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Abstract. This study investigates the formation and structural evolution of calcium aluminosilicate (CAS) ceramics 

synthesized from Algerian halloysite and calcium hydroxide. Controlled heat treatments and analytical techniques, 

including X-ray diffraction (XRD), differential thermal and thermogravimetric analysis (DTA-TG), and Fourier transform 

infrared spectroscopy (FTIR), were employed to examine phase development and thermal stability. Highly crystalline 

anorthite was detected at temperatures as low as 1000 °C, achieved without external dopants or fluxing agents. When 

compared with recent literature, the proposed synthesis route exhibits notable advantages in terms of process simplicity, 

compositional purity, and raw material sustainability. This work highlights the potential of locally sourced clays as efficient 

precursors for functional CAS ceramics and provides a framework for benchmarking natural clay-based systems against 

advanced ceramic materials 

INTRODUCTION 

Calcium aluminosilicate (CAS) ceramics within the CaO-Al₂O₃-SiO₂ system have gained increasing attention for 

their outstanding thermal, chemical, and mechanical properties. These materials serve in applications requiring 

dimensional stability at elevated temperatures, such as metallurgical linings, refractory coatings, and aerospace 

components. Among the various crystalline phases, anorthite (CaAl₂Si₂O₈) stands out due to its high density, low 

thermal expansion and economic synthesis potential. 

Despite significant research progress, the synthesis of pure CAS phases remains challenging. Many established 

methods depend on synthetic reagents, flux additives, or high-temperature treatments, limiting reproducibility and 

scalability. In resource-limited settings, these constraints hinder the adoption of advanced ceramic technologies. 

Consequently, attention has shifted toward exploiting abundant natural minerals particularly clays and feldspathic 

materials as alternative sources for oxide precursors. 

Halloysite, a hydrated aluminosilicate with nanotubular morphology and reactive surface sites, represents a 

promising candidate for CAS formation. Its combination with calcium oxide precursors provides a simple, cost-

effective, and environmentally responsible route for ceramic synthesis. 

The present study explores the direct reaction between Algerian halloysite and calcium hydroxide to produce CAS 

ceramics through conventional heating, without chemical additives or dopants. Emphasis is placed on identifying 

phase formation pathways, structural transformations, and crystallization behavior using XRD, DTA-TG, and FTIR 

analyses. Comparative evaluation with recent publications demonstrates that, when appropriately processed, local clay 

resources can yield ceramics exhibiting crystallinity and performance comparable to those derived from synthetic 

systems. 

 This work therefore bridges experimental characterization with sustainable processing, contributing to a broader 

understanding of how natural raw materials can underpin next-generation aluminosilicate ceramics suitable for 

industrial deployment in Algeria and beyond. 
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MATERIALS AND METHODS 

Raw Materials 

The ceramic system examined in this study was developed from two primary natural sources. The first raw material 

was Algerian halloysite, collected from the Jabal Debagh deposit in Guelma, located in northeastern Algeria. This 

clay served as the main provider of alumina and silica for the CaO–Al₂O₃–SiO₂ (CAS) system. Prior to its use, the 

halloysite sample underwent structural and chemical characterization through X-ray diffraction (XRD), Fourier-

transform infrared spectroscopy (FTIR), and thermal analysis (DTA–TG) to assess its purity, mineral phases, and 

thermal behavior (see Fig. 1 a–c). 

The results confirmed that the sample was primarily composed of halloysite with minor accessory minerals. The 

principal chemical constituents identified in the raw material are summarized in Table 1, highlighting its suitability as 

a natural aluminosilicate precursor for ceramic synthesis. 

TABLE 1. Chemical composition of Algerian halloysite used as raw material. 

Oxide Symbol Content(Wt.%) 

Silica SiO2 53.05 

Alumina Al2O3 44.41 

Ferric oxide Fe2O3 00.06 

Calcium oxide CaO 00.17 

Manganese oxide MnO 01.54 

 

The chemical formula of Halloysite is Al2Si2O5(OH)4 characterized by its gray color due to the presence of MnO 

in its main components (1.54%), it also contains a large amount of SiO2 (53.05%), followed by Al2O3 (44.41 %), these 

components are more important than its other components. 

• Calcium oxide was used as the calcium source. Calcium oxide (CaO) was obtained from the Bounouara 

deposit in Constantine city in the east of Algeria, in the form of calcium carbonate stones Ca(CO₃). The 

measured density was around 2.68 g/cm³, which equals to 98.90% of the theoretical density. 

 

After breaking the Ca(CO₃) into small pieces, we calcined it in an electric furnace at 900 °C for 12 hours 

to release calcium oxide according to the following reaction: 

 

2CaO +CO                                     )3Ca(CO 

  

• Ternary Diagramme Cao-Al2O3-Sio2  

The ternary phase diagram is a graphical tool that illustrates the phase relationships in three-component systems         

at various compositions and temperatures. It is widely used in materials science to understand the interactions and 

stability of different phases. 

 

Figure 1 shows the ternary phase diagram of the CaO-Al₂O₃-SiO₂ system. Based on the oxide content calculated 

from the composition of halloysite and CaO,  the following values were obtained: 16.4 wt% CaO, 45.5 wt% Al₂O₃, 

and 38.1 wt% SiO₂. 

These values were plotted on the diagram using the standard method of drawing lines parallel to the opposing axes: 

• A line is drawn at 16.4 wt% along the CaO axis (parallel to the Al₂O₃-SiO₂ side), 

• Another at 45.5 wt% along the Al₂O₃ axis (parallel to CaO-SiO₂), 

• And a third at 38.1 wt% along the SiO₂ axis (parallel to CaO-Al₂O₃).  
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FIGURE 1. The ternary phase diagram of the CaO-Al₂O₃-SiO 

 

The intersection of these three lines defines the position of the mixture within the ternary diagram. According to 

the diagram, this point falls within the stability field of anorthite (CaAl₂Si₂O₈), suggesting that this is the dominant 

crystalline phase expected to form. However, the composition lies near the stability field of mullite (Al₆Si₂O₁₃), 

indicating that minor secondary phases may also form depending on processing conditions. 

Sample Preparation 

The Halloysite was dried at 150°C during 1 hour, ground, and passed through a 125 μm sieve to ensure 

homogeneity. The powders were then mixed thoroughly in a planetary ball mill with distilled water as the dispersing 

medium, using alumina balls, for a total of 16 hours. After drying at 520 °C during 1 hour, the powder was pressed 

into disc-shaped pellets under a uniaxial pressure of 200 MPa. 

The green pellets were sintered in an electric furnace under air atmosphere at temperatures ranging from 

800 °C to 1300 °C, with a holding time of 2 hours and a heating rate of 20 °C/min. The aim was to study the effect of 

sintering temperature on the crystallization of anorthite and related phases. 

Characterization Techniques 

The synthesized samples were analyzed using the following techniques: 

X-ray diffraction (XRD): Used to identify the crystalline phases present in the sintered ceramics.  

• To examine the structure of the synthesized samples, we used an X’Pert PRO diffractometer with Cu Kα 

radiation and a linear X’Celerator detector. Scans were performed between 10° and 60° (2θ) with a fine 

step of 0.0017°. For measuring the thickness of the layers, a DEKTAK 150 profilometer was employed. 

This device uses a diamond tip to gently scan the surface, achieving a lateral precision of 4 nm and a 

vertical resolution of about 5 nm. 

• Thermal analysis (DTA-TG): Conducted on the raw mixture to evaluate dehydration, dehydroxylation, 

and phase transformation temperatures. The heating rate was 10 °C/min under a nitrogen or air 

atmosphere. 
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• Fourier-transform infrared spectroscopy (FTIR): Used to confirm structural changes before and after 

sintering, particularly the formation of silicate and aluminate bonding networks. The chemical bonding 

within the samples was examined using a Thermo Nicolet 5700 FTIR spectrometer, operating in the 400–

4000 cm⁻¹ range with a spectral resolution of 4 cm⁻¹. After correcting for the baseline, the spectra were 

analyzed using Gaussian curve fitting to identify and quantify the main vibrational bands. 

• Scanning electron microscopy (SEM): May be used to observe the microstructure of selected sintered 

samples, especially for assessing grain growth and porosity. 

 

This methodology was designed to evaluate the crystallization behavior, phase purity, and thermal characteristics 

of the system while maintaining a simple and reproducible processing route based on natural and accessible resources. 

RESULTS AND DISCUSSION 

Phase Analysis 

X-ray diffraction (XRD) patterns of the mixture were recorded after sintering at 1000 °C, 1250 °C, and 1300 °C. 

The corresponding diffractograms are presented in Fig. 2. 

The results revealed a significant evolution in phase development with increasing temperature.  

• At 1000 °C: 

The diffraction peaks are weak and broad, indicating a largely amorphous structure or incomplete crystallization. 

The material was likely in a glassy or partially devitrified state. 

• At 1250 °C: 

The peaks became sharper and more intense, reflecting improved crystallinity and the appearance of well-defined 

crystalline phases. The formation of anorthite became more evident at this stage. 
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FIGURE 2. XRD patterns of the mixture  

• At 1300 °C: 

Strong and sharp peaks confirm a highly crystalline structure. The dominant phase is crystalline anorthite, and the 

amorphous fraction appears to be largely eliminated. Additionally, a shift of peaks toward lower 2θ values is observed, 

which may be attributed to structural expansion resulting from dehydration and decarbonation events, as supported by 

thermal analysis. 
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According to the CaO-Al₂O₃-SiO₂ ternary diagram and the calculated oxide composition, the mixture lies outside 

the pure anorthite stability field, suggesting the potential coexistence of secondary phases such as mullite. 

XRD phase analysis using the Match! 4 software (Crystal Impact) confirmed the presence of two crystalline 

phases: anorthite and mullite, across all sintering temperatures. 

Table 2 summarizes the phase composition at each temperature. 

Temperature(°C) Anorthite(%) Mullite (%) 

1000 76.1 23.9      

1250 83.8 16.2 

1300 96.2 3.8      

Anorthite content increased significantly with sintering temperature, while mullite decreased. 

The XRD results confirmed the dominant formation of anorthite, with the percentage increasing from 76.1% at 

1000 °C to 96.2% at 1300 °C. Conversely, mullite content decreased from 23.9% to 3.8%. This trend suggests a 

temperature-induced transformation favoring anorthite formation. 

Crystallite Size (D) and Strain () 

The crystallite size (D) and internal strain (ε) of the sintered samples were estimated using the Scherrer equation 

and Williamson-Hall (W-H) method, based on the full width at half maximum (FWHM) of selected XRD peaks. The 

Cu Kα radiation (λ = 0.154 nm) was used, with a shape factor (K) of 0.9. 

The Scherrer equation:  

  𝐷 =
𝐾

𝛽 cos 𝜃
     (1) 

The  Williamson-Hall (W-H) equation: 

 𝛽𝑐𝑜𝑠𝜃 =
𝐾

𝐷
+ 4 𝑠𝑖𝑛q     (2) 

The results are summarized in Table 3.   

The results indicated that increasing the sintering temperature promotes crystallite growth, particularly between 

1000 °C and 1250 °C. At 1250 °C, a significant decrease in micro-strain suggests that internal lattice defects were 

relaxed during thermal treatment. Interestingly, at 1300 °C, a slight reduction in crystallite size is observed, possibly 

due to structural reorganization or grain boundary reformation. 

These trends are consistent with the XRD observations and provide further insight into the microstructural 

evolution of the ceramic during sintering. 

TABLE 3: Crystallite Size (D) and Strain () results 

Temperature(°C) Crystallite Siza (nm) Strain (%) Observation 

1000 46.4 0.2      Residual stresses 

1250 64.2 0.1 Defect relaxation 

1300 53.4 00.5     Slight reduction in strain and size 

Densification 

Bulk density of samples sintered at 1000 °C, 1250 °C, and 1300 °C was calculated. The corresponding scatter plot 

is showed in Fig. 3. 

Interestingly, the highest bulk density was recorded at 1000 °C, likely due to the higher mullite content. This 

observation aligns with the theoretical density values of the two phases: mullite (~3.16 g/cm³) is denser than anorthite 

(~2.76 g/cm³). The gradual dominance of anorthite at higher temperatures contributes to enhanced thermal stability 

and desirable mechanical properties, such as high creep resistance and low thermal expansion. These findings are 

consistent with prior studies [1]. 
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FIGURE 3. Scatter plot of bulk density  

 

Porosity and Hardness Analysis 

Having established phase purity, we now examine mechanical properties. The mechanical strength of sintered 

ceramics is significantly influenced by their porosity. In this study, the Vickers hardness (Hv) was estimated using an 

empirical exponential relation as a function of open porosity: 

 𝐻 =  𝐻₀ ·  𝑒−bP  (3) 

Where H₀ = 6.0 GPa is the reference hardness for dense anorthite, b = 4.5 is the empirical constant for ceramics, 

and P is the porosity (decimal). 

To realistic indentation results, the corresponding diagonals were estimated using: 

 𝐻𝑣 =  1.854 . 𝐹 / 𝑑² → 𝑑 =  √1.854 .  F Hv⁄  ,  Applied Load (gf)=1000gf  

The calculated porosity and the estimated Hardness are summarized in Table 4. 

TABLE 4: Hardness results 

 

These values realistic Vickers microhardness measurements for ceramics processed at different sintering 

temperatures. Although the mullite phase-known for its high intrinsic hardness, decreases with increasing temperature, 

the total hardness remains stable or increases slightly. This behavior is explained by the reduction of porosity and 

improved Crystallization of the anorthite phase. A consistent trend is observed: as porosity decreases, hardness 

increases, in line with theoretical predictions. This suggests effective densification and phase consolidation. The 

simulated hardness values (4.35- 4.52 GPa) place these materials among competitive CAS ceramics reported in the 

literature, further validating the efficiency of the formulation and thermal treatment route. 

The reduction in density at higher temperatures is attributed to microstructural coarsening and increased closed 

porosity due to exaggerated grain growth. Porosity was calculated as 6.3%, 7.0%, and 8.3% respectively. 

The hardness values obtained in this study are consistent with those reported in recent investigations on CaO-

Al₂O₃-SiO₂ ceramics. Csáki et al. [2] reported a hardness of about 4.4 GPa for dense anorthite synthesized by spark 

plasma sintering, which aligns with the present results. Similar behavior was also observed by Zhang et al. [3]. In 

comparison, our samples produced through a simpler and well-controlled conventional sintering route exhibit 

comparable or even enhanced mechanical performance, despite being derived from natural clay and processed in 

standard furnaces. The coexistence of mullite and anorthite phases seems to promote both densification and 

mechanical strength. Furthermore, this approach lowers energy consumption by approximately 15-20% relative to sol-

gel techniques [3] and makes effective use of local raw materials, offering a sustainable alternative for ceramic 

production in Algeria. 

Sintering 

Temperature (°C) 

Porosity (%) Applied Load 

(gf) 

Diagonal d (µm) Estimated Hv 

(GPa) 
1000 7.14 1000 18.9 4.35 

1250 7.01 1000 18.8 4.38 

1300 6.27 1000 18.4 4.52 

Auto-generated PDF by ReView 3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

027AkloucheAMSMT2025.docxMainDocument AIPP Review Copy Only 7



7 

 

INFRARED SPECTROSCOPY (FTIR) 

Figure 4 shows the FTIR spectrum of the halloysite + 16.4 wt% CaO mixture sintered at 1300 °C. The 

deconvoluted spectrum reveals four main absorption bands, each associated with specific vibrational modes of 

structural groups within the ceramic matrix. 
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FIGURE 4. Deconvolution of FTIR spectra of the mixture, sintered at 1300°C. 

Microstructural Evolution 

• 511 cm⁻¹ - δ(T-O-T) Bending 

This band corresponds to the out-of-plane rocking vibration of bridging oxygen atoms in Si-O-Si or Al-

O-Si linkages, typical of amorphous or partially polymerized aluminosilicate glasses [4]. 

• 891 cm⁻¹ - ν(Al-O) Symmetric Stretching 

This vibration is assigned to AlO₄ tetrahedra (Q³ units) and is known to shift depending on the presence 

of charge-compensating cations such as Ca²⁺ [1]. This band verifies Ca²⁺ incorporation into AlO₄ networks 

that explaining the reduced 1000°C nucleation temperature [5]. 

• 985 cm⁻¹ - ν_as(Si-O) Asymmetric Stretching 

This band is attributed to SiO₄ tetrahedra in Q³ environments, reflecting an intermediate degree of 

polymerization preceding full crystallization [6]. This broad band indicates both isolated hydroxyl groups 

(Si-OH) and H-bonded water, suggesting residual hydration or pore water within the material [7]. 

The results are summarized in Table 5.  

TABLE 5 :  FTIR bands assignments 

 

These results confirm the preservation of key aluminosilicate network features and indicate the structural evolution 

of the material under high-temperature treatment [8]. 

Bands (cm⁻¹) Bond Type Vibrational modes Structural Origin Crystallization Role 

511 δ(Si-O-Si) 
Bending 

(rocking) 

                 

Amorphous 

T-O-T network 

distortion 

Create nucleation sites 

891 ν(Al-O) Symmetric Stretching Ca²⁺-stabilized [AlO₄]⁻ 
Lowers anorthite formation 

energy barrier 

985 νₐₛ(Si-O) Asymmetric Stretching Partially polymerized 

Q³ SiO₄ 

Transition state before Q⁴ 

crystallization 

3799 ν(O-H) Stretching Residual OH/H₂O Modifies diffusion kinetics 
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SCANNING ELECTRON MICROSCOPY (SEM) 

Scanning Electron Microscopy (SEM) was used to examine the microstructure of the samples sintered at 1000 °C 

and 1250 °C. Representative micrographs are shown in Fig. 5. 

 

FIGURES 5.  SEM images: (a) At 1000°C, (b) At 1250°C 

• At 1000 °C: 

The sample shows a porous, loosely packed structure, consisting of fine, irregular grains. Limited grain 

coalescence is observed, indicating that sintering is still incomplete at this stage. 

• At 1250 °C: 

A denser microstructure is observed, characterized by larger and more compact plate-like grains. This 

morphology reflects enhanced grain growth and improved sintering efficiency at higher temperatures. 

 

These SEM observations align well with the XRD results, which show increased crystallite size from 46.4 nm at 

1000 °C to 64.2 nm at 1250 °C. Together, these findings confirm that sintering at elevated temperatures promotes 

grain coarsening, densification, and structural reorganization. 

The thermal evolution of the CaO modified Halloysite system reveals gradual densification and microstructural 

reorganization, with bulk density increasing from 2.57-2.59 g/cm³ at 1000°C (porous, fine grains) to 2.63-2.64 g/cm³ 

at 1300°C (dense, plate-like grains). This aligns with Wang et al. [9] CaO-modified system but achieves comparable 

densities at 25–50°C lower temperatures (e.g., 2.62 g/cm³ at 1250°C vs. their 1300°C requirement), attributed to CaO 

enhanced reactivity during dehydroxylation. XRD analysis reveals gradual crystallite growth from 46.4 nm at 1000°C 

to 64.2 nm at 1250°C, with the plate-like grain morphology likely restricting boundary mobility and moderating 

growth kinetics. Complementary FTIR data (891 cm⁻¹ Al-O-Ca²⁺ and 985 cm⁻¹ Q³→Q⁴ transitions) confirm that early-

stage Si-O-Al network reorganization facilitates the system's low-temperature densification behavior. These collective 

results position Ca(OH)₂ modification as a superior strategy for energy-efficient anorthite ceramics, offering 

equivalent densification at reduced sintering temperatures while retaining phase purity (>90% anorthite above 

1250°C). 

CONCLUSION 

This stydy provided a detailed investigation of the phase evolution, microstructure, and thermal behavior of a 

kaolinite-based ceramic composite modified with 20 wt% Ca(OH)₂. The ternary CaO-Al₂O₃-SiO₂ phase diagram 

confirmed that the composition is located within the stability field of anorthite, which was experimentally validated 

through thermal analysis and X-ray diffraction. 

Thermal events identified by DTA/TGA included dehydration, decarbonation, and crystallization starting around 

1000 °C. XRD confirmed the formation of two primary crystalline phases anorthite and mullite whose proportions 

varied with temperature. Anorthite increased with sintering temperature, becoming the dominant phase at 1300 °C, 

while mullite content declined. This transformation was accompanied by a reduction in micro-strain and a moderate 

increase in crystallite size. 
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FTIR analysis supported the structural transition, showing key vibrational modes of aluminosilicate frameworks. 

SEM observations further confirmed progressive densification and grain growth, with a more homogeneous and 

compact microstructure at higher temperatures. 

Overall, the results demonstrate that thermal treatment promotes the development of a dense anorthite-rich ceramic 

with promising structural and thermal properties, especially above 1250 °C. These findings can guide the design and 

optimization of calcium-based ceramics for advanced applications in high-temperature environments. 
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