

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

On the Equations of Dynamics of a Roller Seismic Isolation Bearing

AIPCP25-CF-AMSMT2025-00024 | Article

PDF auto-generated using **ReView**

On the Equations of Dynamics of a Roller Seismic Isolation Bearing

Ibrakhim Mirzaev^{1, 2, a)}, Djumaev Khikmatulla^{1, b)}, Malikjon Turdiev^{1, c)}, Jakhongir Shomurodov^{3, d)} and Rakhmatov Nodirbek^{4, e)}

¹*Tashkent State Transport University, Tashkent, Uzbekistan*

²*Institute of Mechanics and Seismic Stability of Structures named after M.T. Urazbaev of the Academy of Sciences of the Republic of Uzbekistan*

³*Renessance Education University, Tashkent, Uzbekistan*

⁴*National University of Uzbekistan, Tashkent, Uzbekistan.*

^{a)} Corresponding author: ibrakhim.mir@mail.ru

^{b)} djumaev1959@mail.ru

^{c)} malikjon_ts@mail.ru

^{d)} jakhongir_shf@mail.ru

^{e)} nodirbekrakhmatov0@gmail.com

Abstract. An analysis of publications on the dynamics of roller sliders revealed inaccuracies in the construction of mathematical models for describing dynamic processes. In research, the law of motion of the lower plate is usually specified, and the motion of the upper plate must be determined by solving a dynamic problem. In structural dynamics problems involving sliding friction forces, the direction of the friction force was determined by the difference in the velocities of the rubbing elements, and the stick-slip mode requires solving a nonlinear problem using a special method. A thorough analysis of the processes in roller sliders has shown that the start of the relative motion of the plates and the start of their joint motion as a solid body cannot be realized solely by the sign function of the difference in the velocities of the upper and lower plates. The plates begin to roll relative to each other only when the inertial force exceeds the sum of all forces acting in the horizontal direction. A stick-slip mode is also possible during the movement process. Graphs of changes in time of displacements, velocities, and accelerations of the upper plate and specified movements of the lower plate are given according to analytical functions and records of real earthquakes. The presence of a sufficiently long horizontal plane in the middle of the lower plate increases the effectiveness of the seismic isolator.

INTRODUCTION

Seismic isolation in modern construction is considered an important technology for improving the seismic resistance of buildings. In recent years, numerous studies have been conducted in this field, including theoretical foundations, experimental work, and new technological solutions.

In the article [1] sets the task of evaluating the effectiveness of seismic isolation technologies for buildings. The scientific novelty of the research lies in the fact that the work systematically analyzes the historical development and practical experience of applying isolation methods, as well as justifies new directions for future research—three-dimensional isolation and protection of non-structural elements.

In the articles [2, 3] is devoted to reducing the impact of earthquakes on buildings using seismic isolation. The aim of the study is to evaluate the effectiveness of various types of isolators and determine their potential for use in earthquake-prone areas. Theoretical analysis and computer modeling were used as the main methods. The authors consider devices such as elastomeric supports, movable supports, and friction isolators. The results showed that these systems effectively reduce earthquake energy. In conclusion, it is emphasized that the work creates an important scientific basis for improving seismic safety in construction practice.

In the article [4] examines the effectiveness of seismic isolation devices in buildings prone to earthquakes. The main objective of the work is to compare different isolation methods and determine their impact on the seismic safety of structures. To solve the problem, calculation methods and computer modeling were used to evaluate the dynamic response of buildings under various types of seismic impacts. The authors use friction devices, elastomeric bearings, and sliding supports to analyze the behavior of structures. The results show that isolation significantly reduces stresses in buildings and increases their stability. However, it was noted that in some models, changes in the friction coefficient and plastic properties of materials were not fully taken into account, which is a limitation of the study.

In the article [5] discusses various types of seismic isolators and their role in ensuring the seismic resistance of structures. The aim of the work is to conduct a comparative analysis of rubber isolators, friction devices, and movable supports, identifying their advantages and disadvantages. To solve the problem, the author uses a review of the literature and experimental observations. The results show that elastomeric isolators are most effective at reducing vibrations, friction devices are simple and inexpensive, and movable supports significantly increase the seismic safety of buildings. However, changes in the friction coefficient over time and issues of durability remain insufficiently studied.

In the article [6] examines the concept of seismic isolation and current trends in its development. The main objective is to evaluate the effectiveness of various types of isolators and determine their application in construction. To solve the problem, the author uses theoretical analysis and the results of previous experimental studies. The paper compares the characteristics of elastomeric supports, friction-based devices, and sliding isolators. The results show that such systems significantly reduce building vibrations during seismic events.

In the article [7] investigates the dynamics of multi-mass systems under multi-point seismic excitation. Modeling showed a significant influence of different excitation points on the response of the structure. The work is particularly important for bridges and high-rise buildings. The study considers various seismic scenarios and analyzes the characteristics of structural vibrations. No specific type of seismic isolators was used in the work; the behavior of the structure was studied within the framework of a general dynamic model.

In the article [8] raises the issue of optimal design of inertial vibration dampers. Using a multi-criteria optimization method, the authors determined the parameters of an effective device. The results show that such devices effectively reduce vibrations in multi-story buildings. The paper proposes a new approach to the design of seismic protection equipment.

In the article [9] theoretically and experimentally studies the effectiveness of roller isolators. In the study, the results of computer modeling were compared with laboratory experiments. It was shown that the device significantly reduces seismic vibrations. At the same time, the need for accurate selection of isolator parameters is emphasized.

In [10], the technical report is devoted to the principles of operation of roller insulators for bridges. Operational parameters and areas of application are considered. The effectiveness of the device for road bridges is confirmed.

In the article [11] examines a roller isolator with an additional energy dissipation element. Experiments have shown higher stability compared to conventional isolators. The system provides reliable seismic protection. These achievements pave the way for the introduction of new devices into construction practice.

In the article [12] discusses the use of dry friction devices for seismic isolation of turbine units at nuclear power plants. The authors performed numerical calculations of various design parameters and evaluated the effectiveness of the system. The results showed that dry friction elements significantly reduce the amplitude of vibrations and increase the stability of the turbine unit. The optimal operating modes of the isolator were also identified. However, the need for more extensive experimental testing in real conditions before practical implementation is emphasized.

In the article [13] investigates the influence of the horizontal gap between the foundation and the sliding grillage structure on building vibrations during an earthquake. Using mathematical modeling and numerical calculations, the authors analyzed changes in dynamic characteristics as the gap size increased. The results showed that choosing the optimal gap size significantly increases the seismic resistance of the building. The paper substantiates the importance of considering the location and dimensions of structural elements when designing seismic protection. The main drawback is that the conclusions are largely based on a theoretical model and require additional confirmation by experimental testing.

In the article [14] investigates the problem of experimentally determining the dynamic coefficient of dry friction according to Amontons-Coulomb. The authors developed a special laboratory device and a method for measuring the coefficient of friction under various loads and surface conditions. The results show that the dynamic coefficient of dry friction is more than twice as small as the static coefficient. The study emphasizes the need to take real coefficients into account when calculating oscillatory systems and seismic isolation devices. The main advantage of the work is the practical focus and novelty of the measurement method. However, since the experiments were conducted only under limited conditions, additional experimental studies are required to generalize the results.

In the article [15] evaluates the effectiveness of TLCD and TMD devices for buildings, taking into account the interaction between the structure and the ground. The optimal parameters for the devices are determined. This work is important for improving the seismic resistance of buildings.

In the article [16] is devoted to the theoretical foundations of earthquake-resistant construction and structural dynamics. Mathematical models and analytical solutions have been developed. The work serves as a methodological basis in seismology.

In the article [17] is devoted to wave processes in underground pipelines when interacting with soil. A bilinear model was used for numerical analysis. The high sensitivity of pipelines to earthquakes was established.

In article [18], a new type of seismic isolation device with inclined multi-roller supports was developed and tested to protect important equipment and structures from the effects of earthquakes. The results of the study show that such devices are effective and stable. However, dynamic calculations did not fully account for some nonlinear effects of plastic deformation of the material and variability of the friction coefficient. The effectiveness of the device is considered using the example of a specific type of equipment and structures, but additional research is needed for application to other objects.

In article [19], numerical modeling of buildings with friction pendulum supports demonstrated their effectiveness in reducing vibrations. The main parameters were taken into account, but nonlinear effects were not fully investigated. The work contributes to the development of seismic protection systems.

The monograph [20] technical report contains a comprehensive assessment of modern seismic isolation devices. Experimental data and theoretical models are compared. Practical recommendations for their use in construction are provided.

The overall goal of all the above-mentioned work is to improve the seismic safety of buildings and reduce the impact of earthquakes through the use of seismic isolation technologies. Achievements include the combination of theoretical models with experimental results, the development of new types of devices, and confirmation of their effectiveness. At the same time, a number of shortcomings remain. Many studies have been conducted in laboratory conditions or based on theoretical models, which limits the scope of their practical application.

In conclusion, it can be noted that existing studies comprehensively cover the theoretical, practical, and technological aspects of seismic isolation. The results obtained make a significant contribution to ensuring the seismic resistance of buildings, but in the future, field tests, cost reduction of technologies, and the development of solutions to protect non-structural elements will be required.

This paper introduces the conditions for the start of relative motion of seismic isolator plates, as well as the conditions for their joint motion as a solid body. Equations of motion are proposed depending on the ratio of the absolute values of the velocities of the upper and lower plates of the seismic isolator. The proposed equations of motion are applicable in the absence of sliding friction.

MATERIAL AND METHODS

To facilitate understanding of the dynamics of roller seismic isolators, let us examine the case of flat plates undergoing horizontal motion only. Fig. 1 shows a schematic view of a roller isolation device with flat plates. Let us consider the equation of motion of the upper plate with mass m , given the motion of the lower plate u_2 under the action of an earthquake. Since the mass of the cylinder is negligible compared to the mass of the upper plate, the rotational inertia of the cylinder is neglected. The upper plate receives force through the movement of the lower plate. If the lower plate moves as a result of an earthquake, the upper plate is set in motion by the force arising at the contacts of the plates with the cylinder. Let's introduce the symbols $\mu_1 = \delta_1/r$ и $\mu_2 = \delta_2/r$, where δ_1, δ_2 - coefficients of rolling friction between the cylinder and the upper and lower plates, respectively, r - radius of the cylinder.

Let the plates begin to move together first. Then the conditions for the movement of the upper u_1 and lower plates apply in the absence of relative movement between them.

$$\ddot{u}_1 = \ddot{u}_2, \dot{u}_1 = \dot{u}_2, u_1 = u_2 - \Delta u. \quad (1)$$

Here, Δu represents the relative displacement of the upper plate at the moment of transition from relative motion to joint motion as an absolute rigid body, $\Delta u=0$ at the initial moment of the process.

At the moment when the acceleration reaches the value necessary to overcome the rolling friction forces at the contacts between the cylinder and the upper and lower plates, the plates will begin to move relative to each other. At this moment, the speed of the upper plate is equal to the speed of the lower plate, and the displacement of the upper plate is determined by the ratio (1).

$$|\ddot{u}_2| > (\mu_1 + \mu_2) \cdot g. \quad (2)$$

During the movement of the plates, condition $|\dot{u}_1| \geq |\dot{u}_2|$ may occur, in which case the upper plate rotates the cylinder, so the resistance forces at the cylinder contacts are added together. Then the equation of motion of the upper plate is as follows

$$\ddot{u}_1 = \text{sign}(\dot{u}_1 - \dot{u}_2)(\mu_1 + \mu_2) \cdot g. \quad (3)$$

If $|\dot{u}_1| < |\dot{u}_2|$ occurs, the upper plate is moved by the rolling friction force at the contact point between the upper plate and the cylinder.

$$\ddot{u}_1 = \text{sign}(\dot{u}_1 - \dot{u}_2)\mu_1 \cdot g. \quad (4)$$

If $|\dot{u}_1 - \dot{u}_2| < \varepsilon$ and $|\ddot{u}_2 - \ddot{u}_1| < (\mu_1 + \mu_2) \cdot g$, where ε - a small positive number, the value of which is selected depending on the time step size in step-by-step problem solving. In this case, the plates begin to move together and the process is determined by the ratio (1).

Where μ_1, μ_2 - rolling friction coefficients at the contacts between the cylinder and the upper and lower plates, respectively.

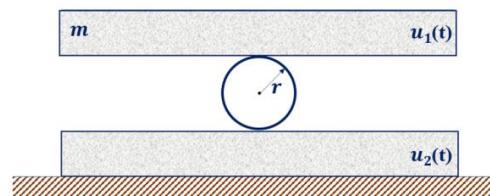


FIGURE 1. Schematic representation of a roller insulation device with flat plates

Now let us consider the problem for a roller insulation device with a V-shaped bottom plate with a horizontal section in the middle and an angle of inclination φ (Fig. 2). If the center of the bottom base is a plane with length l (Fig. 2), then the following relationship holds for equations (5) - (8).

$$\phi = \{0, |u_r - u_2| \leq l/2 \mid \text{ or } \phi = \left\{0, \left|\frac{u_1 - u_2}{2}\right| \leq l/2 \right\},$$

where φ_0 - this angle of inclination in the bottom plate, $u_r = (u_1 + u_2)/2$ - displacement of the cylinder center at small φ .

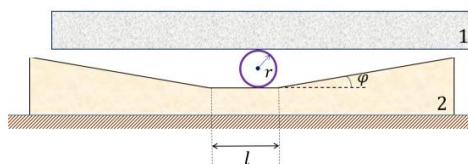


FIGURE 2. Schematic representation of a roller insulation device for a plate with a V-shaped bottom plate with a horizontal section in the middle and an angle of inclination φ .

In this case, too, in the absence of relative motion of the plates, relations (1) hold. Unlike flat plates, the condition for the onset of relative motion of the plates is given by

$$|\ddot{u}_2| > |\text{sign}(\dot{u}_1 - \dot{u}_2)\mu_1(g + \text{sign}(u_r - u_2)\ddot{u}_2 \text{tg}\phi) + \text{sign}(\dot{u}_1 - \dot{u}_2)\mu_2(g + \text{sign}(u_r - u_2)\ddot{u}_2 \text{tg}\phi)\cos\phi - \text{sign}(u_1 - u_2)\frac{1}{2}(g + \text{sign}(u_r - u_2)\ddot{u}_2 \text{tg}\phi)\sin2\phi|. \quad (5)$$

Accordingly, for $|\dot{u}_1| \geq |\dot{u}_2|$, the equation of motion of the upper plate is

$$\ddot{u}_1 = \text{sign}(\dot{u}_1 - \dot{u}_2)\mu_1(g + \text{sign}(u_r - u_2)\ddot{u}_2 \text{tg}\phi) + \text{sign}(\dot{u}_1 - \dot{u}_2)\mu_2(g + \text{sign}(u_r - u_2)\ddot{u}_2 \text{tg}\phi)\cos\phi - \text{sign}(u_1 - u_2)\frac{1}{2}(g + \text{sign}(u_r - u_2)\ddot{u}_2 \text{tg}\phi)\sin2\phi, \quad (6)$$

otherwise

$$\ddot{u}_1 = \text{sign}(\dot{u}_1 - \dot{u}_2)\mu_1(g + \text{sign}(u_r - u_2)\ddot{u}_2 \text{tg}\phi) - \text{sign}(u_1 - u_2)\frac{1}{2}(g + \text{sign}(u_r - u_2)\ddot{u}_2 \text{tg}\phi)\sin2\phi. \quad (7)$$

In both equations, the initial conditions for the transition from one state to another at time $t=t^*$ are: $u_1 = u_1(t^*)$, $\dot{u}_1 = \dot{u}_1(t^*)$, and at the beginning of the relative motion of the upper plate we have $\dot{u}_1 = \dot{u}_2$, $u_1 = u_2 - \Delta u$.

If, during the movement of the plates, the difference in their velocities is close to zero and the difference in accelerations is less than the resistance forces

$$|\dot{u}_1 - \dot{u}_2| < \varepsilon,$$

and

$$|\ddot{u}_2 - \ddot{u}_1| = |\text{sign}(\dot{u}_1 - \dot{u}_2)\mu_1(g + \text{sign}(u_r - u_2)\ddot{u}_2 \text{tg}\phi) + \text{sign}(\dot{u}_1 - \dot{u}_2)\mu_2(g + \text{sign}(u_r - u_2)\ddot{u}_2 \text{tg}\phi)\cos(\phi) - \text{sign}(u_1 - u_2)\frac{1}{2}(g + \text{sign}(u_r - u_2)\ddot{u}_2 \text{tg}\phi)\sin 2\phi|, \quad (8)$$

then the plates begin to move together and the process is determined by the ratio (1).

RESULTS AND DISCUSSION

First, let us present the results calculated based on the values $\mu_1=0.055$, $\mu_2=0.054$, $\varphi=0^\circ$, i.e., for flat plates. Let the motion of the lower plate be defined as follows:

$$u_2 = \begin{cases} \frac{At}{t_0} \sin(\omega t), & t \leq t_0 \\ 0, & t > t_0 \end{cases}$$

In this case, the maximum displacement amplitude of the lower base is $A=0.1$ m, the circular oscillation frequency is $\omega=2\pi$ rad/s and $t_0=6$ s.

Figure 4 shows graphs of the displacements, velocities, and accelerations of the upper and lower plates over a period of 15 seconds. In this case $|u_1|_{\text{max}}=0.026$ m, $u_{2\text{max}}=0.1$ m, $|v_1|_{\text{max}}=0.16$ m/s, $v_{2\text{max}}=0.62$ m/s, $w_{1\text{max}}=1.08$ m/s², $w_{2\text{max}}=3.91$ m/s². The results show that the maximum displacement values differ by a factor of 3.8, the maximum velocity values by a factor of 3.9, and the maximum acceleration values by a factor of 3.6.

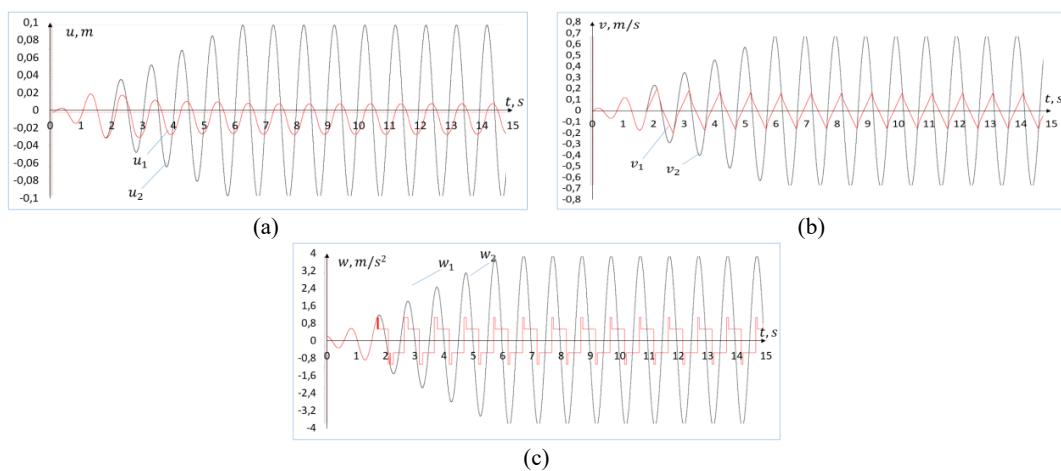


FIGURE 3. Displacements (a), velocities (b), and accelerations (c) of the upper (1) and lower (2) plates.

Figure 3 shows when $|\dot{u}_1| \geq |\dot{u}_2|$ acceleration w_1 is determined by the rolling friction forces acting on the contacts between the cylinder and the upper and lower plates.

Figure 4 shows the results of calculations for lower rolling friction coefficients, i.e., $\mu_1=0.023$, $\mu_2=0.024$. In this case $|u_1|_{\text{max}}=0.001$ m, $u_{2\text{max}}=0.1$ m, $|v_1|_{\text{max}}=0.06$ m/s, $v_{2\text{max}}=0.62$ m/s, $w_{1\text{max}}=0.43$ m/s², $w_{2\text{max}}=3.91$ m/s². The results show that the maximum displacement values differ by a factor of 10, the maximum velocity values by a factor of 10.3, and the maximum acceleration values by a factor of 9.8.

Figures 3 and 4 show that as the rolling friction coefficients decrease, the maximum values of displacement, velocity, and acceleration of the upper plate are significantly reduced.

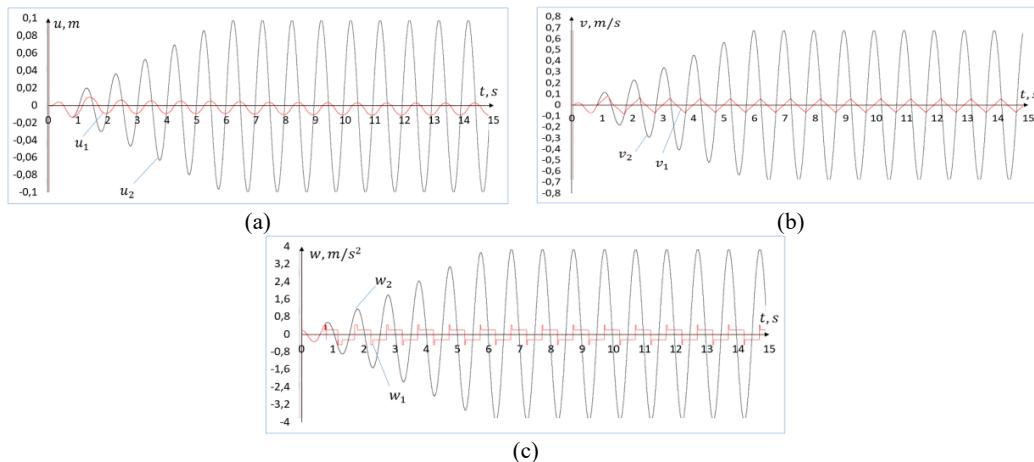


FIGURE 4. Displacements (a), velocities (b), and accelerations (c) of the upper (1) and lower (2) plates.

Figures 5 and 6 show the results of calculations with a V-shaped bottom plate at $\varphi=5^\circ$ with a horizontal section in the middle $l=0.02 \text{ m}$.

Figure 5 shows the results for a rolling friction coefficient of $\mu_1=0.055$, $\mu_2=0.054$. In this case $|u_1|_{max}=0.03 \text{ m}$, $u_{2max}=0.1 \text{ m}$, $|v_1|_{max}=0.17 \text{ m/s}$, $v_{2max}=0.62 \text{ m/s}$, $w_{1max}=1.38 \text{ m/s}^2$, $w_{2max}=3.91 \text{ m/s}^2$. The results show that the maximum displacement values differ by a factor of 3.3, the maximum velocity values by a factor of 3.6, and the maximum acceleration values by a factor of 2.8. The V-shaped lower plate causes additional resistance to relative movement, which reduces the effectiveness of the seismic isolator.

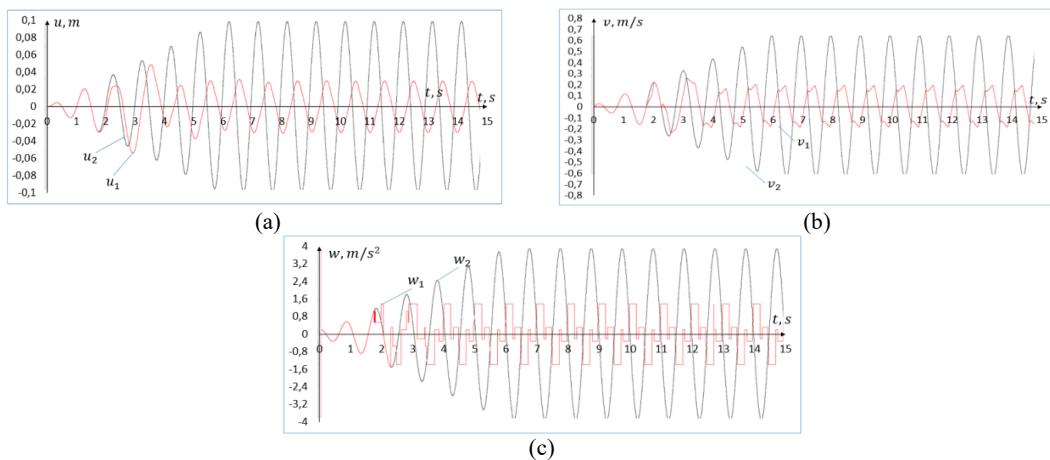


FIGURE 5. Displacements (a), velocities (b), and accelerations (c) of the upper (1) and lower (2) plates at $\mu_1=0.055$, $\mu_2=0.054$.

Figure 6 shows the results of calculations for rolling friction coefficients $\mu_1=0.023$, $\mu_2=0.024$. In this case $|u_1|_{max}=0.03 \text{ m}$, $u_{2max}=0.1 \text{ m}$, $|v_1|_{max}=0.19 \text{ m/s}$, $v_{2max}=0.62 \text{ m/s}$, $w_{1max}=1.05 \text{ m/s}^2$, $w_{2max}=3.91 \text{ m/s}^2$. The results show that the maximum displacement values differ by a factor of 3.3, the maximum velocity values by a factor of 3.3, and the maximum acceleration values by a factor of 3.7. The results show that in this case, the maximum values of the speed and acceleration of the upper plate decrease significantly as the friction coefficient decreases, but there are no significant changes in the maximum displacement values.

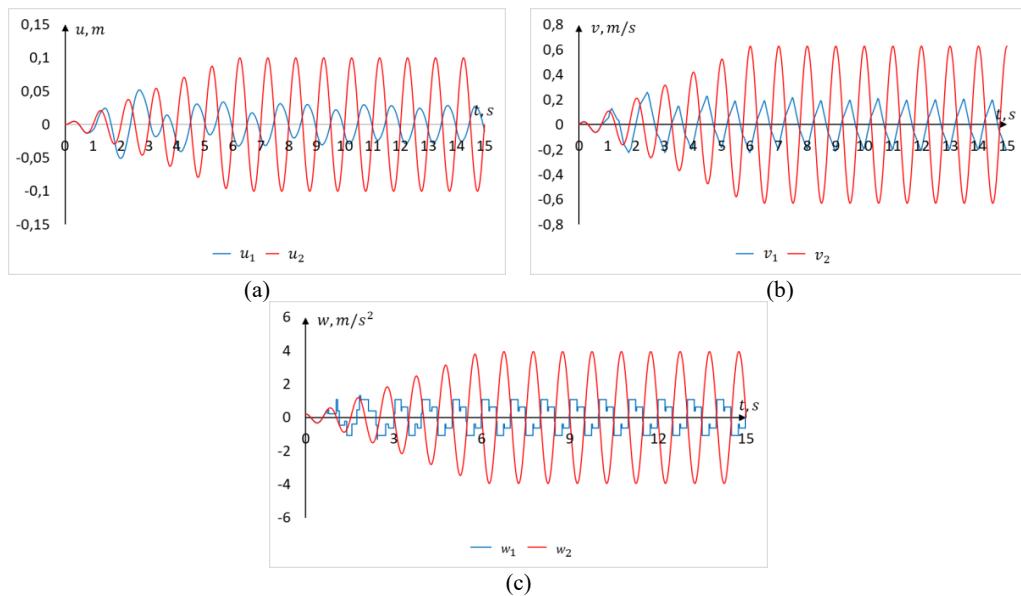


FIGURE 6. Displacements (a), velocities (b), and accelerations (c) of the upper (1) and lower (2) plates at $\mu_1=0.023$, $\mu_2=0.024$.

Figure 7 shows the results of calculations for $\mu_1=0.055$, $\mu_2=0.054$ и $\varphi=10^\circ$. In this case $|u_1|_{max}=0.05$ m, $u_{2max}=0.1$ m, $|v_1|_{max}=0.37$ m/s, $v_{2max}=0.62$ m/s, $w_{1max}=2.21$ m/s², $w_{2max}=3.91$ m/s². The results show that the maximum displacement values differ by a factor of 2, the maximum velocity values by a factor of 1.6, and the maximum acceleration values by a factor of 1.8. The results show that as the angle of inclination increases, the maximum displacement, velocity, and acceleration values of the upper plate increase proportionally.

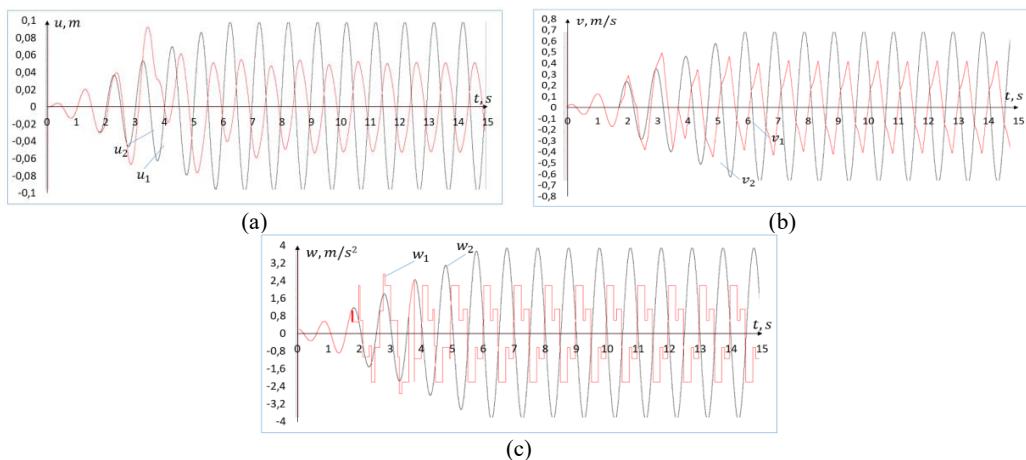


FIGURE 7. Displacements (a), velocities (b), and accelerations (c) of the upper (1) and lower (2) plates at $\mu_1=0.055$, $\mu_2=0.054$ and $\varphi=10^\circ$.

Now let's look at the results calculated based on records of actual earthquakes. We will perform the calculations with $\mu_1=0.055$ and $\mu_2=0.054$.

Figures 8 and 9 for the Nocera Umbra 2 earthquake, Italy – 0000856 (03.04.1998, 9 points on the MSK-64 scale, maximum acceleration – 3.73 m/s², maximum displacement – 0.0054 m, digitization step – 0.005 s, duration – 40.990 s) the results of the calculations are given. In this case $u_{1max}=0.0019$ m, $u_{2max}=0.0054$ m, $v_{1max}=0.038$ m/s,

$v_{2max}=0.11 \text{ m/s}$, $w_{1max}=1.05 \text{ m/s}^2$, $w_{2max}=3.73 \text{ m/s}^2$. The results show that at $\varphi=5^\circ$, the maximum displacement values differ by a factor of 2.8, the maximum velocity values by a factor of 2.8, and the maximum acceleration values by a factor of 3.6.

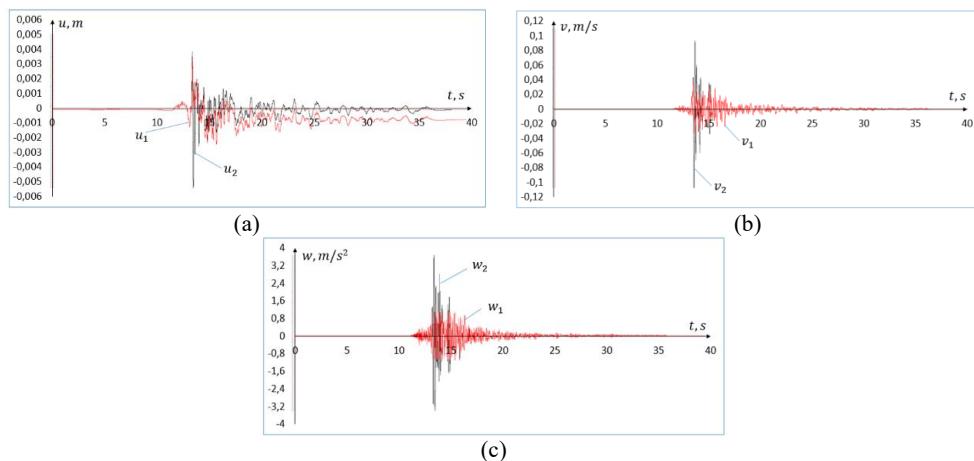


FIGURE 8. Displacements (a), velocities (b), and accelerations (c) of the upper (1) and lower (2) plates at $\varphi=5^\circ$, $l=0.02 \text{ m}$.

For a clear analysis of the dynamics of the upper plate, Fig. 9 shows the displacement of the plates in the time interval 13-15 s. It can be seen that in the 2-second time interval, the processes of relative and joint motion are observed several times. As a result of the acceleration amplitude reaching high values, the displacement and velocities also reach their maximum values during this time period.

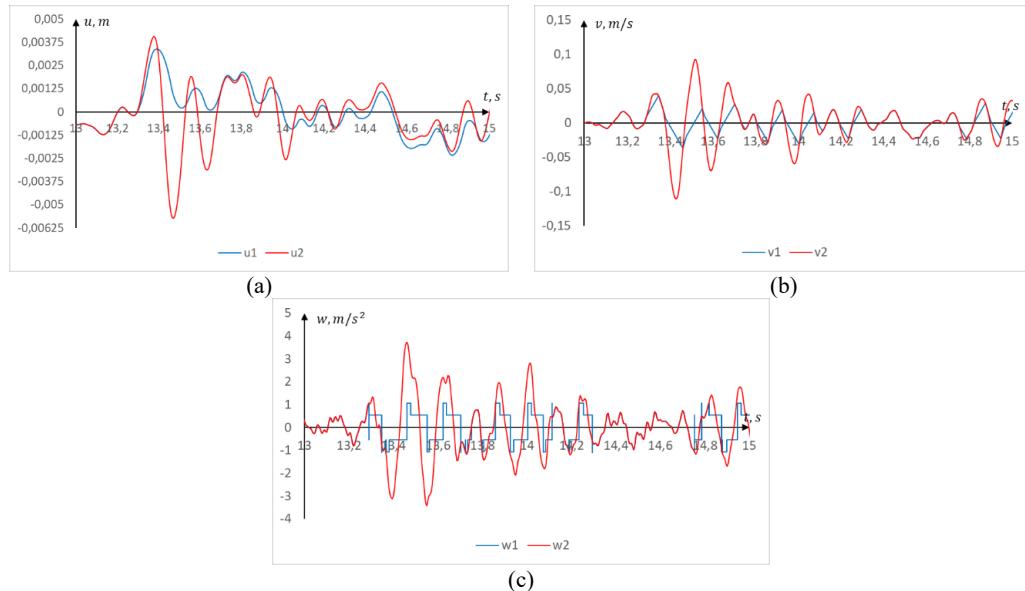
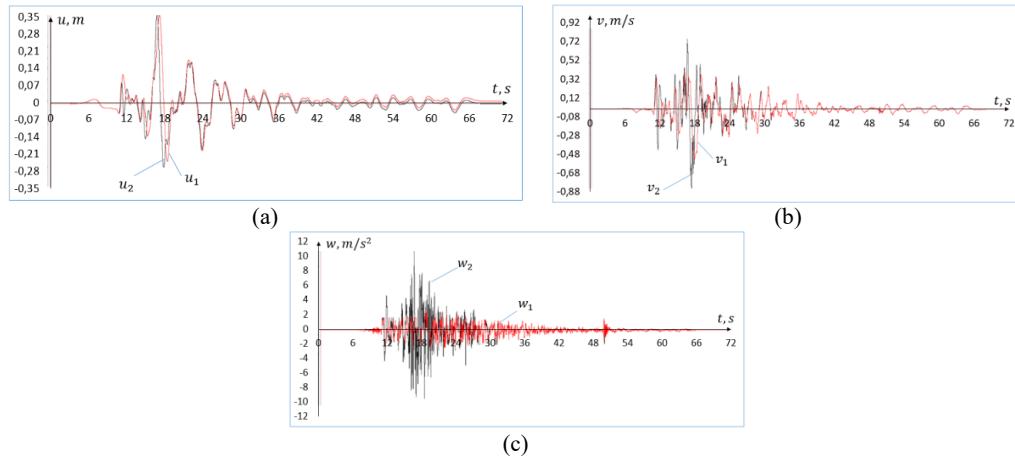
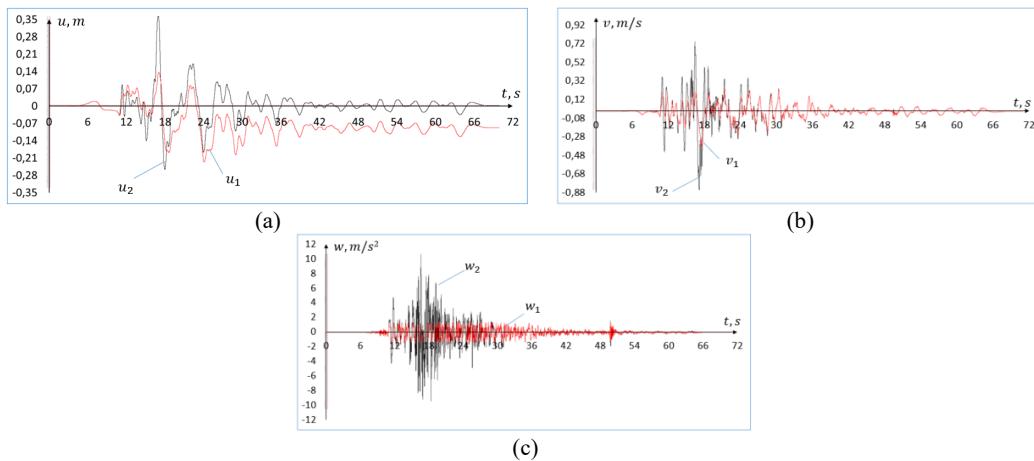



FIGURE 9. Displacements (a), velocities (b), and accelerations (c) of the upper (1) and lower (2) plates at $\varphi=5^\circ$, $l=0.02 \text{ m}$.

In this case, it can also be seen from the acceleration graphs that in situations where $|\dot{u}_1| \geq |\dot{u}_2|$, the acceleration values of the upper plate increase due to the action of two rolling friction forces.


Figures 10 and 11 show the Tabas earthquake, Iran – 000187 (September 16, 1978, 10 points on the MSK-64 scale, maximum acceleration – 10.17 m/s^2 , maximum displacement – 0.3446 m , digitization step – 0.005 s , duration

– 78.395 s), the results of the calculations are shown. At $\varphi=5^\circ$, the following results were obtained $u_{1max}=0.34$ m, $u_{2max}=0.34$ m, $v_{1max}=0.39$ m/s, $v_{2max}=0.87$ m/s, $w_{1max}=1.93$ m/s², $w_{2max}=10.17$ m/s². The results show that at $\varphi=5^\circ$, the maximum displacement values do not differ, the maximum velocity values differ by a factor of 2.2, and the maximum acceleration values differ by a factor of 5.3.

FIGURE 10. Displacements (a), velocities (b), and accelerations (c) of the upper (1) and lower (2) plates at $\varphi=5^\circ$, $l=0.02$ m.

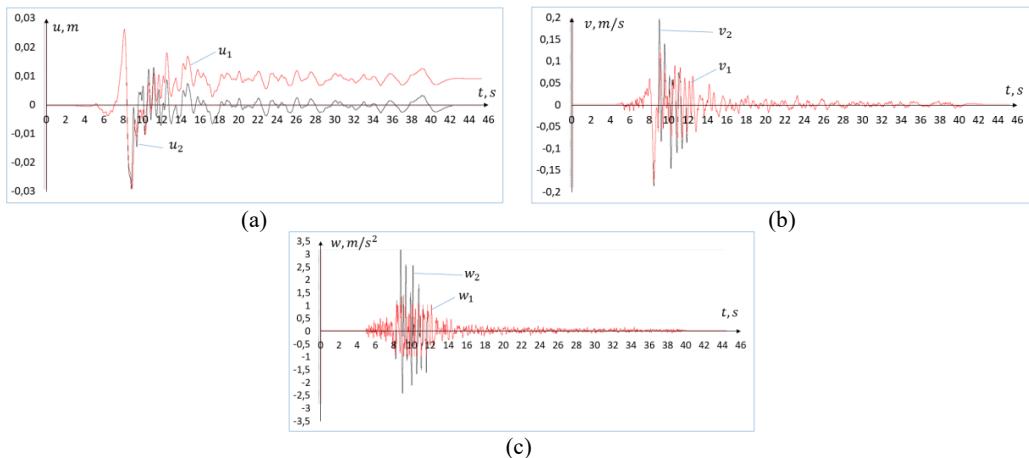

Figure 11 shows the results obtained at $\varphi=0^\circ$. In this case $u_{1max}=0.19$ m, $u_{2max}=0.34$ m, $v_{1max}=0.38$ m/s, $v_{2max}=0.87$ m/s, $w_{1max}=1.04$ m/s², $w_{2max}=10.17$ m/s². The results show that the maximum displacement values differ by a factor of 1.8, the maximum velocity values by a factor of 2.3, and the maximum acceleration values by a factor of 9.8.

FIGURE 11. Displacements (a), velocities (b), and accelerations (c) of the upper (1) and lower (2) plates at $\varphi=0^\circ$, $l=0.02$ m.

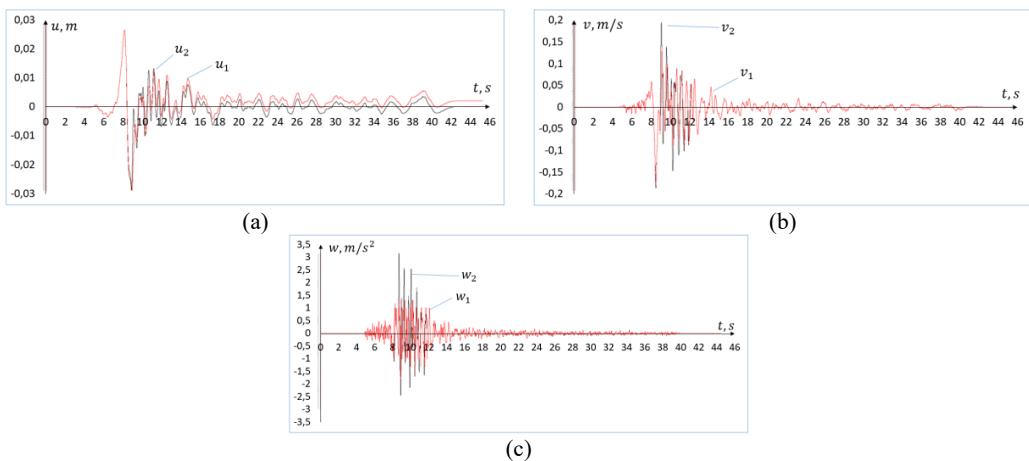

Figures 12 and 13 show the Tolmezzo earthquake, Italy – 000055 (May 6, 1976, 9 points on the MSK-64 scale, maximum acceleration – 3.35 m/s², maximum displacement – 0.029 m, digitization step –0.005 s, duration – 46.535 s), the results of the calculations are shown.

Figure 12 shows the results obtained for $\varphi=5^\circ$ and $l=0.02$ m. In this case $u_{1max}=0.028$ m, $u_{2max}=0.029$ m, $v_{1max}=0.18$ m/s, $v_{2max}=0.2$ m/s, $w_{1max}=1.93$ m/s², $w_{2max}=3.35$ m/s². The results show that the maximum displacement values differ by a factor of 1.03, the maximum velocity values by a factor of 1.1, and the maximum acceleration values by a factor of 1.7.

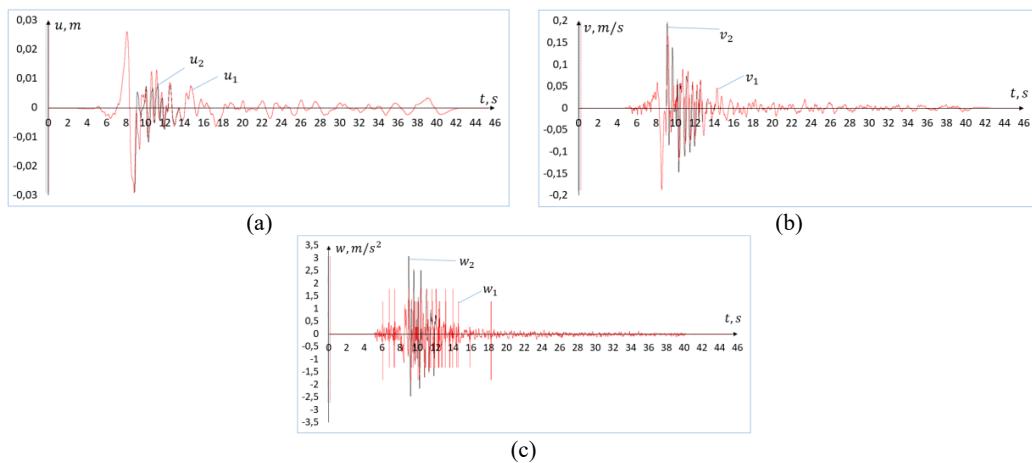

FIGURE 12. Displacements (a), velocities (b), and accelerations (c) of the upper (1) and lower (2) plates at $\varphi=5^\circ$, $l=0.02$ m.

Figure 13 shows the results obtained for $\varphi=5^\circ$ and $l=0.01$ m. In this case $u_{1max}=0.028$ m, $u_{2max}=0.029$ m, $v_{1max}=0.18$ m/s, $v_{2max}=0.2$ m/s, $w_{1max}=1.36$ m/s², $w_{2max}=3.35$ m/s². The results show that the maximum displacement values differ by a factor of 1.03, the maximum velocity values by a factor of 1.1, and the maximum acceleration values by a factor of 2.5. The residual displacement after $t=12$ s does not exceed 0.005 m, and the parameter l allows the residual displacement to be controlled.

FIGURE 13. Displacements (a), velocities (b), and accelerations (c) of the upper (1) and lower (2) plates at $\varphi=5^\circ$, $l=0.01$ m.

Figure 14 shows the results obtained for $\varphi=5^\circ$ and $l=0$ m. In this case $u_{1max}=0.029$ m, $u_{2max}=0.029$ m, $v_{1max}=0.19$ m/s, $v_{2max}=0.2$ m/s, $w_{1max}=1.9$ m/s², $w_{2max}=3.35$ m/s². The results show that the maximum displacement values are almost identical, the maximum velocity values differ by a factor of 1.1, and the maximum acceleration values differ by a factor of 1.8.

FIGURE 14. Displacements (a), velocities (b), and accelerations (c) of the upper (1) and lower (2) plates at $\varphi=5^\circ$, $l=0$ m.

The results of the calculations show that the presence of a horizontal section in V-shaped roller isolators significantly reduces the acceleration of the upper plate and, accordingly, increases the effectiveness of the seismic isolator.

CONCLUSION

The plates begin to roll relative to each other only when the inertial force exceeds the sum of all forces acting in the horizontal direction. The seismic isolator may also undergo stick-slip dynamics.

Analysis of the processes in roller sliders has shown that the start of relative movement of the plates and the start of joint movement as a solid body cannot be achieved solely by the function of the difference in speed between the upper and lower plates.

For seismic isolators, it has been established that the presence of a V-shaped bottom plate reduces the effectiveness of the seismic isolator, but allows the top plate to return to its initial position.

The presence of a horizontal flat section in the middle of the V-shaped lower plate of the seismic isolator, which is permissible under the design conditions for buildings and structures, increases its effectiveness.

REFERENCES

1. P.W. Gordon and L.R. Keri, Seismic Isolation for Earthquake-Resistant Structures: A State-of-the-Practice Review. *Buildings* **2**, 300–325 (2012). <https://doi.org/10.3390/buildings2030300>
2. M. Hosseini and K. Kangarloo, Introducing Orthogonal Roller Pairs as an Effective Isolating System for Low Rise Buildings. *WIT Transactions on The Built Environment*, Volume **93**, 151-161 (2007). <https://doi.org/10.2495/ERES070151>
3. M. Hosseini and A. Soroor, Using Orthogonal Pairs of Rollers on Concave Beds (OPRCB) as a Base Isolation System — Part I: Analytical, Experimental and Numerical Studies of OPRCB Isolators. *Struct. Design Tall Spec. Build.* **20**, 928–950 (2011). <https://doi.org/10.1002/tal.568>
4. A.R. Avinash, A. Krishnamoorthy, K. Kamath and M. Chaithra, Sliding Isolation Systems: Historical Review, Modeling Techniques, and the Contemporary Trends. *Buildings* **12**, 1–23 (2022). <https://doi.org/10.3390/buildings12111997>
5. A. Kamrava, Seismic Isolators and their Types. *Current World Environment*, **10**(1), 27-32 (2015). <http://dx.doi.org/10.12944/CWE.10.Special-Issue1.05>
6. M. Ismail, Seismic isolation of structures. Part I: Concept, review and a recent development. *Hormigón y Acero*, **69**(285), 147–161 (2018). <https://doi.org/10.1016/j.hya.2017.10.002>
7. A.P. Norman, D.W. Virden, A.J. Crewe, D.J. Wagg and R.T. Severn, Understanding the dynamics of multi-degree-of freedom structures subject to multiple support earthquake excitation. *13th World Conference on Earthquake Engineering*, **3324**, (2004).

8. A.A. Taflanidis, A. Giaralis, D. Patsialis, Multi-objective optimal design of inerter-based vibration absorbers for earthquake protection of multi-storey building structures. *Journal of the Franklin Institute*, **356**(14), 7754-7784 (2019). <https://doi.org/10.1016/j.jfranklin.2019.02.022>
9. N.A. Ortiz, C. Magluta, N. Roitman, Numerical and experimental studies of a building with roller seismic isolation bearings. *Structural Engineering and Mechanics*, **54**(3), 475-489 (2015). <https://doi.org/10.12989/sem.2015.54.3.475>
10. G.C. Lee, Y.Ch. Ou, Z. Liang, T. Niu and J. Song, *Principles and Performance of Roller Seismic Isolation Bearings for Highway Bridges*. Technical Report MCEER-07-0019, 334 p. (2007). <https://doi.org/10.13140/RG.2.2.35091.49447>
11. G.C. Lee, Y.Ch. Ou, T. Niu, J. Song and Z. Liang, Characterization of a Roller Seismic Isolation Bearing with Supplemental Energy Dissipation for Highway Bridges. *Journal of Structural Engineering*, **136**(5), (2009). [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0000136](https://doi.org/10.1061/(ASCE)ST.1943-541X.0000136)
12. I. Mirzaev and M. Turdiev, Seismic Isolation of NPP Turbine Unit Using Dry Friction Devices. *Proceedings of MPCPE 2022, Lecture Notes in Civil Engineering* **335**, 53-67 (2023). https://doi.org/10.1007/978-3-031-30570-2_6
13. I. Mirzaev, M.S. Turdiev, The effect of the size of the horizontal gap between the foundation and the sliding grillage on the oscillation of the building during an earthquake. *AIP Conference Proceedings* **2612**, 040033 (2023). <https://doi.org/10.1063/5.0113473>
14. I. Mirzaev, Kh. Sagdiev, A. Yuvmitov, M. Turdiev and B. Egamberdiev, Experimental determination of dynamic coefficient of Amonton-Coulomb dry friction. *Facta Universitatis Series Mechanical Engineering*, **22**(3), 503- 512 (2024). <https://doi.org/10.22190/FUME231225016M>
15. M. Roozbahan, Ch. Masnata, G. Turan and A. Pirrotta, Efcency evaluation of optimal TLCD and TMD for the seismic response reduction of buildings considering soil-structure interaction effect. *Meccanica*, Springer Nature, 11012-025-01981-9, (2025). <https://doi.org/10.1007/s11012-025-01981-9>
16. T.W. Lin and Ch.Ch. Hone, Base Isolation by Free Rolling Rods Under Basement. *Earthquake engineering and structural dynamics*, **22**, 261-273 (1993). <https://doi.org/10.1002/eqe.4290220502>
17. I. Mirzaev J.F. Shomurodov, Wave processes in an extended underground pipeline interacting with soil according to a bilinear model. *AIP Conf. Proc* **2432**, 030049 (2022). <https://doi.org/10.1063/5.0089583>
18. S.J. Wang, J.S. Hwang, K.C. Chang, C.Y. Shiao, W.C. Lin, M.S. Tsai, J.X. Hong and Y.H. Yang, Sloped multi-roller isolation devices for seismic protection of equipment and facilities. *Earthquake Engineering Structural Dynamics*, **43**(10), 1443-1461 (2014). <https://doi.org/10.1002/eqe.2404>
19. D.N. Nizomov and A.M. Sanginov, Simulation of the interaction of the structure with the foundation under seismic impacts. *Bulletin of Science and Reseearch Center of Construction*, **3**(38), 143-154 (2023). <https://doi.org/10.37153/2618-9283-2023-1-29-37>
20. H. Cilsalar and M.C. Constantinou, *Development and Validation of a Seismic Isolation System for Lightweight Residential Construction*. Technical Report MCEER-19-0001, 566 p (2019).

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 Walt Whitman Road, Suite 300, Melville, NY 11747-4300 USA; Phone 516-576-2268; Email: rights@aip.org.

Article Title ("Work"):

On the Equations of Dynamics of a Roller Seismic Isolation Bearing

All Author(s):

Ibrakhim Mirzaev, Djumaev Khikmatulla, Malikjon Turdiev
Jakhongir Shomurodov and Rakhmatov Nodirbek

Title of Conference: AMSMT2025

Name(s) of Editor(s): Valentin L. Popov

All Copyright Owner(s), if not Author(s):

(Please list all copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(ies) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript file.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approved of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #3 below):

 Ibrakhim Mirzaev

30.09.2025

Author(s) Signature

Print Name

Date

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner

Authorized Signature and Title

Date

3. If an Author is a U.S. Government employee, such Author must please sign below. The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature

Print Name

Date

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract #(s) _____ [1.16.1]

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University, <http://arxiv.org/>.

Commercial and noncommercial scholarly use: *Noncommercial* scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. *Commercial* uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embarco period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrdcist>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is *not* considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.