($q_\ell + q_s = \text{const}$) is constant. This is in sharp contrast to a system operating under a given pressure regime, where the total pressure ($p_\ell + p_s$) is not constant but rather a function of time, $p_\ell + p_s = r(t)$, which must be determined while solving the problem.

For the purposes of this analysis, we will focus on the given speed regime, where the total flow rate is constant:

$$q_\ell + q_s = v_0 = \text{const}.$$

The initial and boundary conditions for equation (2) will then be set according to this regime.

$$p_s(0, x) = 0, \quad \frac{k}{\mu} \left(1 + \lambda_{p\ell} \frac{\partial}{\partial t} \right) \frac{\partial p_s}{\partial x} \Big|_{x=0} = -\frac{p_\ell}{\mu R_m} \Big|_{x=0} = -v_0 = \text{const} < 0, \quad p_s(t, L(t)) = 0, \quad (4)$$

where R_m - relative resistance of the filtering element.

The equation of thickness growth for the cake layer $L(t)$ has the form

$$\frac{dL}{dt} = -\frac{\varepsilon_s^0}{\varepsilon_s^0 - \varepsilon_{s_0}} \left[\frac{k}{\mu} \left(1 + \lambda_{p\ell} \frac{\partial}{\partial t} \right) \frac{\partial p_s}{\partial x} \right]_L + \left[\frac{k}{\mu} \left(1 + \lambda_{p\ell} \frac{\partial}{\partial t} \right) \frac{\partial p_s}{\partial x} \right]_{x=0}, \quad (5)$$

where ε_s^0 - solid content at zero pressure, ε_{s_0} - concentration of solid particles in suspension.

From equation (5) we can determine a mobile front $L(t)$ - the boundary between the suspension and the cake layer. This equation is solved together with the basic filtering equation (2) under the conditions (4) and $L(0) = 0$.

We introduce the following notations

$$a(p_s) = \left(1 + \frac{p_s}{p_A}\right)^{1-\beta}, \quad b(p_s) = \left(1 + \frac{p_s}{p_A}\right)^{\beta-\delta}, \quad c(p_s) = \frac{k^0}{\mu} \left(1 + \frac{p_s}{p_A}\right)^{-\delta}, \quad c^0(p_s) = \frac{k^0}{\mu} \left(1 + \frac{p_s}{p_A}\right)^{-\delta} \Big|_{x=0}, \quad c_1 = \frac{k^0 p_A}{\beta \mu},$$

$$c_2 = \frac{\varepsilon_s^0}{\varepsilon_s^0 - \varepsilon_{s_0}}.$$

With taking into account these notations equation (2) can be transformed into the following form

$$\frac{\partial p_s}{\partial t} = c_1 a(p_s) \frac{\partial}{\partial x} \left[b(p_s) \left(1 + \lambda_{p^{\ell}} \frac{\partial}{\partial t}\right) \left(\frac{\partial p_s}{\partial x} \right) \right] - q_{\ell m} \frac{\partial p_s}{\partial x}. \quad (6)$$

The equation for the mobile boundary $L(t)$, (5), takes the form

$$\frac{dL}{dt} = -c_2 \left[c(p_s) \left(1 + \lambda_{p^{\ell}} \frac{\partial}{\partial t}\right) \frac{\partial p_s}{\partial x} \right]_{L} + q_{\ell m}, \quad (7)$$

where

$$q_{\ell m} = c^0(p_s) \left[\left(1 + \lambda_{p^{\ell}} \frac{\partial}{\partial t}\right) \frac{\partial p_s}{\partial x} \right]_{x=0}.$$

To solve the problem (6), (7) with (4) and $L(0) = 0$ we use the finite differences method [21, 22].

We introduce a uniform grid by t with the step τ $\bar{\omega}_\tau = \{t | t = t_j = j\tau, j = 0, 1, \dots, N, \tau N = T\}$, and a non-uniform grid by coordinate x [21, 22] $\bar{\omega}_h = \{x | x = x_i = x_{i-1} + h_i, h_i = 0, i = 1, 2, \dots, N, N+1, N+1, \dots, x_N = L\}$ with the variable steps $h_i > 0$. We are to choose the steps h_i from the interval $[x_i, x_{i+1}]$ so, that the mobile boundary moves exactly on one step along the time grid. This approach is known as the method of catching the front in a grid node. We denote by $p_{s,i}^{j+1}$ the grid function corresponding to p_s . We approximate equation (6) by an implicit difference scheme that is nonlinear with respect to the function $p_{s,i}^{j+1}$

$$\frac{p_{s,i}^{j+1} - p_{s,i}^j}{\tau} = c_1 \frac{2a(p_{s,i}^j)}{h_i + h_{i+1}} \left\{ b(p_{s,i+1/2}^{j+1}) \frac{p_{s,i+1}^{j+1} - p_{s,i-1}^{j+1}}{h_i + h_{i+1}} + \frac{\lambda_{p^{\ell}}}{\tau} b(p_{s,i+1/2}^{j+1}) \left[\frac{p_{s,i+1}^{j+1} - p_{s,i-1}^{j+1}}{h_i + h_{i+1}} - \frac{p_{s,i+1}^j - p_{s,i-1}^j}{h_i + h_{i+1}} \right] - b(p_{s,i-1/2}^{j+1}) \frac{p_{s,i}^{j+1} - p_{s,i-1}^{j+1}}{h_i} - \right.$$

$$\left. - \frac{\lambda_{p^{\ell}}}{\tau} b(p_{s,i-1/2}^{j+1}) \left[\frac{p_{s,i}^{j+1} - p_{s,i-1}^{j+1}}{h_i} - \frac{p_{s,i}^j - p_{s,i-1}^j}{h_i} \right] \right\} - (q_{\ell m})_0^{j+1} \frac{p_{s,i}^{j+1} - p_{s,i-1}^{j+1}}{h_i}, \quad i = 1, \dots, N-1, \quad j = 0, 1, \dots, N-1, \quad (8)$$

where

$$a(p_{s,i}^j) = \left(1 + \frac{p_{s,i}^j}{p_A}\right)^{1-\beta}, \quad b(p_{s,i+1/2}^{j+1}) = \frac{1}{2} \left[\left(1 + \frac{p_{s,i+1}^{j+1}}{p_A}\right)^{\beta-\delta} + \left(1 + \frac{p_{s,i}^{j+1}}{p_A}\right)^{\beta-\delta} \right], \quad c^0(p_{s,0}^{j+1}) = \frac{k^0}{\mu} \left(1 + \frac{p_{s,0}^{j+1}}{p_A}\right)^{-\delta},$$

$$(q_{\ell m})_0^{j+1} = c^0(p_{s,0}^{j+1}) \left(\frac{p_{s,1}^{j+1} - p_{s,0}^{j+1}}{h_0} + \frac{\lambda_{p^{\ell}}}{\tau} \left(\frac{p_{s,1}^{j+1} - p_{s,0}^{j+1}}{h_0} - \frac{p_{s,1}^j - p_{s,0}^j}{h_0} \right) \right).$$

In Eq. (7), $\frac{dL}{dt} \approx \frac{h_{i+1}}{\tau}$ after the approximation can be written in the form

$$\frac{h_{i+1}}{\tau} = -c_2 \left[c(p_{s,i-1/2}^j) \left(\frac{p_{s,i}^{j+1} - p_{s,i-1}^{j+1}}{h_{i+1}} + \frac{\lambda_{p^{\ell}}}{\tau} \left(\frac{p_{s,i}^{j+1} - p_{s,i-1}^{j+1}}{h_{i+1}} - \frac{p_{s,i}^j - p_{s,i-1}^j}{h_{i+1}} \right) \right) \right] + (q_{\ell m})_0^{j+1}, \quad (9)$$

where

$$c(p_{s,i-1/2}^j) = \frac{k^0}{2\mu} \left[\left(1 + \frac{p_{s,i}^j}{p_A}\right)^{-\delta} + \left(1 + \frac{p_{s,i-1}^j}{p_A}\right)^{-\delta} \right].$$

Approximation of initial and boundary conditions (4) gives

$$p_{s,i}^j = 0, \quad i = 0, 1, \dots, N, \quad j = 0, 1, \dots, -\mu c^0 (p_{s,0}^j) \left(\frac{p_{s,1}^{j+1} - p_{s,0}^{j+1}}{h_i} + \frac{1}{\tau} \left(\frac{p_{s,1}^{j+1} - p_{s,0}^{j+1}}{h_i} - \frac{p_{s,1}^j - p_{s,0}^j}{h_i} \right) \right) = \frac{P_\ell}{R_m} = v_0, \quad j = \overline{0, N}, \quad p_{s,i}^{j+1} = 0, \\ i = N+1, N+2, \dots, \quad j = 0, 1, \dots. \quad (10)$$

The obtained set of equations (8) is nonlinear, so to solve it we use the method of simple iteration

$$\frac{p_{s,i}^{j+1} - \varphi_i^j}{\tau} = c_1 \frac{2a(p_{s,i}^j)}{h_i + h_{i+1}} \left[b(p_{s,i+1/2}^{j+1}) \frac{p_{s,i+1}^{j+1} - p_{s,i-1}^{j+1}}{h_i + h_{i+1}} + \frac{\lambda_{pl}}{\tau} b(p_{s,i+1/2}^{j+1}) \left[\frac{p_{s,i+1}^{j+1} - p_{s,i-1}^{j+1}}{h_i + h_{i+1}} - \frac{p_{s,i+1}^j - p_{s,i-1}^j}{h_i + h_{i+1}} \right] - b(p_{s,i-1/2}^{j+1}) \frac{p_{s,i+1}^{j+1} - p_{s,i-1}^{j+1}}{h_i} - \right. \\ \left. - \frac{\lambda_{pl}}{\tau} b(p_{s,i-1/2}^{j+1}) \left[\frac{p_{s,i+1}^{j+1} - p_{s,i-1}^{j+1}}{h_i} - \frac{p_{s,i+1}^j - p_{s,i-1}^j}{h_i} \right] \right] - \left(q_{\ell m}^{(\sigma)} \right)_0^{j+1} \frac{p_{s,i+1}^{j+1} - p_{s,i-1}^{j+1}}{h_i}, \quad (11)$$

where

$$b(p_{s,i+1/2}^{j+1}) = \frac{1}{2} \left[\left(1 + \frac{p_{s,i+1}^{j+1}}{p_A} \right)^{\beta-\delta} + \left(1 + \frac{p_{s,i}^{j+1}}{p_A} \right)^{\beta-\delta} \right], \quad (q_{\ell m}^{(\sigma)})_0^{j+1} = c^0 \left(p_{s,0}^{j+1} \right) \left(\frac{p_{s,1}^{j+1} - p_{s,0}^{j+1}}{h_i} + \frac{\lambda_{pl}}{\tau} \left(\frac{p_{s,1}^{j+1} - p_{s,0}^{j+1}}{h_i} - \frac{p_{s,1}^j - p_{s,0}^j}{h_i} \right) \right),$$

σ is the number of iteration.

It can be seen that the system of equations (10) is now linear with respect to $p_{s,i}^{(s+1)j+1}$, which allows us to use the Tomas's algorithm [21]. As a condition to stop iteration procedure on this time layer, the following relationship can be used:

$$\max_i \left| p_{s,i}^{j+1} - p_{s,i}^{j+1} \right| \leq \varepsilon, \quad (12)$$

where ε is the given accuracy of calculation.

When condition (10) is satisfied then $p_{s,i}^{(s+1)j+1} = p_{s,i}^{j+1}$. As an initial approach we can use $p_{s,i}^{j+1} = p_{s,i}^j$. Equation (11) leads to the system of linear equations

$$A_i p_{s,i-1}^{(\sigma)(s+1)j+1} - B_i p_{s,i}^{(\sigma)(s+1)j+1} + C_i p_{s,i+1}^{(\sigma)(s+1)j+1} = -F_i, \quad i = \overline{1, N-1}, \quad (13)$$

where

$$A_i = -\frac{1}{h_i + h_{i+1}} \left(1 + \frac{\lambda_{pl}}{\tau} \right) b(p_{s,i+1/2}^{j+1}) + \frac{1}{h_i} \left(1 + \frac{\lambda_{pl}}{\tau} \right) b(p_{s,i-1/2}^{j+1}) + \frac{h_i + h_{i+1}}{2c_1 h_i a(p_{s,i}^j)} q_{\ell m}, \\ B_i = \frac{1}{h_i} \left(1 + \frac{\lambda_{pl}}{\tau} \right) b(p_{s,i-1/2}^{j+1}) + \frac{h_i + h_{i+1}}{2c_1 h_i a(p_{s,i}^j)} + \frac{h_i + h_{i+1}}{2c_1 h_i a(p_{s,i}^j)} q_{\ell m}, \quad C_i = \frac{1}{h_i + h_{i+1}} \left(1 + \frac{\lambda_{pl}}{\tau} \right) b(p_{s,i+1/2}^{j+1}), \\ F_i = \frac{h_i + h_{i+1}}{2c_1 h_i a(p_{s,i}^j)} p_{s,i}^j + \frac{\lambda_{pl}}{(h_i + h_{i+1}) \tau} b(p_{s,i-1/2}^{j+1}) (p_{s,i-1}^j - p_{s,i+1}^j) - \frac{\lambda_{pl}}{h_i \tau} b(p_{s,i-1/2}^{j+1}) (p_{s,i-1}^j - p_{s,i}^j).$$

The equation (9) is used to determine the step h_{i+1} and it can be written in the form

$$(h_{i+1})^2 - \tau (q_{\ell m})_0^{j+1} h_{i+1} + \tau c_2 c(p_{s,i-1/2}^j) \left(p_{s,i}^{j+1} - p_{s,i-1}^{j+1} + \frac{\lambda_{pl}}{\tau} (p_{s,i}^{j+1} - p_{s,i-1}^{j+1} - p_{s,i}^j + p_{s,i-1}^j) \right) = 0.$$

By solving this nonlinear equation for each temporal layer we can determine h_{i+1} . The system of linear algebraic equations (13) is solved by the Tomas' algorithm

$$p_{s,i}^{j+1} = \xi_{i+1} p_{s,i+1}^{j+1} + \zeta_{i+1}, \quad (14)$$

where

$$\xi_{i+1} = \frac{\overset{(\sigma)}{C_i}}{\overset{(\sigma)}{B_i} - \overset{(\sigma)}{A_i} \xi_i}, \quad \zeta_{i+1} = \frac{\overset{(\sigma)}{F_i} + \overset{(\sigma)}{A_i} \zeta_i}{\overset{(\sigma)}{B_i} - \overset{(\sigma)}{A_i} \xi_i}.$$

The starting values of the coefficients ξ_1 and ζ_1 are determined from the boundary condition (10), which have the form

$$\xi_1 = 1, \quad \zeta_1 = \frac{c^0(p_{s,0}^j) \frac{\lambda_{p\ell}}{h_0 \tau} (p_{s,0}^j - p_{s,1}^j) + v_0}{\frac{c^0(p_{s,0}^j)}{h_0} \left(1 + \frac{\lambda_{p\ell}}{\tau}\right)}. \quad (15)$$

NUMERICAL RESULTS AND DISCUSSION

Numerical results with using (14), (15) were obtained with the following values of initial parameters: $v_0 = 10^{-4}$ m/s, $p_A = 10^4$ Pa, $R_m = 10^{12}$ 1/m, $\mu = 10^3$ Pa·s, $k^0 = 0,8 \cdot 10^{-13}$ m², $\varepsilon_s^0 = 0.20$, $\varepsilon_{s_0} = 0,0076$, $\beta = 0,13$, $\delta = 0,57$.

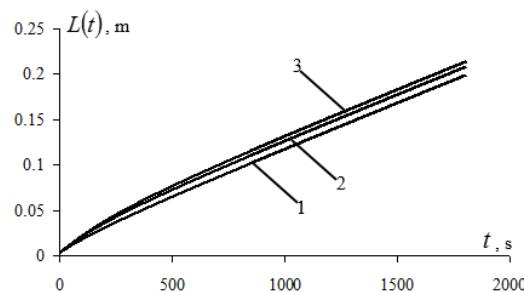


FIGURE 1. Dynamics of the cake thickness at $\lambda_{p\ell} = 0$ (1); 150 (2); 350 (3) c.

Figure 1 graphically illustrates the dynamics of cake thickness, $L(t)$, over time, t , for three different values of the relaxation time, $\lambda_{p\ell}$:

- Curve 1: $\lambda_{p\ell} = 0$ (no relaxation)
- Curve 2: $\lambda_{p\ell} = 150$
- Curve 3: $\lambda_{p\ell} = 350$

The numerical results show that an increase in the relaxation time, $\lambda_{p\ell}$, leads to a faster growth rate of the cake thickness at all other constant filtration conditions.

CONCLUSION

The results show that the relaxation properties of the flow have a significant effect on both the growth of the cake thickness and the overall filtration properties. In particular, the relaxation effects in the filtration laws reduce the distribution of the compressive pressure (p_s) and the liquid pressure (p_ℓ) inside the cake. However, when the process is sufficiently advanced, i.e., when the flow time significantly exceeds the characteristic relaxation time, the effect of relaxation phenomena ceases (or disappears).

REFERENCE

1. Yu. I. Dytnersky, Processes and instruments of chemical technology. Part 1. Theoretical bases of processes of chemical technology. Hydromechanical and thermal processes and devices. Moscow: Chemistry, (1995). 400 p.
2. K. Atsumi and T. Akiyama, A study of cake filtration. Formulation as a Stefan problem. *J. Chem. Eng. Japan.* **8**, 487–492 (1975). <https://doi.org/10.1252/jcej.8.487>
3. C. Tien Principles of filtration. Elsevier, The Netherlands (2012). <https://doi.org/10.1016/C2010-0-67123-3>
4. C. Tien, S. K. Teoh and R. B. H. Tan, Cake Filtration Analysis - the Effect of the Relationship between the Pore Liquid Pressure and the Cake Compressive Stress. *Chemical Engineering Science*, **56**, 5361–5369 (2001). [https://doi.org/10.1016/S0009-2509\(01\)00155-2](https://doi.org/10.1016/S0009-2509(01)00155-2)
5. K. Stamatakis, C. Tien, Cake formation and growth in cake filtration. *Chemical Engineering Science* **46**, 1917–1933 (1991). [https://doi.org/10.1016/0009-2509\(91\)85028-2](https://doi.org/10.1016/0009-2509(91)85028-2)
6. E. E. Bibik, Rheology of disperse systems. L.: Izd-vo LGU (1981). - 172 p.
7. Yu.M. Molokovich, On the theory of linear filtration with accounting of relaxation effects, *Izv. Universities. Mathematics No. 5*, 66–73 (1977). (in Russian).
8. B. Kh. Khuzhayorov, Filtration of non - homogeneous liquids in porous media. Tashkent. "FAN" Publisher (2012). - 280 p. (Monograph).
9. B. Kh. Khuzhayorov, Makhmudov Zh.M. Mathematical models of the filtration of non - homogeneous liquids in porous media. "FAN" Publisher, Tashkent (2014). - 280 p. (Monograph).
10. Barenblatt et al., Theory of Fluid Through Natural Rocks. Kluwer Academic Natural Publisher. Dordrecht/Boston/London (1990). <https://doi.org/10.1007/978-94-010-9426-3>
11. I. M. Ametov, et al., Reservoirs engineering with heavy high-viscous oil, Nedra Publisher, Moscow (1985).
12. Yu. M. Molocovich, N. N. Neprimerov, V. I. Pikuza, A. V. Shtanin, Relaxing filtration, KGU, Kazan (1980).
13. B. Kh. Khuzhayorov, U. Saydullaev, B. Fayziev, Relaxation Equations of Consolidating Cake Filtration. *Journal of Advanced Research in Fluid Mechanics and Thermal Sciences*, **74**, 168–182 (2020). <https://doi.org/10.37934/arfmnts.74.2.168182>
14. P.M. Ogibalov and A. Kh. Mirzadzhanzadeh, Mechanics of Physical Processes, MGU, Moscow (1976).
15. U. Saydullaev, Filtering suspensions taken into account convective transfer of particles during pulsational pressure oscillations. *AIP Conf. Proc.* 3244, 020073 (2024). <https://doi.org/10.1063/5.0241642>
16. S. Neuman, Eulerian-Langrangian theory of transport in space-time nonstationary velocity-fields-exact nonlocal formalism by conditional moments and weak approximation, *Water Resour. Res.*, **29**, 633–645 (1993). <https://doi.org/10.1029/92WR02213>
17. G. Iaffaldano, M. Caputo, S. Martino, Experimental and theoretical memory diffusion of water in sand, *Hydrol. Earth Syst. Sci.*, **10**, 93–100 (2006). <https://doi.org/10.5194/hess-10-93-2006>
18. E. Giuseppe, M. Moroni, M. Caputo, Flux in Porous Media with Memory: Models and Experiments. *Transport in Porous Media* **83**, 479–500 (2010). <https://doi.org/10.1007/s11242-009-9488-8>
19. B. K. Khuzhayorov, G. Ibragimov, U. Saydullaev & B. A. Pansera, An Axi-Symmetric Problem of Suspensions Filtering with the Formation of a Cake Layer. *Symmetry*, **15**, 1209 (2023). <https://doi.org/10.3390/sym15061209>
20. B. Khuzhayorov, B. Fayziev, O. Sagdullaev, J. Makhmudov & U. Saydullaev, A Model of the Degrading Solute Transport in Porous Media based on the Multi-Stage Kinetic Equation. *Engineering, Technology & Applied Science Research*, **15**, 20919–20926 (2025). <https://doi.org/10.48084/etasr.8986>
21. B. K. Khuzhayorov, G. Ibragimov, U. Saydullaev, I. Shadmanov & F. Md Ali, Analytical Solution of the Fractional Equation for Filtration of Relaxing Suspensions with Cake Formation. *Waves in Random and Complex Media*, **34**, 273–288 (2022). <https://doi.org/10.1080/17455030.2022.2136417>
22. J. Caldwell, Y. Y. Kwan, Numerical methods for one-dimensional Stefan problems. *Communications in Numerical Methods in Engineering*, **20**, 535–545 (2004). <https://doi.org/10.1002/cnm.690>

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 Walt Whitman Road, Suite 300, Melville, NY 11747-4300 USA, Phone 516-576-2268, Email: rights@aip.org.

Article Title ("Work"): A Problem of Relaxation Filtering of Suspensions with Forming a Cake Layer

(Please indicate the final title of the Work. Any substantive changes made to the title after acceptance of the Work may require the completion of a new agreement.)

All Author(s): **Utkir A. Nishonov, Usmonali J. Saydullaev
Iroda Yo. Beknazarov, Diyora U. Juraeva**

(Please list **all** the authors' names in order as they will appear in the Work. All listed authors must be fully deserving of authorship and no such authors should be omitted. For large groups of authors, attach a separate list to this form.)

Title of Conference: **AMSM2025**

Name(s) of Editor(s) **Valentin L. Popov**

All Copyright Owner(s), if not Author(s):

(Please list **all** copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(ies) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript file.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approval of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #3 below):

Utkir A. Nishonov, Iroda Yo. Beknazarov, Diyora U. Juraeva **25.11.2025**

Author(s) Signature **Print Name** **Date**

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner **Authorized Signature and Title** **Date**

3. If an Author is a U.S. Government employee, such Author must please sign below. The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature **Print Name** **Date**

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract #s: **[1.16.1]**

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University, <http://arxiv.org/>.

Commercial and noncommercial scholarly use: *Noncommercial* scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. *Commercial* uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrclist/>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is *not* considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.