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Abstract. This study investigates the formation and structural evolution of calcium aluminosilicate (CAS) ceramics
synthesized from Algerian halloysite and calcium hydroxide. Controlled heat treatments and analytical techniques,
including X-ray diffraction (XRD), differential thermal and thermogravimetric analysis (DTA-TG), and Fourier transform
infrared spectroscopy (FTIR), were employed to examine phase development and thermal stability. Highly crystalline
anorthite was detected at temperatures as low as 1000 °C, achieved without external dopants or fluxing agents. When
compared with recent literature, the proposed synthesis route exhibits notable advantages in terms of process simplicity,
compositional purity, and raw material sustainability. This work highlights the potential of locally sourced clays as efficient
precursors for functional CAS ceramics and provides a framework for benchmarking natural clay-based systems against
advanced ceramic materials

INTRODUCTION

Calcium aluminosilicate (CAS) ceramics within the CaO-Al205-SiO: system have gained increasing attention for
their outstanding thermal, chemical, and mechanical properties. These materials serve in applications requiring
dimensional stability at elevated temperatures, such as metallurgical linings, refractory coatings, and aerospace
components. Among the various crystalline phases, anorthite (CaAl:Si-Os) stands out due to its high density, low
thermal expansion and economic synthesis potential.

Despite significant research progress, the synthesis of pure CAS phases remains challenging. Many established
methods depend on synthetic reagents, flux additives, or high-temperature treatments, limiting reproducibility and
scalability. In resource-limited settings, these constraints hinder the adoption of advanced ceramic technologies.
Consequently, attention has shifted toward exploiting abundant natural minerals particularly clays and feldspathic
materials as alternative sources for oxide precursors.

Halloysite, a hydrated aluminosilicate with nanotubular morphology and reactive surface sites, represents a
promising candidate for CAS formation. Its combination with calcium oxide precursors provides a simple, cost-
effective, and environmentally responsible route for ceramic synthesis.

The present study explores the direct reaction between Algerian halloysite and calcium hydroxide to produce CAS
ceramics through conventional heating, without chemical additives or dopants. Emphasis is placed on identifying
phase formation pathways, structural transformations, and crystallization behavior using XRD, DTA-TG, and FTIR
analyses. Comparative evaluation with recent publications demonstrates that, when appropriately processed, local clay
resources can yield ceramics exhibiting crystallinity and performance comparable to those derived from synthetic
systems.

This work therefore bridges experimental characterization with sustainable processing, contributing to a broader
understanding of how natural raw materials can underpin next-generation aluminosilicate ceramics suitable for
industrial deployment in Algeria and beyond.
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MATERIALS AND METHODS

Raw Materials

The ceramic system examined in this study was developed from two primary natural sources. The first raw material
was Algerian halloysite, collected from the Jabal Debagh deposit in Guelma, located in northeastern Algeria. This
clay served as the main provider of alumina and silica for the CaO—Al:0s—SiO: (CAS) system. Prior to its use, the
halloysite sample underwent structural and chemical characterization through X-ray diffraction (XRD), Fourier-
transform infrared spectroscopy (FTIR), and thermal analysis (DTA-TG) to assess its purity, mineral phases, and
thermal behavior (see Fig. I a—c).

The results confirmed that the sample was primarily composed of halloysite with minor accessory minerals. The
principal chemical constituents identified in the raw material are summarized in Table 1, highlighting its suitability as
a natural aluminosilicate precursor for ceramic synthesis.

TABLE 1. Chemical composition of Algerian halloysite used as raw material.

Oxide Symbol Content(Wt.%)
Silica SiO, 53.05
Alumina AlLO; 44 41
Ferric oxide Fe O; 00.06
Calcium oxide CaO 00.17
Manganese oxide MnO 01.54

The chemical formula of Halloysite is Al,Si2Os(OH)4 characterized by its gray color due to the presence of MnO
in its main components (1.54%), it also contains a large amount of SiO» (53.05%), followed by Al,O;3 (44.41 %), these
components are more important than its other components.

e  Calcium oxide was used as the calcium source. Calcium oxide (CaO) was obtained from the Bounouara
deposit in Constantine city in the east of Algeria, in the form of calcium carbonate stones Ca(CO3). The
measured density was around 2.68 g/cm?, which equals to 98.90% of the theoretical density.

After breaking the Ca(CO3) into small pieces, we calcined it in an electric furnace at 900 °C for 12 hours
to release calcium oxide according to the following reaction:

Ca(CO;) —» Ca0 +CO,

e Ternary Diagramme Cao-AlL:O3-Sioz
The ternary phase diagram is a graphical tool that illustrates the phase relationships in three-component systems
at various compositions and temperatures. It is widely used in materials science to understand the interactions and
stability of different phases.

Figure 1 shows the ternary phase diagram of the CaO-Al03-SiO: system. Based on the oxide content calculated
from the composition of halloysite and CaO, the following values were obtained: 16.4 wt% CaO, 45.5 wt% AlLOs,
and 38.1 wt% SiOs..

These values were plotted on the diagram using the standard method of drawing lines parallel to the opposing axes:

e A line is drawn at 16.4 wt% along the CaO axis (parallel to the Al.Os-SiO: side),
e Another at 45.5 wt% along the Al:Os axis (parallel to CaO-SiOz),
e And a third at 38.1 wt% along the SiO: axis (parallel to CaO-ALO:s).
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Mass% Al,O4

FIGURE 1. The ternary phase diagram of the CaO-AlL:05-SiO

The intersection of these three lines defines the position of the mixture within the ternary diagram. According to
the diagram, this point falls within the stability field of anorthite (CaAl:Si:Os), suggesting that this is the dominant
crystalline phase expected to form. However, the composition lies near the stability field of mullite (AlsSi:O13),
indicating that minor secondary phases may also form depending on processing conditions.

Sample Preparation

The Halloysite was dried at 150°C during 1 hour, ground, and passed through a 125 pum sieve to ensure
homogeneity. The powders were then mixed thoroughly in a planetary ball mill with distilled water as the dispersing
medium, using alumina balls, for a total of 16 hours. After drying at 520 °C during 1 hour, the powder was pressed
into disc-shaped pellets under a uniaxial pressure of 200 MPa.

The green pellets were sintered in an electric furnace under air atmosphere at temperatures ranging from
800 °C to 1300 °C, with a holding time of 2 hours and a heating rate of 20 °C/min. The aim was to study the effect of
sintering temperature on the crystallization of anorthite and related phases.

Characterization Techniques

The synthesized samples were analyzed using the following techniques:
X-ray diffraction (XRD): Used to identify the crystalline phases present in the sintered ceramics.

e To examine the structure of the synthesized samples, we used an X’Pert PRO diffractometer with Cu Ka
radiation and a linear X’Celerator detector. Scans were performed between 10° and 60° (20) with a fine
step of 0.0017°. For measuring the thickness of the layers, a DEKTAK 150 profilometer was employed.
This device uses a diamond tip to gently scan the surface, achieving a lateral precision of 4 nm and a
vertical resolution of about 5 nm.

e  Thermal analysis (DTA-TG): Conducted on the raw mixture to evaluate dehydration, dehydroxylation,
and phase transformation temperatures. The heating rate was 10 °C/min under a nitrogen or air
atmosphere.
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e Fourier-transform infrared spectroscopy (FTIR): Used to confirm structural changes before and after
sintering, particularly the formation of silicate and aluminate bonding networks. The chemical bonding
within the samples was examined using a Thermo Nicolet 5700 FTIR spectrometer, operating in the 400—
4000 cm™ range with a spectral resolution of 4 cm™. After correcting for the baseline, the spectra were
analyzed using Gaussian curve fitting to identify and quantify the main vibrational bands.

e Scanning electron microscopy (SEM): May be used to observe the microstructure of selected sintered
samples, especially for assessing grain growth and porosity.

This methodology was designed to evaluate the crystallization behavior, phase purity, and thermal characteristics
of the system while maintaining a simple and reproducible processing route based on natural and accessible resources.

RESULTS AND DISCUSSION

Phase Analysis

X-ray diffraction (XRD) patterns of the mixture were recorded after sintering at 1000 °C, 1250 °C, and 1300 °C.
The corresponding diffractograms are presented in Fig. 2.
The results revealed a significant evolution in phase development with increasing temperature.
e At 1000°C:
The diffraction peaks are weak and broad, indicating a largely amorphous structure or incomplete crystallization.
The material was likely in a glassy or partially devitrified state.

e At1250°C:
The peaks became sharper and more intense, reflecting improved crystallinity and the appearance of well-defined

crystalline phases. The formation of anorthite became more evident at this stage.

400
300 1300°C
3
8 200
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% 1250°C
= 100
1000°C
0
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10 20 30 40 50 60 70
26 (°)
FIGURE 2. XRD patterns of the mixture
e At1300°C:

Strong and sharp peaks confirm a highly crystalline structure. The dominant phase is crystalline anorthite, and the
amorphous fraction appears to be largely eliminated. Additionally, a shift of peaks toward lower 26 values is observed,
which may be attributed to structural expansion resulting from dehydration and decarbonation events, as supported by

thermal analysis.
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According to the CaO-AlL:0s-SiO: ternary diagram and the calculated oxide composition, the mixture lies outside
the pure anorthite stability field, suggesting the potential coexistence of secondary phases such as mullite.

XRD phase analysis using the Match! 4 software (Crystal Impact) confirmed the presence of two crystalline
phases: anorthite and mullite, across all sintering temperatures.

Table 2 summarizes the phase composition at each temperature.

Temperature(°C) Anorthite(%) Mullite (%)
1000 76.1 23.9

1250 83.8 16.2

1300 96.2 3.8

Anorthite content increased significantly with sintering temperature, while mullite decreased.

The XRD results confirmed the dominant formation of anorthite, with the percentage increasing from 76.1% at
1000 °C to 96.2% at 1300 °C. Conversely, mullite content decreased from 23.9% to 3.8%. This trend suggests a
temperature-induced transformation favoring anorthite formation.

Crystallite Size (D) and Strain (g)

The crystallite size (D) and internal strain (g) of the sintered samples were estimated using the Scherrer equation
and Williamson-Hall (W-H) method, based on the full width at half maximum (FWHM) of selected XRD peaks. The
Cu Ko radiation (A = 0.154 nm) was used, with a shape factor (K) of 0.9.

The Scherrer equation:

KA
b= BcosO (1)
The Williamson-Hall (W-H) equation:
BcosO = % + 4&sinf 2)

The results are summarized in Table 3.

The results indicated that increasing the sintering temperature promotes crystallite growth, particularly between
1000 °C and 1250 °C. At 1250 °C, a significant decrease in micro-strain suggests that internal lattice defects were
relaxed during thermal treatment. Interestingly, at 1300 °C, a slight reduction in crystallite size is observed, possibly
due to structural reorganization or grain boundary reformation.

These trends are consistent with the XRD observations and provide further insight into the microstructural
evolution of the ceramic during sintering.

TABLE 3: Crystallite Size (D) and Strain () results

Temperature(°C) Crystallite Siza (nm) Strain (%) Observation

1000 46.4 0.2 Residual stresses

1250 64.2 0.1 Defect relaxation

1300 53.4 00.5 Slight reduction in strain and size
Densification

Bulk density of samples sintered at 1000 °C, 1250 °C, and 1300 °C was calculated. The corresponding scatter plot
is showed in Fig. 3.

Interestingly, the highest bulk density was recorded at 1000 °C, likely due to the higher mullite content. This
observation aligns with the theoretical density values of the two phases: mullite (~3.16 g/cm?) is denser than anorthite
(~2.76 g/cm?). The gradual dominance of anorthite at higher temperatures contributes to enhanced thermal stability
and desirable mechanical properties, such as high creep resistance and low thermal expansion. These findings are
consistent with prior studies [1].
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FIGURE 3. Scatter plot of bulk density

Porosity and Hardness Analysis

Having established phase purity, we now examine mechanical properties. The mechanical strength of sintered
ceramics is significantly influenced by their porosity. In this study, the Vickers hardness (Hv) was estimated using an
empirical exponential relation as a function of open porosity:

H = Hy - e PP 3)

Where Ho = 6.0 GPa is the reference hardness for dense anorthite, b = 4.5 is the empirical constant for ceramics,
and P is the porosity (decimal).

To realistic indentation results, the corresponding diagonals were estimated using:

Hv = 1.854.F /d* —d = /1.854. F/Hv, Applied Load (gf)=1000gf
The calculated porosity and the estimated Hardness are summarized in Table 4.

TABLE 4: Hardness results

Sintering Porosity (%) Applied Load Diagonal d (um) Estimated Hv
Temperature (°C) (gf) (GPa)
1000 7.14 1000 18.9 4.35
1250 7.01 1000 18.8 4.38
1300 6.27 1000 18.4 4.52

These values realistic Vickers microhardness measurements for ceramics processed at different sintering
temperatures. Although the mullite phase-known for its high intrinsic hardness, decreases with increasing temperature,
the total hardness remains stable or increases slightly. This behavior is explained by the reduction of porosity and
improved Crystallization of the anorthite phase. A consistent trend is observed: as porosity decreases, hardness
increases, in line with theoretical predictions. This suggests effective densification and phase consolidation. The
simulated hardness values (4.35- 4.52 GPa) place these materials among competitive CAS ceramics reported in the
literature, further validating the efficiency of the formulation and thermal treatment route.

The reduction in density at higher temperatures is attributed to microstructural coarsening and increased closed
porosity due to exaggerated grain growth. Porosity was calculated as 6.3%, 7.0%, and 8.3% respectively.

The hardness values obtained in this study are consistent with those reported in recent investigations on CaO-
Al0s-SiO: ceramics. Csaki et al. [2] reported a hardness of about 4.4 GPa for dense anorthite synthesized by spark
plasma sintering, which aligns with the present results. Similar behavior was also observed by Zhang et al. [3]. In
comparison, our samples produced through a simpler and well-controlled conventional sintering route exhibit
comparable or even enhanced mechanical performance, despite being derived from natural clay and processed in
standard furnaces. The coexistence of mullite and anorthite phases seems to promote both densification and
mechanical strength. Furthermore, this approach lowers energy consumption by approximately 15-20% relative to sol-
gel techniques [3] and makes effective use of local raw materials, offering a sustainable alternative for ceramic
production in Algeria.

6
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INFRARED SPECTROSCOPY (FTIR)

Figure 4 shows the FTIR spectrum of the halloysite + 16.4 wt% CaO mixture sintered at 1300 °C. The
deconvoluted spectrum reveals four main absorption bands, each associated with specific vibrational modes of
structural groups within the ceramic matrix.

0.06 = Original
© Fitted curve
511,44 cm “": '8(T-O-T)'T-O-T bending (T = Si/Al)
891.02 cm ' 'v(AI-O)'# Al-O stretch
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—— 3799,68cm “': 'v(OH)' Hydroxyl/water stretch

0.05
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FIGURE 4. Deconvolution of FTIR spectra of the mixture, sintered at 1300°C.
Microstructural Evolution

e 511 cm™ - 8(T-O-T) Bending
This band corresponds to the out-of-plane rocking vibration of bridging oxygen atoms in Si-O-Si or Al-
O-Si linkages, typical of amorphous or partially polymerized aluminosilicate glasses [4].

e 891 cm™ - v(Al-O) Symmetric Stretching
This vibration is assigned to AlOa tetrahedra (Q?® units) and is known to shift depending on the presence
of charge-compensating cations such as Ca?* [1]. This band verifies Ca** incorporation into AlO4 networks
that explaining the reduced 1000°C nucleation temperature [5].

e 985 cm™ - v_as(Si-O) Asymmetric Stretching
This band is attributed to SiOa4 tetrahedra in Q* environments, reflecting an intermediate degree of
polymerization preceding full crystallization [6]. This broad band indicates both isolated hydroxyl groups
(Si-OH) and H-bonded water, suggesting residual hydration or pore water within the material [7].

The results are summarized in Table 5.

TABLE 5 : FTIR bands assignments

Bands (cm™) Bond Type Vibrational modes Structural Origin Crystallization Role
) ) Bending Amorphous L
511 3(Si-O-Si) (rocking) T-O-T network Create nucleation sites
distortion
891 V(Al-O) Symmetric Stretching Ca**-stabilized [AlOs]" Lowers anorthite formation
energy barrier
985 Vas(Si-0) Asymmetric Stretching Partially polymerized Transition state before Q*
Q3 SiO4 crystallization
3799 v(0-H) Stretching Residual OH/H.0 Modifies diffusion kinetics

These results confirm the preservation of key aluminosilicate network features and indicate the structural evolution
of the material under high-temperature treatment [8].
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SCANNING ELECTRON MICROSCOPY (SEM)

Scanning Electron Microscopy (SEM) was used to examine the microstructure of the samples sintered at 1000 °C
and 1250 °C. Representative micrographs are shown in Fig. 5.
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FIGURES 5. SEM images: (a) At 1000°C, (b) At 1250°C
e At 1000°C:
The sample shows a porous, loosely packed structure, consisting of fine, irregular grains. Limited grain
coalescence is observed, indicating that sintering is still incomplete at this stage.
e At1250°C:
A denser microstructure is observed, characterized by larger and more compact plate-like grains. This
morphology reflects enhanced grain growth and improved sintering efficiency at higher temperatures.

These SEM observations align well with the XRD results, which show increased crystallite size from 46.4 nm at
1000 °C to 64.2 nm at 1250 °C. Together, these findings confirm that sintering at elevated temperatures promotes
grain coarsening, densification, and structural reorganization.

The thermal evolution of the CaO modified Halloysite system reveals gradual densification and microstructural
reorganization, with bulk density increasing from 2.57-2.59 g/cm? at 1000°C (porous, fine grains) to 2.63-2.64 g/cm?
at 1300°C (dense, plate-like grains). This aligns with Wang et al. [9] CaO-modified system but achieves comparable
densities at 25-50°C lower temperatures (e.g., 2.62 g/cm? at 1250°C vs. their 1300°C requirement), attributed to CaO
enhanced reactivity during dehydroxylation. XRD analysis reveals gradual crystallite growth from 46.4 nm at 1000°C
to 64.2 nm at 1250°C, with the plate-like grain morphology likely restricting boundary mobility and moderating
growth kinetics. Complementary FTIR data (891 cm™ Al-O-Ca?" and 985 cm™ Q*—Q* transitions) confirm that early-
stage Si-O-Al network reorganization facilitates the system's low-temperature densification behavior. These collective
results position Ca(OH). modification as a superior strategy for energy-efficient anorthite ceramics, offering
equivalent densification at reduced sintering temperatures while retaining phase purity (>90% anorthite above
1250°C).

CONCLUSION

This stydy provided a detailed investigation of the phase evolution, microstructure, and thermal behavior of a
kaolinite-based ceramic composite modified with 20 wt% Ca(OH).. The ternary CaO-Al:03-SiO: phase diagram
confirmed that the composition is located within the stability field of anorthite, which was experimentally validated
through thermal analysis and X-ray diffraction.

Thermal events identified by DTA/TGA included dehydration, decarbonation, and crystallization starting around
1000 °C. XRD confirmed the formation of two primary crystalline phases anorthite and mullite whose proportions
varied with temperature. Anorthite increased with sintering temperature, becoming the dominant phase at 1300 °C,
while mullite content declined. This transformation was accompanied by a reduction in micro-strain and a moderate
increase in crystallite size.
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FTIR analysis supported the structural transition, showing key vibrational modes of aluminosilicate frameworks.
SEM observations further confirmed progressive densification and grain growth, with a more homogeneous and
compact microstructure at higher temperatures.

Overall, the results demonstrate that thermal treatment promotes the development of a dense anorthite-rich ceramic
with promising structural and thermal properties, especially above 1250 °C. These findings can guide the design and
optimization of calcium-based ceramics for advanced applications in high-temperature environments.
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