

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Experimental Study of Mesoscale Deformation-Induced Surface Roughening in Commercially Pure Titanium under Low-Cycle Fatigue

AIPCP25-CF-AMSMT2025-00019 | Article

PDF auto-generated using **ReView**

Experimental Study of Mesoscale Deformation-Induced Surface Roughening in Commercially Pure Titanium under Low-Cycle Fatigue

Evgeniya Emelianova^{1, a)}, Maxim Pisarev^{1, b)} and Varvara Romanova^{1,2, c)}

¹*Institute of Strength Physics and Materials Science SB RAS, 2/4 pr. Akademicheskii, Tomsk, 634055, Russia*

²*National Research Tomsk State University, 36 Lenin ave., Tomsk, 634050, Russia*

^{a)} Corresponding author: emelianova@ispms.ru

^{b)}pisarev@ispms.ru

^{c)}varvara@ispms.ru

Abstract. This paper experimentally investigates mesoscale deformation-induced surface roughening in α -titanium under cyclic loading. Two series of low-cycle fatigue tests are performed under an asymmetric loading-unloading cycle ($R=0$). In the first series, the stress amplitude remains constant until failure; in the second series, it is gradually increased with the number of cycles. Surface profiles are taken every 10,000 cycles. Displacement and strain fields are monitored in situ using digital image correlation. The deformation-induced surface roughness is quantified using a dimensionless roughness parameter R_d . Surface roughness is observed to appear during the first 10,000 cycles, evolving uniformly across the specimen gauge parts on further loading. The dimensionless roughness parameter does not correlate with the number of cycles under the constant stress amplitude but grows linearly when the peak stress is increased.

INTRODUCTION

Fatigue cracking is a common form of component failure resulting from the gradual accumulation of irreversible deformation and damage at the micro- and mesoscales [1-4]. Generally, the stress level causing fatigue failure is significantly lower than that required to produce fracture under static loading [5, 6]. Therefore, studying the deformation behavior and fracture patterns at micro- and mesoscales and linking them to the macroscopic material response is essential for quantifying the stress-strain state and predicting the onset of failure.

Extensive experimental and numerical studies [see, e.g., 4, 7, 8] demonstrate that valuable information can be obtained from the analysis of deformation-induced surface roughening (DISR). According to Refs. [8, 9], DISR develops hierarchically throughout length scales, including (i) dislocation steps within individual grains at the micoscale, (i) orange peel, ridging, and roping, originating from the relative out-of-plane displacements of individual grains and grain groups at the mesoscale, and (iii) the surface waviness that can be seen by the naked eye at the macroscale. Unlike surface roughness produced by the external actions such as tribological contact [10-13] or thermal exposure [14], the free surface roughening arises from the internal stress-strain state developing in the bulk of the material and, thus, reflects the internal deformation processes.

Our previous investigations [15, 16] have revealed that specific characteristics of mesoscopic DISR correlate with local in-plane plastic strain under uniaxial tension and may serve as early indicators of plastic strain localization and fracture in titanium and aluminum alloys. The numerical study [17] performed for a single loading-unloading cycle demonstrates that plastic deformation begins in individual grains before the macroscopic yield strength is reached, implying that DISR can be expected even at low stresses after a large number of cycles. In this paper, we continue investigations along these lines, analyzing the DISR phenomenon in commercially pure titanium (CP-Ti) under low-cycle fatigue.

EXPERIMENTAL PROCEDURE

For low-cycle fatigue (LCF) tests, the dog-bone-shaped specimens with $36 \times 12 \times 3$ mm³ gauge parts (Fig. 1a) were cut along the axis of a CP-Ti rod (Fig. 1b) in accordance with ASTM E466-15 [18]. Both sides of each specimen were mechanically polished. A speckle pattern was applied to one surface for digital image correlation (DIC) analysis (Fig. 2a), while the opposite surface was divided into 7 equal sections by a set of marks for the surface profile measurements (Fig. 2b).

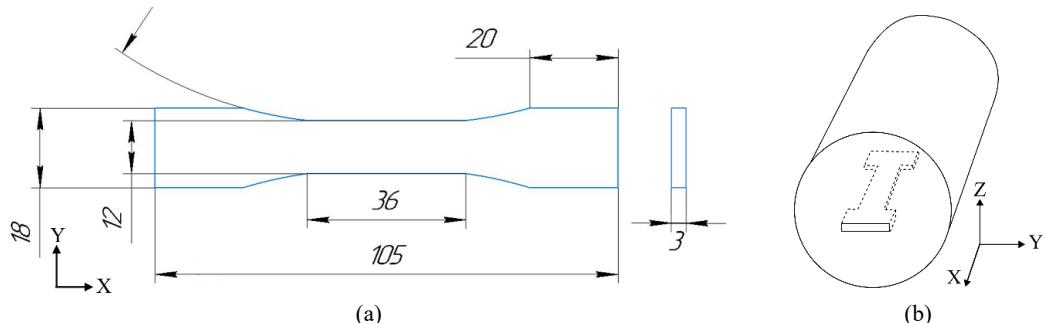


FIGURE 1. Specimen geometry (a) and scheme of cutting out a specimen along the CP-Ti rod axis (b)

FIGURE 2. Specimen surfaces prepared for DIC analysis (a) and contact profilometry (b)

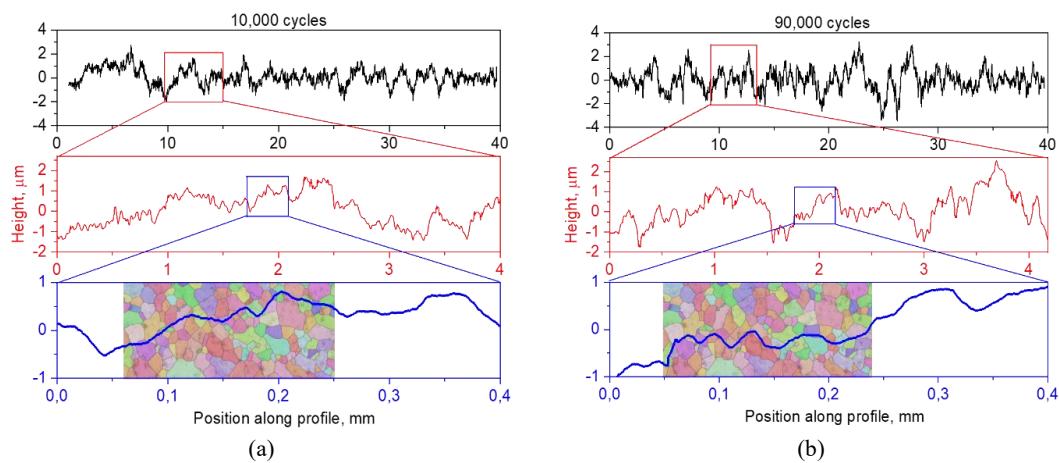
LCF tests were performed on a Biss Nano 15 kN universal testing machine equipped with the Vic-3D DIC system. The tests followed an asymmetrical loading-unloading cycle (stress ratio $R=0$). The specimens were taken out of the machine every 10,000 cycles to register surface profiles along the specimen central lines. Then, the specimens were put back into the machine and their LCF testing was continued. The process was repeated until failure.

The engineering strains of the specimen sections were calculated as

$$\varepsilon_{loc} = (L_{loc}/L_{loc0}) - 1, \quad (1)$$

where L_{loc} and L_{loc0} are the current and initial section lengths, respectively, measured as the distance between the marks.

To quantify the evolution of surface asperities, the mesoscopic roughness parameter R_d was calculated for the set of profiles, as proposed in [16]:


$$R_d = L_p/L_b - 1, \quad (2)$$

where L_p is the rough profile length and L_b is the profile evaluation length.

Two series of LCF tests were conducted where (1) the stress amplitude remained constant at 315 MPa until failure or (2) was gradually increased from 250 to 315 MPa with the number of cycles. Displacement and strain fields were *in situ* monitored and recorded by the DIC system every 100 cycles at both maximum and minimum stress levels. The selected surface areas were analyzed using the optical profiler NewView 6200.

RESULTS

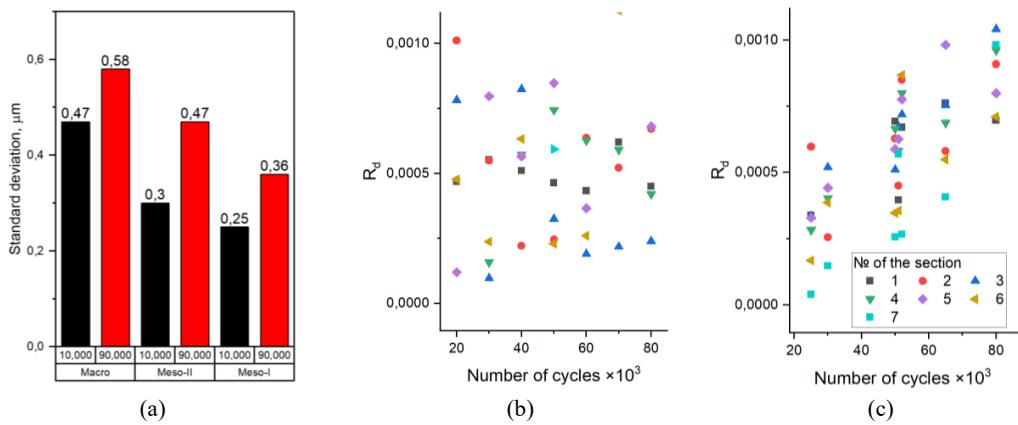
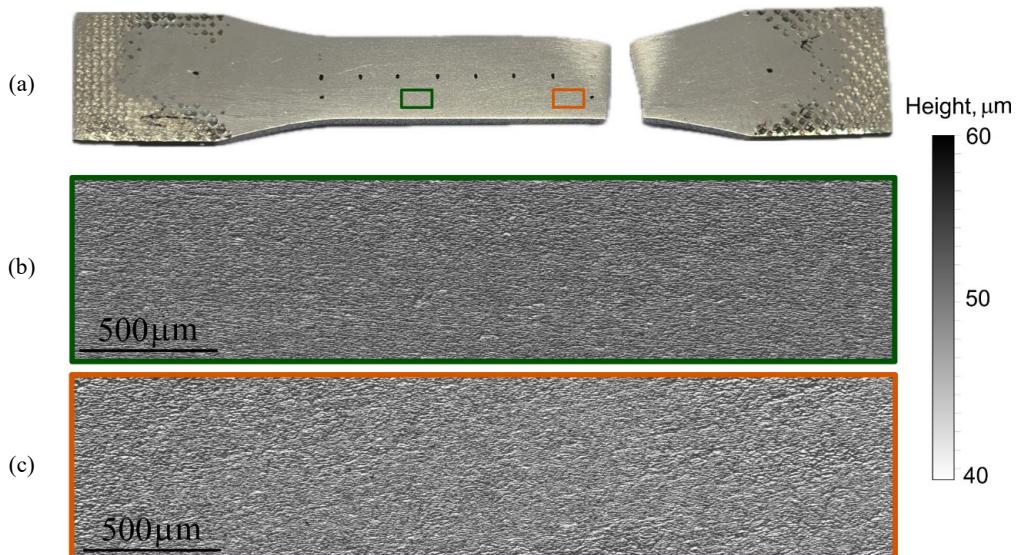

For both test series, roughening appeared on the specimen free surface already under the first 10,000 loading cycles. All specimens demonstrated qualitatively similar surface morphology characterized by a hierarchical structure. As an illustration, Figure 3 presents the surface profiles obtained after 10,000 and 90,000 loading-unloading cycles under a constant stress amplitude at various magnifications. The black curves represent the measurements taken along the entire gauge length, while the selected fragments magnified by $\times 10$ and $\times 100$ are colored red and blue, respectively. The surface profiles contain periodically repeated peaks and valleys with smaller undulations embedded within the larger-scale ones. The hierarchical structure of the surface features formed after 10,000 cycles remained unchanged on further LCF loading (cf. profiles after 10,000 and 90,000 cycles in Fig. 3). Following the terminology introduced in [19], the surface irregularities observed over 0.4 mm and 4 mm evaluation lengths are hereinafter referred to as meso-I and meso-II.

FIGURE 3. Hierarchy of surface irregularities in the profiles measured in a CP-Ti specimen after 10,000 (a) and 90,000 cycles (b) at the constant stress amplitude


Comparing the meso-I surface profiles with the grain structures obtained by electron backscatter diffraction indicates that the finest morphological features resolved within the 0.4 mm evaluation length (blue plots in Fig. 3) correspond to the out-of-plane displacements of small grain groups involving up to 5 grains, while larger-sized irregularities are formed by ~ 20 grains. Even larger surface undulations spanning up to 0.5 mm are resolved after 10,000 cycles within the 4 mm evaluation length at the meso-II scale (red plot in Fig. 3a). After 90,000 cycles, the period of the meso-II surface undulations increases up to 1.5 mm, covering about 150 grains. The whole set of surface out-of-plane displacements of different widths and heights, formed by individual grains and grain groups, are seen in the entire surface profiles (black plots in Fig. 3).

In order to estimate how the contributions from different scales were changed in the course of LCF loading, the raw profiles were decomposed into the macro, meso-I and meso-II components which were statistically analyzed in terms of standard deviations. Corresponding data are plotted in Figure 4a as a bar graph. The standard deviations indirectly correspond to the range of the peak-to-valley distance variations. Figure 4a shows that the larger the scale of consideration, the higher the standard deviation value. For all profile components, the standard deviations tend to increase with the number of cycles, intensifying the surface roughness at the meso-I, meso-II, and macro scales (Fig. 4a). The maximum peak-to-valley distance of the entire surface profiles grows progressively with the number of cycles, reaching $\sim 7 \mu\text{m}$ at the pre-fracture stage (the black curve in Fig. 3b).

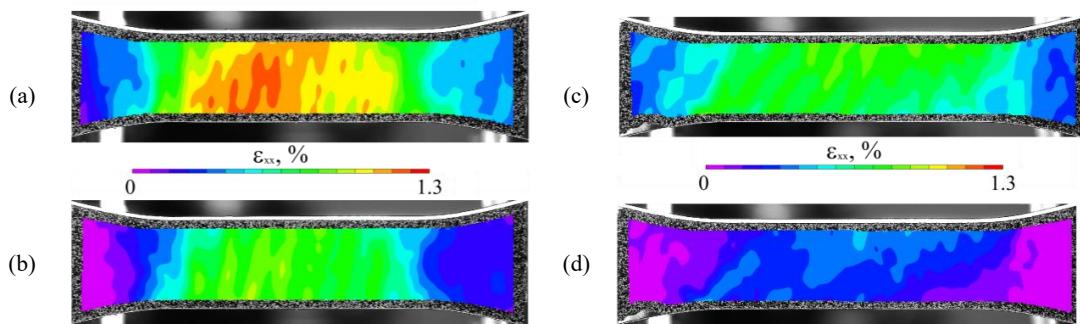


FIGURE 4. Standard deviations of the meso-I, meso-II, and macroscopic surface profile components (a), dependences of the R_d parameter on the number of cycles for the 1st (b) and 2nd (c) test series

In contrast to findings for uniaxial tension [15, 16], the evolution of DISR under LCF develops uniformly across the specimen surface (cf. Fig. 5b and c). In the first series of LCF tests with the constant stress amplitude, the R_d values in the specimen sections change in a saw-tooth manner, demonstrating no persistent increase with the number of cycles (Fig. 4b). This behavior can be attributed to reaching the shakedown limit during the first 10,000 cycles when the material yield strength due to the strain hardening becomes equal to the peak stress of LCF loading [20, 21]. Macroscopically, subsequent deformation under the same stress amplitude remains elastic. The strain fields obtained using DIC confirmed this effect: plastic strain was mostly accumulated during the first 10,000 cycles and ceased to increase in the subsequent LCF loadings (see Fig. 6a and b). Contrastingly, in the second series of LCF tests, where the stress amplitude was gradually increased with the number of cycles, the R_d parameter tended to linearly increase while exhibiting oscillations in individual sections (Fig. 4c).

FIGURE 5. Specimen after LCF tests (a) and surface roughness in selected subsections marked by green (b) and red rectangles (c) obtained by optical profiler NewView 6200

FIGURE 6. DIC snapshots of ϵ_{xx} strain fields in a CP-Ti specimen after 10,000 (a, b) and 80,000 cycles (c, d) for the peak (a, c) and zero (b, d) stress states in a cycle

CONCLUSION

The multiscale features of deformation-induced surface roughening in CP-Ti specimens under low cycle fatigue loading have been investigated experimentally. It was shown that surface roughening developed uniformly across the specimen gauge parts. The surface morphology comprised a set of multiscale asperities attributed to collective out-of-plane displacements of smaller and larger grain groups. They appeared during the first 10,000 cycles and progressively evolved in the course of LCF loading. The dimensionless roughness parameter did not correlate with the number of cycles under the constant stress amplitude and grew linearly when the LCF peak stress was increased.

ACKNOWLEDGMENTS

This work is supported by Russian Science Foundation through the grant № 24-79-00047 (<https://rscf.ru/en/project/24-79-00047/>).

REFERENCES

1. M.D. Sangid, The physics of fatigue crack initiation. *Int. J. Fatigue* **57**, 58–72 (2013). <https://doi.org/10.1016/j.ijfatigue.2012.10.009>
2. A. A. Shanyavskiy, A. P. Soldatenkov, A. D. Nikitin, Hierarchy of the metal fatigue mechanisms based on the physical mesomechanics methodology. *Phys. Mesomech.* **6** (2025). <https://doi.org/10.1134/S1029959925600120>
3. A. A. Shanyavskiy, A. P. Soldatenkov, Relation between stresses for the boundaries of scale levels of the fatigue diagram and difference of the meso- and macroscale fracture mechanisms. *Phys. Mesomech.* **27**, 256–268 (2024). <https://doi.org/10.1134/S1029959924030032>
4. V. E. Panin, T. F. Elsukova, Yu. F. Popkova, Stages of multiscale fatigue cracking as a nonlinear rotational autowave process. *Phys. Mesomech.* **14** (3-4), 112–123 (2011). <https://doi.org/10.1016/j.physme.2011.08.003>
5. M. Wang, Y. Wang, A. Huang, L. Gao, Y. Li, Ch. Huang, Promising tensile and fatigue properties of commercially pure titanium processed by rotary swaging and annealing treatment. *Materials* **11** (11), 2261 (2018). <https://doi.org/10.3390/ma1112261>
6. P. Wang, Z. Xu, P. Zhang, B. Wan, X. Liu, Y. Zhu, R. Liu, Y. Liu, Y. Luan, P. Wang, D. Li, R. O. Ritchie, Zh. Zhang, The highest fatigue strength for steels. *Acta Mater.* **289**, 120888 (2025). <https://doi.org/10.1016/j.actamat.2025.120888>
7. H. Li and M. Fu, “Inhomogeneous Deformation-Induced Surface Roughening Defects” in *Deformation based processing of materials: behavior, performance, modeling and control* (Elsevier, Amsterdam, 2019), pp. 225–256.
8. D. Raabe, M. Sachtleber, H. Weiland, G. Scheele, Z. Zhao, Grain-scale micromechanics of polycrystal surfaces during plastic straining. *Acta Mater.* **51**, 1539–1560 (2003). [https://doi.org/10.1016/S1359-6454\(02\)00557-8](https://doi.org/10.1016/S1359-6454(02)00557-8)

9. E.S. Emelianova, O.S. Zinovieva, V.A. Romanova, R.R. Balokhonov, M. Pisarev, Experimental and numerical investigation of mesoscale deformation-induced surface roughening in polycrystalline metals and alloys (review). *Phys. Mesomech.* **27** (1), 16-33 (2024). <https://doi.org/10.1134/S1029959924010028>
10. V. L. Popov, Coefficients of restitution in normal adhesive impact between smooth and rough elastic bodies. *Rep. Mech. Eng.* **1**, 103–109 (2020). <https://doi.org/10.31181/rme200101103p>
11. V. L. Popov, Designing surface profiles with zero and finite adhesion. *Spec. Mech. Eng. Oper. Res.* **1** (1), 82-89 (2024). <https://doi.org/10.31181/smeor1120246>
12. J. Wilhayan, I. A. Lyashenko, Q. Li, V. L. Popov, Influence of tangential sliding on the contact area of a macroscopic adhesive contact. *Facta Univ., Ser. Mech. Eng.* **22** (3), 385-397 (2024). <https://doi.org/10.22190/FUME240414028W>
13. A. A. Burkov, S. V. Nikolenko, V. O. Krutikova, N. A. Shelmenok, Electrospark deposition of Ti-Ta coatings on Ti6Al4V titanium alloy: oxidation resistance and wear properties. *Phys. Mesomech.* **27**, 618-626 (2024). <https://doi.org/10.1134/S1029959924050096>
14. N. Daghbouj, H.S. Sen, M. Callisti, M. Vronka, M. Karlik, J. Duchoň, J. Čech, V. Havránek, T. Polcar, Revealing nanoscale strain mechanisms in ion-irradiated multilayers. *Acta Mater.* **229**, 117807 (2022). <https://doi.org/10.1016/j.actamat.2022.117807>
15. V. Romanova, E. Emelianova, M. Pisarev, O. Zinovieva, R. Balokhonov, Quantification of mesoscale deformation-induced surface roughness in α -titanium. *Metals* **13**, 440 (2023). <https://doi.org/10.3390/met13020440>
16. V. Romanova, R. Balokhonov, E. Emelianova, E. Sinyakova, M. Kazachenok, Early prediction of macroscale plastic strain localization in titanium from observation of mesoscale surface roughening. *Int. J. Mech. Sci.* **161-162**, 105047 (2019). <https://doi.org/10.1016/j.ijmecsci.2019.105047>
17. E. Emelianova, M. Pisarev, V. Romanova, Grain-scale plastic strain accumulation in commercially pure Ti under cyclic loading. *AIP Conf. Proc.* **3177**, 060003 (2025). <https://doi.org/10.1063/5.0294822>
18. ASTM E466-15 (ASTM International, 2015).
19. V.E. Panin, Overview on mesomechanics of plastic deformation and fracture of solids. *Theor. Appl. Fract. Mech.* **30**, 1–11 (1998). [https://doi.org/10.1016/S0167-8442\(98\)00038-X](https://doi.org/10.1016/S0167-8442(98)00038-X)
20. G. Chen, Sh. Xin, L. Zhang, M. Chen, C. Gebhardt, Shakedown-reliability based fatigue strength prediction of parts fabricated by directed energy deposition considering the microstructural inhomogeneities. *Eur. J. Mech. A-Solid.* **103**, 105170 (2024). <https://doi.org/10.1016/j.euromechsol.2023.105170>
21. V. K. Dang, I. V. Paradopoulos, *High-Cycle Metal Fatigue: From Theory to Applications* (Springer Wien, Vienna, 1999), 209 p.

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 Walt Whitman Road, Suite 110, Melville, NY 11747-4300 USA; Phone 516-576-2434; ext. 2434; Email: rights@aip.org.

Article Title ("Work"): *Experimental Study of Mesoscale Deformation-Induced Surface Roughening in Commercially Pure Titanium under Low Cycle Fatigue*

(Please indicate the final title of the Work. Any substantive changes made to the title after acceptance of the Work may require the completion of a new agreement.)

All Author(s): *Eugenija Emelianova, Maxim Pisarev,*

Varvara Romanova

(Please list **all** the authors' names in order as they will appear in the Work. All listed authors must be fully deserving of authorship and no such authors should be omitted. For large groups of authors, attach a separate list to this form.)

Title of Conference: *Advanced Mechanics: Structure, Materials, Tribology*

Name(s) of Editor(s) *Valentin L. Popov*

All Copyright Owner(s), if not Author(s):

(Please list **all** copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(ies) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript file.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approved of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #3 below):

Ju *Eugenija Emelianova* *October 10, 2015*
Author(s) Signature Print Name Date

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner	Authorized Signature and Title	Date
-------------------------	--------------------------------	------

3. If an Author is a U.S. Government employee, such Author must please sign below. The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature	Print Name	Date
------------------	------------	------

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract #(s) *[1.16.1]*

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University, <http://arxiv.org/>.

Commercial and noncommercial scholarly use: Noncommercial scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. Commercial uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrdclist/>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is *not* considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the AIP Publishing website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.