

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Definition of the Feed Influence During the FSP Process of Steel Surfaces on Hardening by Alloying with WC-Co Tool Particles. Modeling and Experiment

AIPCP25-CF-AMSMT2025-00023 | Article

PDF auto-generated using **ReView**

Definition of the Feed Influence During the FSP Process of Steel Surfaces on Hardening by Alloying with WC-Co Tool Particles. Modeling and Experiment

Viktor P. Kuznetsov^{a)}, Igor A. Vorontsov^{b)} and Andrei S. Skorobogatov^{c)}

Ural Federal University, 19 Mira St., 620062, Ekaterinburg, Russia

^{a)} Corresponding author: wpkuzn@mail.ru

^{b)} igor.vorontsov@urfu.ru

^{c)} ufo2log@gmail.com

Abstract. The article presents an analytical model and performed calculations of the temperature in the contact zone of the tool during friction-stir processing of AISI 420 steel, depending on the thermal properties of the materials and technological parameters. It is shown that feed rate reduction from 100 mm/min to 50 mm/min increases the maximum temperature in the contact zone of the rotating tool from 1250 to 1430 °C and extends holding time at the austenization temperature from 7.5 to 32.3 sec. The experimental studies of the process indirectly confirm the results of modeling based on the thickness of the hardened layer. It is shown that when the feed rate decreases from 100 mm/min to 50 mm/min, the thickness of the hardened layer increases from 850 microns to 1500 microns.

INTRODUCTION

Friction-stir processing (FSP) is an effective thermomechanical method for hardening the surface layer of steels due to intense frictional heat generation in tool/surface contact and a high degree of shear deformation. Earlier, for martensitic corrosion-resistant AISI 420 steel, it was shown that when using a WC-Co carbide tool with a flat end, the FSP implements a set of mechanisms for surface hardening by friction hardening, dynamic recrystallization, and dispersion hardening by tungsten carbide particles of the tool material. As a result of FSP, a pronounced gradient of properties is formed along the depth of the surface layer and an increase in microhardness and wear resistance is observed [1].

Classical FSP studies focus on the influence of kinematic parameters, normal force and geometry of the working part of the tool on the thermal balance and the course of dynamic recrystallization (DRX), which determines the grain size in the stir zone (SZ) and the depth of the thermomechanical affected zone (TMAZ) [2]. In FSP of steels, the geometry of the tool working part and the area of the contact zone directly affect the heat fluxes into the surface layer and the tool, which determine the development of hardening mechanisms [3].

For martensitic stainless steels of the AISI 420 type, a reduction in feed at a fixed normal force and rotation speed of the tool leads to greater heating, grain size refinement and an increase in surface microhardness. At the same time, its corrosion resistance is improved due to redistribution and refinement of the carbide phase [4]. Modern studies confirm an increase in wear resistance and a decrease in the friction coefficient of AISI 420 steel after FSP. The achieved effect is attributed to the combined contribution of dispersion hardening, as well as to the formation of compressive residual stresses [5].

FSP of structural steels provides for rapid surface hardening and improved tribological properties. Optimal processing conditions aims at achieving hardness in the stir zone, which is comparable to or exceeds the hardness after traditional quenching, and the wear of the hardened surface during dry friction is significantly reduced [6, 7]. The contact temperature is a key factor determining the surface hardening mechanism and imposing requirements on the tool material, especially on the hard alloy (Co/Ni) matrix. When overheating, the matrix softens, which leads to

tungsten carbide particles chipping and their transfer to the surface under treatment, especially when hardening high-carbon steels. [8].

Thus, for structural steels, it is necessary to make a correct choice of FSP modes, ensuring, firstly, sufficient heat supply for upper layer austenization while maintaining durability of the WC-Co tool, secondly, intensive and stable surface material stirring to minimize defects and pores, thirdly, controlled maintenance of a hardness gradient to a depth of 0.5-1.5 mm or more. The series of FSP results for AISI 420 steel with WC-Co components alloying confirms that the highest hardening effect is achieved under conditions that simultaneously provide the DRX mechanism, martensitic transformation during cooling and formation of dispersion carbide phases based on Fe-W-C.

The purpose of the work is to establish the effect of the rotating tool feed rate in the AISI 420 steel FSP on surface layer hardening due to martensitic structure formation and alloying with tungsten carbide particles based on application of the analytical model and experimental research.

MODELING AND EXPERIMENTAL RESEARCH

The friction stir processing by a tool with a spherical working part is characterized by the following main technological parameters: normal force F_n , feed rate f , rotation speed n and tool sharpening radius R_c (Fig. 1, a). Due to the normal force and heating of the material under treatment during processing, the tool is immersed to a certain depth h into the surface layer. In this case, the tool provides intensive stirring of the material under treatment up to this depth. In addition to stirring, significant heating of the material under treatment is also provided due to the frictional interaction of the tool with the material under treatment. This interaction is characterized by the frictional heat release power P_μ in the contact zone, which can be determined by the following dependence:

$$P_\mu = 2\pi F_n n R_c. \quad (1)$$

The released heat is distributed between the tool and the material under treatment into heat fluxes ϕ_t and ϕ_m , respectively (Fig. 1, b). The values of heat fluxes ϕ_t and ϕ_m are determined mainly by the thermal characteristics of the tool and materials under treatment.

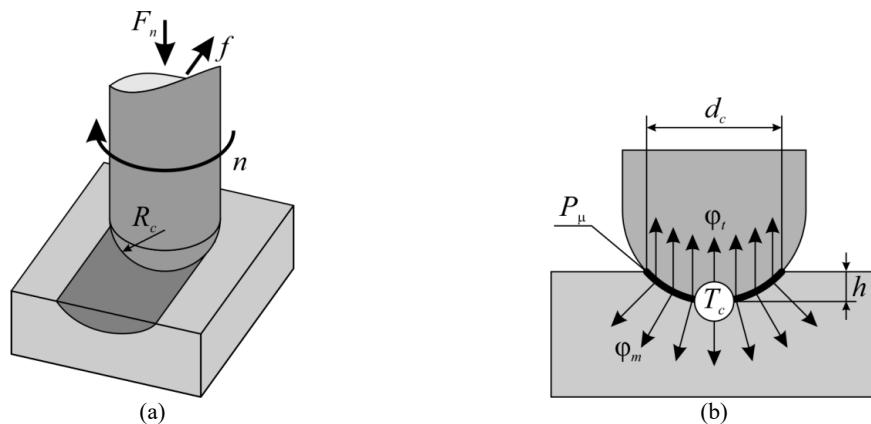


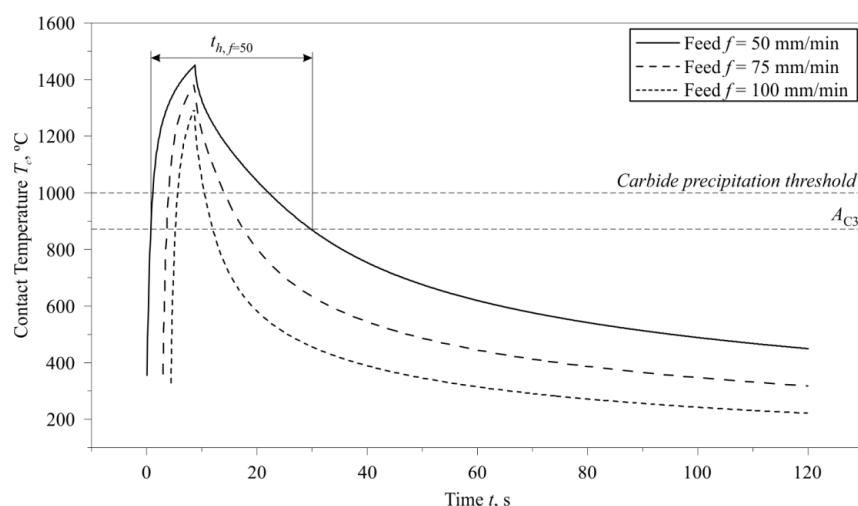
FIGURE 1. Scheme of friction stir processing (a) and distribution of heat fluxes (b) into the workpiece and tool

From the point of view of the reinforced surface structure formation, an important parameter is the magnitude of the heat flux ϕ_m entering the material under treatment and leading to its heating. The temperature T_c of the material under treatment in the tool contact zone and in the depth of the surface layer over time t can be determined using an analytical model of the semi-infinite thermal problem of a fast-moving heat source [9]:

$$T_c(h, t) = \begin{cases} \frac{2q_m \sqrt{at}}{\lambda} ierfc\left(\frac{h}{2\sqrt{at}}\right), & \text{when } 0 \leq t \leq t_c, \\ \frac{q_m}{\lambda} \left(\sqrt{at} ierfc\left(\frac{h}{2\sqrt{at}}\right) - \sqrt{a(t-t_c)} ierfc\left(\frac{h}{2\sqrt{a(t-t_c)}}\right) \right), & \text{when } t > t_c, \end{cases} \quad (2)$$

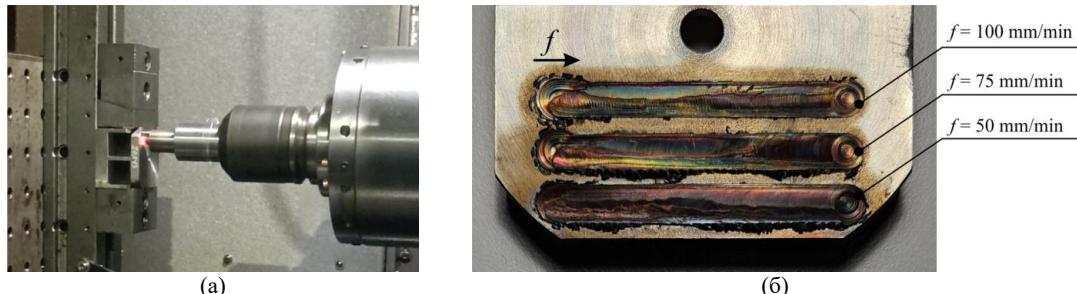
where q_m is the heat flux density, W/m^2 ; λ and α are the coefficients of thermal conductivity and temperature conductivity of the material under treatment, respectively; $ierfc$ is a standard function of the multiple error function integral; t_c is the heating time during the contact of the material under treatment and the tool.

The analytical model describes the heating of the material under treatment in the contact zone over a time period of $0 \leq t \leq t_c$ and subsequent cooling after further tool travel ($t > t_c$).

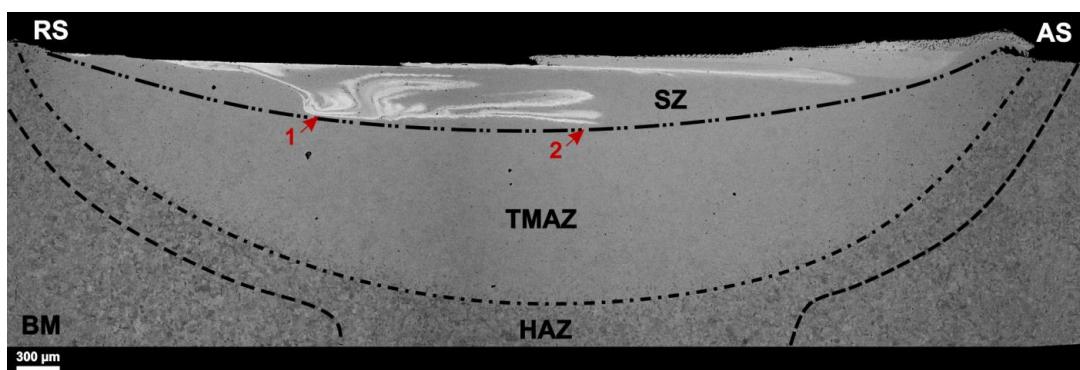

The heat flux density in the material under treatment q_m can be defined as the ratio of the heat flux magnitude q_m to the contact area A_c :

$$q_m = \frac{\Phi_m}{A_c} = \frac{\Phi_m}{2\pi R_c h}. \quad (3)$$

The contact time t_c corresponds to the heating duration and can be defined as the ratio of the actual diameter of the contact spot of the tool d_c with the surface under treatment to the feed value f (4).


$$t_c = \frac{d_c}{f}. \quad (4)$$

For optimal conditions for FSP the AISI 420 steel surface with a normal force of 3000 N and a rotation speed of 2500 rpm, the dependences have been obtained that show a significant effect of the tool feed on heating and cooling of the material surface under treatment (Fig. 2). Thus, with a feed of 100 mm/min, the surface under treatment is at the temperature above the threshold A_{C3} in during 7.5 seconds, while when the feed is reduced to 75 mm/min and 50 mm/min, the austenization temperature is maintained for 15.4 and 32.3 seconds, respectively. From the findings, it can be assumed that the feed rate of 100 mm/min may be too high and will not ensure complete austenization of the surface layer material and, accordingly, the subsequent formation of a martensitic structure during cooling.


FIGURE 2. Analytical dependences of heating and cooling of the material under treatment in the tool contact zone during FSP at various tool feeds

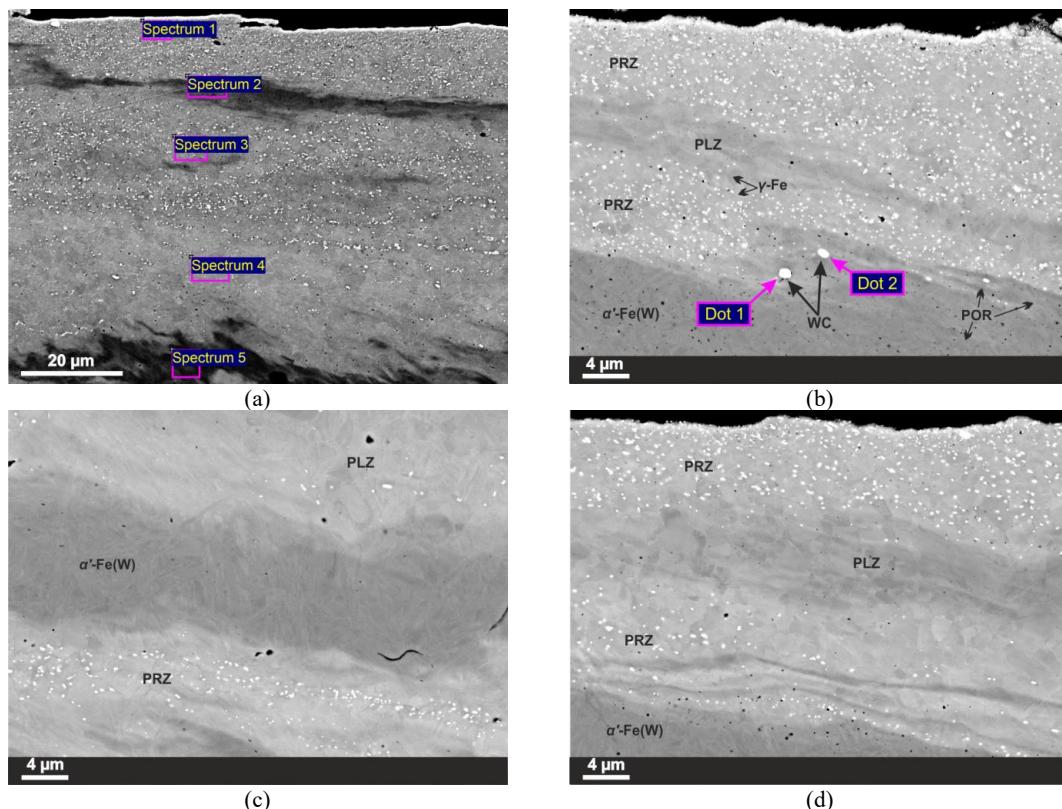
As part of an experimental study of the process, the surface of AISI 420 steel of as-delivered condition (150 HB) was treated with a tungsten carbide tool with a cobalt binder using the modes similar to the modelling (normal force 3000 N, rotation speed 2500 rpm and feed rate of 50, 75 and 100 mm/min) (Fig. 3).

FIGURE 3. Photos of FSP at the OKUMA MA-600 processing center (a) and the friction tracks on the sample surface at feeds of 50, 75 and 100 mm/min (b)

The microstructural analysis of the friction tracks in the cross-section of the sample showed that the localized bands of alloying by the tool material particles occur in the material under treatment in the stirring zone. The erosion of the tool material into the surface layer occurs as a result of high frictional and thermal load (Fig. 4).

FIGURE 4. Scanning electron microscopy of the AISI 420 steel surface layer cross-section after FSP at a flow rate of 50 mm/min: SZ – stir zone; TMAZ – thermomechanically affected zone; HAZ – heat-affected zone; BM – based metal; AS – advancing side; RS – retreating side

The comparison of the cross-sections shows that the depth of the stir and thermomechanically affected zones increases with a decrease in the feed rate of the tool. At a feed rate of 50 mm/min, the depth of the SZ is 530 ± 5 microns, and the depth of the TMAZ is 1420 ± 10 microns. For samples processed at feeds of 75 mm/min and 100 mm/min, the depth of the SZ is 470 and 420 ± 5 microns, and the depth of the TMAZ is 1180 and 1080 ± 10 microns, respectively.


The analysis of the particle distribution of the tool material in the cross section under the friction track shows that during friction stirring, the highest concentration of tool material particles is located closer to the retreating side RS (Fig. 4, arrow 1). Further, as a result of the rotation and tool travel, the particles are redistributed to the advancing side, with alloying bands being formed (Fig. 4, arrow 2). In the stir zone, the areas with different tool material particle contents are formed, different in structural and phase composition, besides, the defects in the form of small pores are observed. A needle-like martensitic structure (α -Fe) with inclusions of globular grains of austenite (γ -Fe) and tungsten carbides WC is formed in a thin surface layer up to 10 microns thick after treatment with a feed rate of 50 mm/min. At the same time, in the areas with a tungsten content of 9 wt.% or more granule morphology (PRZ) prevails, whereas a needle-like martensitic structure (α' -Fe(W) and α' -Fe), respectively, is formed in the areas with a low tungsten content and with the initial level of alloying.

The results of the quantitative elemental analysis of a thin surface layer under the friction track formed during tool travels with a feed rate of 50 mm/min show the presence of inhomogeneities in saturation of the surface under treatment with tungsten carbide particles (Table 1). Based on the analysis of compositional contrast in SEM images, it is possible to identify tungsten carbide particles that appear as the brightest objects of a circumferential shape with the size range from 0.1 to 1.5 microns. The average particle size in a thin surface layer at FSP with a feed rate of 50 mm/min was 170 nm.

TABLE 1. Summarized results of the quantitative elemental analysis of the surface layer after FSP at a feed rate of 50 mm/min

Elements	Content, wt. %						
	Spectrum 1	Spectrum 2	Spectrum 3	Spectrum 4	Spectrum 5	Dot 1	Dot 2
Cr	11.06	12.26	11.30	11.22	13.15	7.92	9.16
Fe	75.64	80.82	77.84	77.63	84.05	29.91	43.87
W	11.07	6.93	10.86	11.15	2.80	55.48	44.74
Co	2.22	0.00	0.00	0.00	0.00	3.69	2.24

In addition, the image shown in Fig. 5, a shows some lighter areas with a high content of tungsten up to 11 wt.% (Spectrum 1, 3 and 4), indicating the diffusional dissolution of the tool material in the AISI 420 steel matrix, and darker areas with low alloying up to 3 wt.% (Spectrum 2, 5). The point elemental analysis of the largest particles of the tool material WC-Co (Fig. 5, b) showed a result corresponding to the chemical composition of the tungsten carbide tool, the increased iron content is due to the fact that the analysis area exceeds the size of the particles under study.

FIGURE 5. Scanning electron microscopy of a thin surface layer of a friction track after FSP at a feed rate of 50 mm/min: a – quantitative elemental analysis; b – point elemental analysis; c and d – areas of different microstructural state

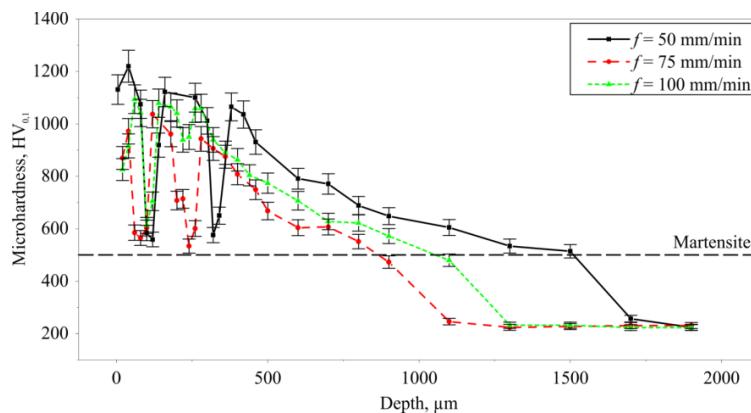


FIGURE 6. Microhardness characteristics according to the friction track depth at various feed rates

The results of microhardness in the depth of the surface layer in the middle of the friction tracks show a similar hardening pattern of the material under treatment with a change in feed from 50 to 100 mm/min (Fig. 6). Thus, at a depth of up to 400 microns, banded hardening is observed due to the heterogeneity of alloying. Then, the microhardness gradually decreases to the initial level of ~ 200 HV_{0.1}.

CONCLUSION

The results of the experimental study are in good agreement with the temperature characteristics obtained using the analytical model. It can be seen from the microhardness characteristics that the thickness of the hardened layer increases significantly with a decrease in feed, especially to a level of 50 mm/min. Apparently, this is due to two main factors. Firstly, when the feed rate decreases, the maximum temperature in the contact area increases. Secondly, and probably more important, the exposure time of the material at high temperatures is significantly increased, which undoubtedly contributes to both more complete austenization of the material and deeper heating of the surface under treatment.

ACKNOWLEDGMENTS

Funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University, State Assignment No. 075-03-2025-258 dated 17.01.2025 (FEUZ-2024-0020)

REFERENCES

1. V.P. Kuznetsov, I.A. Vorontsov, M.S. Karabanalov, M.S. Khadyev, V.V. Voropaev, I.S. Kamantsev and V.P. Shveykin, Regularities of surface hardening of X20Cr13 steel by alloying with WC-Co tool material during friction stir processing. Metallovedenie i termicheskaya obrabotka metallov, **3**(387), 50–56 (2025). <https://doi.org/10.30906/mitom.2025.3.50-56>
2. R.S. Mishra and Z.Y. Ma, Friction stir welding and processing. Materials Science and Engineering: R: Reports **50**(1), 1–78 (2005). <https://doi.org/10.1016/j.mser.2005.07.001>
3. Y. Takada and H. Sasahara, Effect of Tip Shape of Frictional Stir Burnishing Tool on Processed Layer's Hardness, Residual Stress and Surface Roughness. Coatings **8**(1), 32 (2018). <https://doi.org/10.3390/coatings8010032>
4. L. Pan, C.T. Kwok and K.H. Lo, Enhancement in hardness and corrosion resistance of AISI 420 martensitic stainless steel via friction stir processing. Surface and Coatings Technology **357**, 339–347 (2019). <https://doi.org/10.1016/j.surcoat.2018.10.023>
5. S.H. Aldajah, O.O. Ajayi, G.R. Fenske and S. David, Effect of friction stir processing on the tribological performance of high carbon steel. Wear **267**(1), 350–355 (2009). <https://doi.org/10.1016/j.wear.2008.12.020>
6. C. Lorenzo-Martin and O.O. Ajayi, Rapid surface hardening and enhanced tribological performance of 4140 steel by friction stir processing. Wear **332–333**, 962–970 (2015). <https://doi.org/10.1016/j.wear.2015.01.052>

7. S.H. Aldajah, O.O. Ajayi, G.R. Fenske and S. David, Effect of friction stir processing on the tribological performance of high carbon steel. *Wear* **267**(1), 350–355 (2009). <https://doi.org/10.1016/j.wear.2008.12.020>
8. B. Vicharapu, H. Liu, Y. Morisada, H. Fujii and A. De, Degradation of nickel-bonded tungsten carbide tools in friction stir welding of high carbon steel. *Int. J. Adv. Manuf. Technol.* **115**(4), 1049–1061 (2021). <https://doi.org/10.1007/s00170-021-07159-3>
9. J.C. Jaeger, Moving sources of heat and the temperature at sliding contacts. *Journal and Proceedings of the Royal Society of New South Wales* **76**(3), 203–224 (1943). <https://doi.org/10.5962/p.360338>

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 Walt Whitman Road, Suite 300, Melville, NY 11747-4300 USA; Phone 516-576-2268; Email: rights@aip.org.

Article Title ("Work"):

Definition of the feed influence during the FSP process of steel surfaces on hardening by alloying with WC-Co tool particles.

Modelling and Experiment

All Author(s):

Viktor P. Kuznetsov, Igor A. Vorontsov and Andrey S. Skorobogatov

Title of Conference: AMSMT2025

Name(s) of Editor(s): Valentin L. Popov

All Copyright Owner(s), if not Author(s):

(Please list **all** copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(ies) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

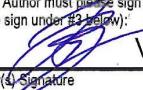
Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.


Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approval of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #2 below):

 Viktor P. Kuznetsov **October 2, 2025**

Author(s) Signature **Print Name** **Date**

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner **Authorized Signature and Title** **Date**

3. If an Author is a U.S. Government employee, such Author must please sign below. The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature **Print Name** **Date**

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract #(s) **[1.16.1]**

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University, <http://arxiv.org/>.

Commercial and noncommercial scholarly use: Noncommercial scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. Commercial uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrclist/>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is *not* considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.