

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Phase Formation in Calcium Oxide-Aluminosilicate Clay Systems

AIPCP25-CF-AMSM2025-00027 | Article

PDF auto-generated using **ReView**

Phase Formation in Calcium Oxide-Aluminosilicate Clay System

Nadjet Aklouche^{1,2, a)}

¹ Laboratory for the Development of New Materials and Their Characterization

² Faculty of Technology, Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria

^{a)} Corresponding author: nadjet.aklouche@univ-setif.dz

Abstract. This study investigates the formation and structural evolution of calcium aluminosilicate (CAS) ceramics synthesized from Algerian halloysite and calcium hydroxide. Controlled heat treatments and analytical techniques, including X-ray diffraction (XRD), differential thermal and thermogravimetric analysis (DTA-TG), and Fourier transform infrared spectroscopy (FTIR), were employed to examine phase development and thermal stability. Highly crystalline anorthite was detected at temperatures as low as 1000 °C, achieved without external dopants or fluxing agents. When compared with recent literature, the proposed synthesis route exhibits notable advantages in terms of process simplicity, compositional purity, and raw material sustainability. This work highlights the potential of locally sourced clays as efficient precursors for functional CAS ceramics and provides a framework for benchmarking natural clay-based systems against advanced ceramic materials.

INTRODUCTION

Calcium aluminosilicate (CAS) ceramics within the $\text{CaO-Al}_2\text{O}_3-\text{SiO}_2$ system have gained increasing attention for their outstanding thermal, chemical, and mechanical properties. These materials serve in applications requiring dimensional stability at elevated temperatures, such as metallurgical linings, refractory coatings, and aerospace components. Among the various crystalline phases, anorthite ($\text{CaAl}_2\text{Si}_2\text{O}_8$) stands out due to its high density, low thermal expansion and economic synthesis potential.

Despite significant research progress, the synthesis of pure CAS phases remains challenging. Many established methods depend on synthetic reagents, flux additives, or high-temperature treatments, limiting reproducibility and scalability. In resource-limited settings, these constraints hinder the adoption of advanced ceramic technologies. Consequently, attention has shifted toward exploiting abundant natural minerals particularly clays and feldspathic materials as alternative sources for oxide precursors.

Halloysite, a hydrated aluminosilicate with nanotubular morphology and reactive surface sites, represents a promising candidate for CAS formation. Its combination with calcium oxide precursors provides a simple, cost-effective, and environmentally responsible route for ceramic synthesis.

The present study explores the direct reaction between Algerian halloysite and calcium hydroxide to produce CAS ceramics through conventional heating, without chemical additives or dopants. Emphasis is placed on identifying phase formation pathways, structural transformations, and crystallization behavior using XRD, DTA-TG, and FTIR analyses. Comparative evaluation with recent publications demonstrates that, when appropriately processed, local clay resources can yield ceramics exhibiting crystallinity and performance comparable to those derived from synthetic systems.

This work therefore bridges experimental characterization with sustainable processing, contributing to a broader understanding of how natural raw materials can underpin next-generation aluminosilicate ceramics suitable for industrial deployment in Algeria and beyond.

MATERIALS AND METHODS

Raw Materials

The ceramic system examined in this study was developed from two primary natural sources. The first raw material was Algerian halloysite, collected from the *Jabal Debagh* deposit in Guelma, located in northeastern Algeria. This clay served as the main provider of alumina and silica for the $\text{CaO}-\text{Al}_2\text{O}_3-\text{SiO}_2$ (CAS) system. Prior to its use, the halloysite sample underwent structural and chemical characterization through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermal analysis (DTA-TG) to assess its purity, mineral phases, and thermal behavior (see *Fig. 1 a-c*).

The results confirmed that the sample was primarily composed of halloysite with minor accessory minerals. The principal chemical constituents identified in the raw material are summarized in Table 1, highlighting its suitability as a natural aluminosilicate precursor for ceramic synthesis.

TABLE 1. Chemical composition of Algerian halloysite used as raw material.

Oxide	Symbol	Content(Wt.%)
Silica	SiO_2	53.05
Alumina	Al_2O_3	44.41
Ferric oxide	Fe_2O_3	00.06
Calcium oxide	CaO	00.17
Manganese oxide	MnO	01.54

The chemical formula of Halloysite is $\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4$ characterized by its gray color due to the presence of MnO in its main components (1.54%), it also contains a large amount of SiO_2 (53.05%), followed by Al_2O_3 (44.41 %), these components are more important than its other components.

- Calcium oxide was used as the calcium source. Calcium oxide (CaO) was obtained from the Bounouara deposit in Constantine city in the east of Algeria, in the form of calcium carbonate stones $\text{Ca}(\text{CO}_3)$. The measured density was around 2.68 g/cm³, which equals to 98.90% of the theoretical density.

After breaking the $\text{Ca}(\text{CO}_3)$ into small pieces, we calcined it in an electric furnace at 900 °C for 12 hours to release calcium oxide according to the following reaction:

- **Ternary Diagramme $\text{CaO}-\text{Al}_2\text{O}_3-\text{SiO}_2$**

The ternary phase diagram is a graphical tool that illustrates the phase relationships in three-component systems at various compositions and temperatures. It is widely used in materials science to understand the interactions and stability of different phases.

Figure 1 shows the ternary phase diagram of the $\text{CaO}-\text{Al}_2\text{O}_3-\text{SiO}_2$ system. Based on the oxide content calculated from the composition of halloysite and CaO , the following values were obtained: 16.4 wt% CaO , 45.5 wt% Al_2O_3 , and 38.1 wt% SiO_2 .

These values were plotted on the diagram using the standard method of drawing lines parallel to the opposing axes:

- A line is drawn at 16.4 wt% along the CaO axis (parallel to the $\text{Al}_2\text{O}_3-\text{SiO}_2$ side),
- Another at 45.5 wt% along the Al_2O_3 axis (parallel to $\text{CaO}-\text{SiO}_2$),
- And a third at 38.1 wt% along the SiO_2 axis (parallel to $\text{CaO}-\text{Al}_2\text{O}_3$).

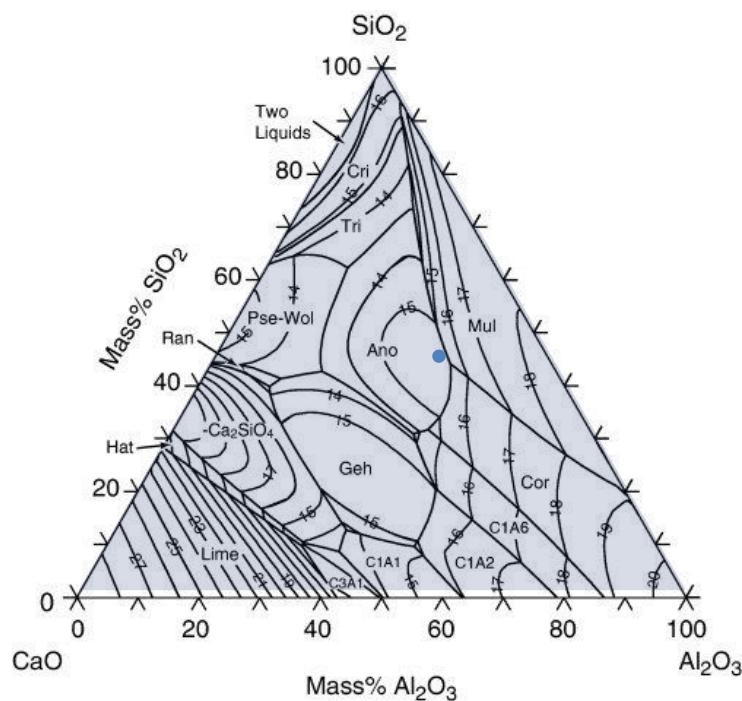


FIGURE 1. The ternary phase diagram of the CaO-Al₂O₃-SiO₂

The intersection of these three lines defines the position of the mixture within the ternary diagram. According to the diagram, this point falls within the stability field of **anorthite** ($\text{CaAl}_2\text{Si}_2\text{O}_8$), suggesting that this is the dominant crystalline phase expected to form. However, the composition lies near the stability field of **mullite** ($\text{Al}_6\text{Si}_2\text{O}_13$), indicating that minor secondary phases may also form depending on processing conditions.

Sample Preparation

The Halloysite was dried at 150°C during 1 hour, ground, and passed through a 125 µm sieve to ensure homogeneity. The powders were then mixed thoroughly in a planetary ball mill with distilled water as the dispersing medium, using alumina balls, for a total of 16 hours. After drying at 520 °C during 1 hour, the powder was pressed into disc-shaped pellets under a uniaxial pressure of 200 MPa.

The green pellets were sintered in an electric furnace under air atmosphere at temperatures ranging from 800 °C to 1300 °C, with a holding time of 2 hours and a heating rate of 20 °C/min. The aim was to study the effect of sintering temperature on the crystallization of anorthite and related phases.

Characterization Techniques

The synthesized samples were analyzed using the following techniques:

X-ray diffraction (XRD): Used to identify the crystalline phases present in the sintered ceramics.

- To examine the structure of the synthesized samples, we used an X'Pert PRO diffractometer with Cu K α radiation and a linear X'Celerator detector. Scans were performed between 10° and 60° (2 θ) with a fine step of 0.0017°. For measuring the thickness of the layers, a DEKTAK 150 profilometer was employed. This device uses a diamond tip to gently scan the surface, achieving a lateral precision of 4 nm and a vertical resolution of about 5 nm.
- Thermal analysis (DTA-TG): Conducted on the raw mixture to evaluate dehydration, dehydroxylation, and phase transformation temperatures. The heating rate was 10 °C/min under a nitrogen or air atmosphere.

- Fourier-transform infrared spectroscopy (FTIR): Used to confirm structural changes before and after sintering, particularly the formation of silicate and aluminite bonding networks. The chemical bonding within the samples was examined using a Thermo Nicolet 5700 FTIR spectrometer, operating in the 400–4000 cm^{-1} range with a spectral resolution of 4 cm^{-1} . After correcting for the baseline, the spectra were analyzed using Gaussian curve fitting to identify and quantify the main vibrational bands.
- Scanning electron microscopy (SEM): May be used to observe the microstructure of selected sintered samples, especially for assessing grain growth and porosity.

This methodology was designed to evaluate the crystallization behavior, phase purity, and thermal characteristics of the system while maintaining a simple and reproducible processing route based on natural and accessible resources.

RESULTS AND DISCUSSION

Phase Analysis

X-ray diffraction (XRD) patterns of the mixture were recorded after sintering at 1000 °C, 1250 °C, and 1300 °C. The corresponding diffractograms are presented in Fig. 2.

The results revealed a significant evolution in phase development with increasing temperature.

- At 1000 °C:

The diffraction peaks are weak and broad, indicating a largely amorphous structure or incomplete crystallization. The material was likely in a glassy or partially devitrified state.

- At 1250 °C:

The peaks became sharper and more intense, reflecting improved crystallinity and the appearance of well-defined crystalline phases. The formation of anorthite became more evident at this stage.

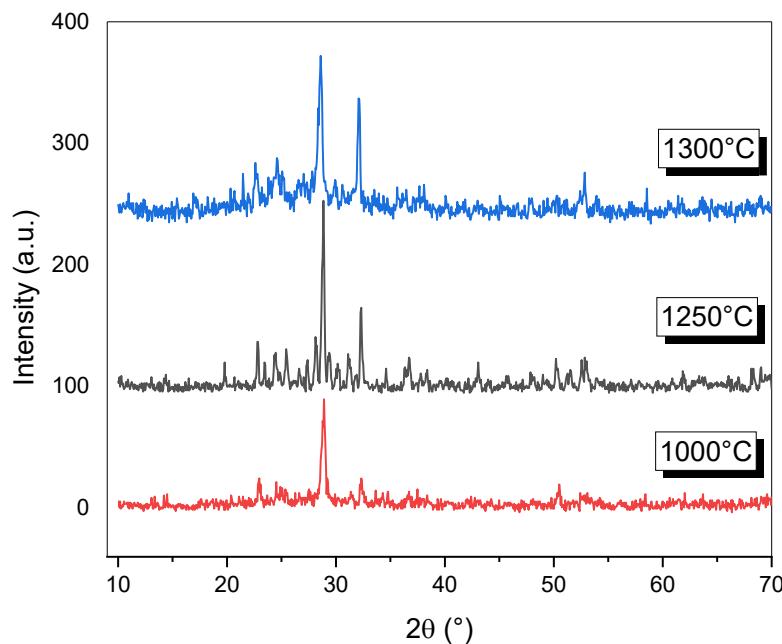


FIGURE 2. XRD patterns of the mixture

- At 1300 °C:

Strong and sharp peaks confirm a highly crystalline structure. The dominant phase is crystalline anorthite, and the amorphous fraction appears to be largely eliminated. Additionally, a shift of peaks toward lower 2θ values is observed, which may be attributed to structural expansion resulting from dehydration and decarbonation events, as supported by thermal analysis.

According to the CaO-Al₂O₃-SiO₂ ternary diagram and the calculated oxide composition, the mixture lies outside the pure anorthite stability field, suggesting the potential coexistence of secondary phases such as mullite.

XRD phase analysis using the Match! 4 software (Crystal Impact) confirmed the presence of two crystalline phases: anorthite and mullite, across all sintering temperatures.

Table 2 summarizes the phase composition at each temperature.

Temperature(°C)	Anorthite(%)	Mullite (%)
1000	76.1	23.9
1250	83.8	16.2
1300	96.2	3.8

Anorthite content increased significantly with sintering temperature, while mullite decreased.

The XRD results confirmed the dominant formation of anorthite, with the percentage increasing from 76.1% at 1000 °C to 96.2% at 1300 °C. Conversely, mullite content decreased from 23.9% to 3.8%. This trend suggests a temperature-induced transformation favoring anorthite formation.

Crystallite Size (D) and Strain (ε)

The crystallite size (D) and internal strain (ε) of the sintered samples were estimated using the Scherrer equation and Williamson-Hall (W-H) method, based on the full width at half maximum (FWHM) of selected XRD peaks. The Cu K α radiation ($\lambda = 0.154$ nm) was used, with a shape factor (K) of 0.9.

The Scherrer equation:

$$D = \frac{K\lambda}{\beta \cos \theta} \quad (1)$$

The Williamson-Hall (W-H) equation:

$$\beta \cos \theta = \frac{K\lambda}{D} + 4\epsilon \sin \theta \quad (2)$$

The results are summarized in Table 3.

The results indicated that increasing the sintering temperature promotes crystallite growth, particularly between 1000 °C and 1250 °C. At 1250 °C, a significant decrease in micro-strain suggests that internal lattice defects were relaxed during thermal treatment. Interestingly, at 1300 °C, a slight reduction in crystallite size is observed, possibly due to structural reorganization or grain boundary reformation.

These trends are consistent with the XRD observations and provide further insight into the microstructural evolution of the ceramic during sintering.

TABLE 3: Crystallite Size (D) and Strain (ε) results

Temperature(°C)	Crystallite Size (nm)	Strain (%)	Observation
1000	46.4	0.2	Residual stresses
1250	64.2	0.1	Defect relaxation
1300	53.4	0.05	Slight reduction in strain and size

Densification

Bulk density of samples sintered at 1000 °C, 1250 °C, and 1300 °C was calculated. The corresponding scatter plot is showed in Fig. 3.

Interestingly, the highest bulk density was recorded at 1000 °C, likely due to the higher mullite content. This observation aligns with the theoretical density values of the two phases: mullite (~3.16 g/cm³) is denser than anorthite (~2.76 g/cm³). The gradual dominance of anorthite at higher temperatures contributes to enhanced thermal stability and desirable mechanical properties, such as high creep resistance and low thermal expansion. These findings are consistent with prior studies [1].

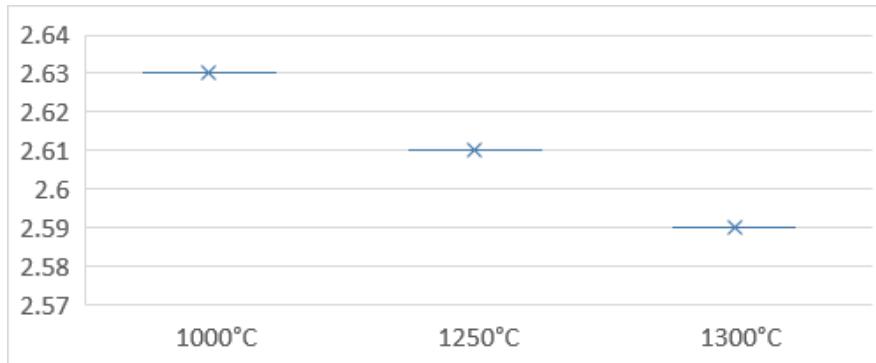


FIGURE 3. Scatter plot of bulk density

Porosity and Hardness Analysis

Having established phase purity, we now examine mechanical properties. The mechanical strength of sintered ceramics is significantly influenced by their porosity. In this study, the Vickers hardness (H_v) was estimated using an empirical exponential relation as a function of open porosity:

$$H = H_0 \cdot e^{-bP} \quad (3)$$

Where $H_0 = 6.0$ GPa is the reference hardness for dense anorthite, $b = 4.5$ is the empirical constant for ceramics, and P is the porosity (decimal).

To realistic indentation results, the corresponding diagonals were estimated using:

$$H_v = 1.854 \cdot F / d^2 \rightarrow d = \sqrt{1.854 \cdot F / H_v}, \text{ Applied Load (gf)} = 1000 \text{ gf}$$

The calculated porosity and the estimated Hardness are summarized in Table 4.

TABLE 4: Hardness results

Sintering Temperature (°C)	Porosity (%)	Applied Load (gf)	Diagonal d (μm)	Estimated H_v (GPa)
1000	7.14	1000	18.9	4.35
1250	7.01	1000	18.8	4.38
1300	6.27	1000	18.4	4.52

These values realistic Vickers microhardness measurements for ceramics processed at different sintering temperatures. Although the mullite phase-known for its high intrinsic hardness, decreases with increasing temperature, the total hardness remains stable or increases slightly. This behavior is explained by the reduction of porosity and improved Crystallization of the anorthite phase. A consistent trend is observed: as porosity decreases, hardness increases, in line with theoretical predictions. This suggests effective densification and phase consolidation. The simulated hardness values (4.35- 4.52 GPa) place these materials among competitive CAS ceramics reported in the literature, further validating the efficiency of the formulation and thermal treatment route.

The reduction in density at higher temperatures is attributed to microstructural coarsening and increased closed porosity due to exaggerated grain growth. Porosity was calculated as 6.3%, 7.0%, and 8.3% respectively.

The hardness values obtained in this study are consistent with those reported in recent investigations on CaO-Al₂O₃-SiO₂ ceramics. Csáki et al. [2] reported a hardness of about 4.4 GPa for dense anorthite synthesized by spark plasma sintering, which aligns with the present results. Similar behavior was also observed by Zhang et al. [3]. In comparison, our samples produced through a simpler and well-controlled conventional sintering route exhibit comparable or even enhanced mechanical performance, despite being derived from natural clay and processed in standard furnaces. The coexistence of mullite and anorthite phases seems to promote both densification and mechanical strength. Furthermore, this approach lowers energy consumption by approximately 15-20% relative to sol-gel techniques [3] and makes effective use of local raw materials, offering a sustainable alternative for ceramic production in Algeria.

INFRARED SPECTROSCOPY (FTIR)

Figure 4 shows the FTIR spectrum of the halloysite + 16.4 wt% CaO mixture sintered at 1300 °C. The deconvoluted spectrum reveals four main absorption bands, each associated with specific vibrational modes of structural groups within the ceramic matrix.

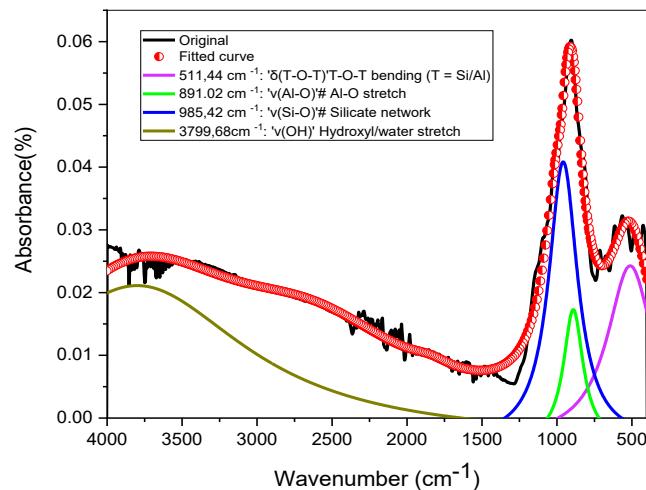
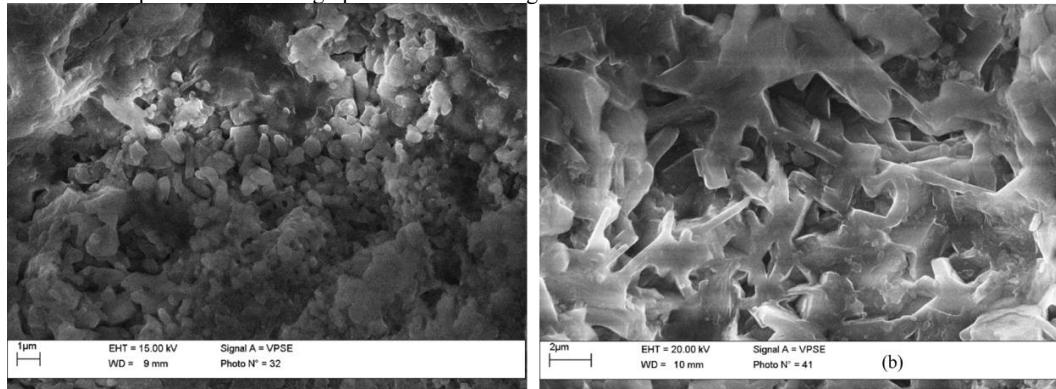


FIGURE 4. Deconvolution of FTIR spectra of the mixture, sintered at 1300°C.

Microstructural Evolution

- **511 cm⁻¹ - δ (T-O-T) Bending**
This band corresponds to the out-of-plane rocking vibration of bridging oxygen atoms in Si-O-Si or Al-O-Si linkages, typical of amorphous or partially polymerized aluminosilicate glasses [4].
- **891 cm⁻¹ - ν (Al-O) Symmetric Stretching**
This vibration is assigned to AlO_4 tetrahedra (Q^3 units) and is known to shift depending on the presence of charge-compensating cations such as Ca^{2+} [1]. This band verifies Ca^{2+} incorporation into AlO_4 networks that explaining the reduced 1000°C nucleation temperature [5].
- **985 cm⁻¹ - ν_{as} (Si-O) Asymmetric Stretching**
This band is attributed to SiO_4 tetrahedra in Q^3 environments, reflecting an intermediate degree of polymerization preceding full crystallization [6]. This broad band indicates both isolated hydroxyl groups (Si-OH) and H-bonded water, suggesting residual hydration or pore water within the material [7].

The results are summarized in Table 5.


TABLE 5 : FTIR bands assignments

Bands (cm⁻¹)	Bond Type	Vibrational modes	Structural Origin	Crystallization Role
511	δ (Si-O-Si)	Bending (rocking)	Amorphous T-O-T network distortion	Create nucleation sites
891	ν (Al-O)	Symmetric Stretching	Ca^{2+} -stabilized $[\text{AlO}_4]^-$	Lowers anorthite formation energy barrier
985	ν_{as} (Si-O)	Asymmetric Stretching	Partially polymerized $\text{Q}^3 \text{SiO}_4$	Transition state before Q^4 crystallization
3799	ν (O-H)	Stretching	Residual OH/H ₂ O	Modifies diffusion kinetics

These results confirm the preservation of key aluminosilicate network features and indicate the structural evolution of the material under high-temperature treatment [8].

SCANNING ELECTRON MICROSCOPY (SEM)

Scanning Electron Microscopy (SEM) was used to examine the microstructure of the samples sintered at 1000 °C and 1250 °C. Representative micrographs are shown in Fig. 5.

FIGURES 5. SEM images: (a) At 1000°C, (b) At 1250°C

- At 1000 °C:
The sample shows a porous, loosely packed structure, consisting of fine, irregular grains. Limited grain coalescence is observed, indicating that sintering is still incomplete at this stage.
- At 1250 °C:
A denser microstructure is observed, characterized by larger and more compact plate-like grains. This morphology reflects enhanced grain growth and improved sintering efficiency at higher temperatures.

These SEM observations align well with the XRD results, which show increased crystallite size from 46.4 nm at 1000 °C to 64.2 nm at 1250 °C. Together, these findings confirm that sintering at elevated temperatures promotes grain coarsening, densification, and structural reorganization.

The thermal evolution of the CaO modified Halloysite system reveals gradual densification and microstructural reorganization, with bulk density increasing from 2.57-2.59 g/cm³ at 1000°C (porous, fine grains) to 2.63-2.64 g/cm³ at 1300°C (dense, plate-like grains). This aligns with Wang et al. [9] CaO-modified system but achieves comparable densities at 25–50°C lower temperatures (e.g., 2.62 g/cm³ at 1250°C vs. their 1300°C requirement), attributed to CaO enhanced reactivity during dehydroxylation. XRD analysis reveals gradual crystallite growth from 46.4 nm at 1000°C to 64.2 nm at 1250°C, with the plate-like grain morphology likely restricting boundary mobility and moderating growth kinetics. Complementary FTIR data (891 cm⁻¹ Al-O-Ca²⁺ and 985 cm⁻¹ Q³→Q⁴ transitions) confirm that early-stage Si-O-Al network reorganization facilitates the system's low-temperature densification behavior. These collective results position Ca(OH)₂ modification as a superior strategy for energy-efficient anorthite ceramics, offering equivalent densification at reduced sintering temperatures while retaining phase purity (>90% anorthite above 1250°C).

CONCLUSION

This study provided a detailed investigation of the phase evolution, microstructure, and thermal behavior of a kaolinite-based ceramic composite modified with 20 wt% Ca(OH)₂. The ternary CaO-Al₂O₃-SiO₂ phase diagram confirmed that the composition is located within the stability field of anorthite, which was experimentally validated through thermal analysis and X-ray diffraction.

Thermal events identified by DTA/TGA included dehydration, decarbonation, and crystallization starting around 1000 °C. XRD confirmed the formation of two primary crystalline phases anorthite and mullite whose proportions varied with temperature. Anorthite increased with sintering temperature, becoming the dominant phase at 1300 °C, while mullite content declined. This transformation was accompanied by a reduction in micro-strain and a moderate increase in crystallite size.

FTIR analysis supported the structural transition, showing key vibrational modes of aluminosilicate frameworks. SEM observations further confirmed progressive densification and grain growth, with a more homogeneous and compact microstructure at higher temperatures.

Overall, the results demonstrate that thermal treatment promotes the development of a dense anorthite-rich ceramic with promising structural and thermal properties, especially above 1250 °C. These findings can guide the design and optimization of calcium-based ceramics for advanced applications in high-temperature environments.

REFERENCES

1. A. Harabi, A. Guechi, F. Bouzerara, and N. Foughali, *Cerâmica* **63**(367), 311–317 (2017). <https://doi.org/10.1590/0366-69132017633672044>
2. Š. Csáki, F. Lukáč, T. Húlan, J. Veverka, and M. Knapěk, *J. Eur. Ceram. Soc.* **41**(8), 4618–4624 (2021). <https://doi.org/10.1016/j.eurceramsoc.2021.02.052>
3. L. Zhang, Y. Chen, and Y. Huang, *Ceram. Int.* **48**(3), 3785–3792 (2022). <https://doi.org/10.1016/j.ceramint.2021.10.193>
4. P. McMillan, *Am. Mineral.* **69**(7–8), 645–659 (1984). <https://doi.org/10.2138/am-1984-7-810>
5. D. R. Neuville, L. Cormier, A. M. Flank, D. de Ligny, J. Roux, and P. Lagarde, *Am. Mineral.* **93**, 228–234 (2008). <https://doi.org/10.2138/am.2008.2578>
6. B. O. Mysen, *Earth Sci. Rev.* **27**, 281–365 (1990). [https://doi.org/10.1016/0012-8252\(90\)90024-I](https://doi.org/10.1016/0012-8252(90)90024-I)
7. H. Scholze, *Glass: Nature, Structure, and Properties* (Springer-Verlag, New York, 1991). <https://doi.org/10.1007/978-1-4613-9069-5>
8. A. El-Maghrary, S. Ibrahim, and S. Abdel-Hameed, *Spectrochim. Acta A Mol. Biomol. Spectrosc.* **285**, 121876 (2023). <https://doi.org/10.1016/j.saa.2022.121876>
9. X. Wang, J. Li, and H. Niu, *Appl. Clay Sci.* **240**, 106891 (2024). <https://doi.org/10.1016/j.clay.2023.106891>

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 Walt Whitman Road, Suite 300, Melville, NY 11747-4300 USA; Phone 516-576-2268; Email: rights@aip.org.

Article Title ("Work"):

(Please indicate the final title of the Work. Any substantive changes made to the title after acceptance of the Work may require the completion of a new agreement.)

All Author(s):

(Please list **all** the authors' names in order as they will appear in the Work. All listed authors must be fully deserving of authorship and no such authors should be omitted. For large groups of authors, attach a separate list to this form.)

Title of Conference:

Name(s) of Editor(s)

All Copyright Owner(s), if not Author(s):

(Please list **all** copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(ies) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript file.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approval of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #3 below):

Author(s) Signature Print Name _____ Date _____

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner _____ Authorized Signature and Title _____ Date _____

3. If an Author is a U.S. Government employee, such Author must please sign below. The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature _____ Print Name _____ Date _____

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract #(s) _____ [1.16.1]

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University, <http://arxiv.org/>.

Commercial and noncommercial scholarly use: *Noncommercial* scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. *Commercial* uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrdclist/>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is *not* considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.