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Abstract. This work presents a methodology to calibrate and verify the Herschel-Bulkley rheological model for
lubricating greases in the context of Computational Fluid Dynamics (CFD). The approach combines Cone-on-Plate and
Plate-on-Plate rheometry with numerical simulations to derive temperature-dependent model parameters and assess their
predictive fidelity. Experimental measurements were conducted on an NLGI 1 grease for bearings application at 25 °C
and 80 °C, covering a broad range of shear rates. Multiple regression strategies were tested, showing that the choice of
error metric significantly affects model predictions, with logarithmic error minimization providing the most robust results
across conditions. CFD validation was first carried out on the Cone-on-Plate configuration, yielding excellent agreement
with both analytical Herschel-Bulkley predictions and experiments. The Plate-on-Plate setup introduced additional
complexity due to shear rate gradients and higher edge effects. Comparisons demonstrated good agreement at elevated
temperatures and small gaps, while larger discrepancies emerged at ambient temperature and wider gaps, with CFD
generally overestimating torque. The findings highlight both the strengths and current limitations of the proposed
approach for modeling grease-lubricated systems, and underscore the importance of temperature calibration protocols to
enhance predictive accuracy in CFD analyses of grease-lubricated components such as rolling element bearings.

INTRODUCTION

Computational Fluid Dynamics (CFD) has become a fundamental design tool for analyzing lubricated
mechanical systems such as bearings and gear trains [1]. Integrating CFD into the design process can significantly
reduce the cost and duration of experimental campaigns [2], while enabling quantitative predictions of lubricant
fluxes within components [3, 4], load-independent power losses induced by viscous and inertial effects [5, 6], and
the static and dynamic forces exerted by the fluids on interacting parts [7].

Although more than 80% of rolling element bearings are grease-lubricated [8, 9], most CFD studies still focus on
oil-lubricated bearings [1]. Where grease is considered, it is frequently idealized as a static reservoir that bleeds base
oil, and the ensuing oil flow is modeled with Newtonian rheology. Representative examples include the works of
Zhang et al. [10-12] and Fischer et al. [13], which simulate the ball-raceway contact to study oil bleeding,
replenishment, and starvation, but treat the grease as an oil source and adopt Newtonian models for the fluid phase.
Similarly, Wang [14] identified active grease reservoirs in angular-contact bearings by prescribing fixed grease
pockets and simulating oil bleeding with Newtonian assumptions. Such approaches sidestep the non-Newtonian
character of grease, whose response depends on temperature, pre-shear history, and aging [15-18]; dependencies that
are crucial under in-service conditions.

Grease characterization is often performed with methods that do not reflect operating environments. The solid-
like resistance to flow is traditionally assessed via cone penetration tests [19, 20], which yield an NLGI consistency
number but not a constitutive model. Yield stress can be estimated with rheometers using computerized evaluation
(e.g., CEY by Gow [21]) or stress-crossover techniques (e.g., Couronné et al. [22]), yet these measurements are
typically conducted at room temperature and rarely account for in-service temperatures, shear histories, or aging.
Several constitutive equations have been proposed to describe grease over a range of shear rates: including Power-
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Law [23], Rhee—Eyring [24], Bingham [25, 26], Papanastasiou [27], and Herschel-Bulkley [28] models. Among the
above-mentioned Herschel-Bulkley is particularly suitable for mechanical-component simulations because it
combines a yield-stress threshold with a shear-thinning power-law term [29].

A growing body of research attempts to incorporate non-Newtonian behavior into CFD for bearings, yet key
gaps remain. Raj et al. [30] modeled a roller-bearing channel using the Herschel-Bulkley law, calibrated via Plate-
on-Plate rheometer. However, the parameters were measured at a single temperature and implicitly assumed to be
temperature independent. Moreover, between 2016 and 2020, Noda et al. [31, 32] treated grease as a two-phase fluid
governed by the Papanastasiou regularization of a viscoplastic law and complemented simulations with X-ray CT
experiments. Nevertheless, the authors did not discuss potential discrepancies arising from differences between
calibration and test temperatures. In another study, Wang et al. analyzed coupled thermo-fluid behavior in high-
speed angular-contact ball bearings lubricated with grease, modeling the lubricant with the Herschel-Bulkley law
[33]. However, the Herschel-Bulkley parameters were taken directly from the literature, with no dedicated
experimental calibration and no treatment of temperature dependence. A similar approach was adopted by Fu et al.,
who performed CFD of grease lubrication in double-row spherical roller bearings using data from the literature [34].
These practices underscore the importance of laboratory protocols that enable in-house calibration of grease
rheology and for broader datasets reporting grease properties across multiple temperatures.

The objective of this paper is to provide a practical methodology to calibrate the Herschel-Bulkley rheological
model for bearing greases and to verify its consistency and reliability within CFD analyses. We explicitly examine
experimental and numerical considerations — such as temperature dependence, pre-shear, and measurement
protocols — and delineate the limitations of common practices. By bridging rheometry and simulation, the proposed
framework aims to enable physically grounded, reproducible grease models that improve the predictive fidelity of
CFD for grease-lubricated bearings.

RESEARCH METHODOLOGY

This chapter summarizes the methodological framework adopted in the study, which provides the basis for the
partial results presented in the subsequent sections. The overall aim of the research is to calibrate the Herschel—
Bulkley model for use in CFD, to accurately predict the rheological behavior of lubricating grease under controlled

conditions.
The Herschel-Bulkley constitutive equation is expressed as:
()= To K - " (1)
where:

e 7(y) = shear stress [Pa]

e y =shearrate [s']

e T, =yield stress [Pa]

e K =consistency index [Pa-s?]
e n=flow index [-]

From this relation, one possible definition of viscosity is given by:
u@y=min {4k -7, o) )
where p, represents the zero-shear viscosity of the grease. This modification prevents the model from producing

singularities and numerical instabilities at very low shear rates.
The experimental calibration was performed at two reference temperatures:

e 25 [°C], representing ambient conditions, and
e 80 [°C], representative of a possible operating environment.

A Cone-on-Plate rheometer was selected for these measurements, as this configuration allows testing a finite
sample volume while maintaining a uniform shear rate throughout the material. Torque (T) and angular velocity (w)
data collected during the experiments were converted into shear stress 7(y) and shear rate y values using the
instrument-specific CSS and CSR calibration coefficients, coefficients released by the rheometer producer.

Once the experimental 7-y datasets were obtained, regression techniques were applied to fit the Herschel—
Bulkley parameters, i.e. (o, K, n). Different regression strategies were tested to minimize various error functions,
including:
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Mean Squared Error (MSE),
Absolute Error,

Percentage Error,
Logarithmic Error.

The comparison of these approaches demonstrated that the choice of error metric influences the final parameter
set, yielding slightly different model predictions.

After calibration, the constitutive model was implemented in a CFD framework. The first step of validation
consisted of reproducing the Cone-on-Plate rtheometer setup numerically. The model was considered consistent
when the CFD results showed:

e an approximately uniform shear rate across the test volume, and
e atorque—angular velocity relationship in agreement with the analytical Herschel-Bulkley formulation.

A second validation stage was conducted using a Plate-on-Plate rheometer, which introduces shear rate gradients
that increase radially. An additional experimental campaign was carried out with this geometry, testing the same
grease at both reference temperatures and at varying plate gaps and rotation speeds. The Plate-on-Plate configuration
was also modeled in CFD using the previously calibrated fluid properties.

Comparisons between the experimentally measured and CFD-predicted torque—angular velocity curves allowed
for assessment of the model accuracy, identification of discrepancies, and formulation of hypotheses regarding their
possible origins.

EXPERIMENTAL CAMPAIGN AND DATA ELABORATION

As outlined in the previous section, the experimental campaign was conducted using the same NLGI 1 grease,
tested in two different rheometer configurations: Cone-on-Plate and Plate-on-Plate. Measurements were performed
under different temperatures and angular velocities. Specifically, tests were carried out with w=1.76 - 103 =+ 1.76 -
10! [rad/s] in the Cone-on-Plate setup, and w=6.00 - 101 + 1.20 - 102 [rad/s] in the Plate-on-Plate setup. These
conditions correspond to shear rates spanning from y=1- 101 = 1 - 103 [s'1]. All measurements were carried out in
accordance with DIN 51810-1. For the Cone-on-Plate configuration, 41 data points were collected at each velocity
following a geometric progression with a ratio of approximately 1.25, whereas in the Plate-on-Plate configuration,
31 measurements were obtained using an arithmetic progression with an increment of about 2 between successive
velocities.

The tests were conducted on grease samples that had not been subjected to pre-shearing. Each experiment
consisted of three phases: an acceleration phase up to the maximum velocity, a steady-state phase during which the
maximum velocity was maintained for 10 minutes, and eventually a deceleration phase. For subsequent data
processing, only the acceleration-phase data were considered, in order to analyze the grease without pre-shearing
effects. It should be noted, however, that deceleration data differed by up to 15% compared to acceleration, with the
latter generally showing a higher resisting torque.

In the Cone-on-Plate tests, measurements were performed at 25 [°C] and 80 [°C], as well as at intermediate
temperatures of 30 [°C] and 70 [°C], in order to assess the influence of small variations in thermal conditions (i.e.,
+5 [°C] near ambient and —10 [°C] near operating conditions). These tests revealed that even relatively modest
temperature shifts could lead to torque—angular velocity deviations exceeding 20%, particularly at high angular
velocities (Fig. 1).
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FIGURE 1. Rotational speed vs Torque for different temperatures in Cone-on-Plate rheometer.

For the Plate-on-Plate measurements, results were obtained for two different distances between the two plates
(H) i.e. H=0.5 [mm] and H = 1.0 [mm] and the measures were retained in torque—angular velocity format to enable
direct comparison with CFD simulations. Conversely, Cone-on-Plate data were converted into shear stress versus
shear rate. The experimental results are shown as black dots in Figures 2 (a) (25 [°C]) and 2 (b) (80 [°C]), together
with different analytical regressions of the Herschel-Bulkley model, which will be discussed in the following
section. As a first observation, at elevated temperatures and for shear rates below 10 [s'1], the Herschel-Bulkley
model does not adequately capture the grease behavior.
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FIGURE 2. Cone-on-Plate: Experimental vs Analytical for different regression methods and temperatures 25°C (a) and 80°C (b).

With respect to regression strategies, four different error minimization approaches were compared. Traditionally,
either the mean squared error (MSE, Eq. 3) or the absolute error (Eq. 4) is employed. However, these methods tend
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to favor fitting accuracy at high shear rates, often at the expense of correctly representing low shear rate behavior.
To overcome this limitation, alternative methods were considered, namely percentage error minimization (Eq. 5) and
logarithmic error minimization (Eq. 6), the latter being particularly suitable since the dataset spans several orders of
magnitude in shear rate. The results of the regression analyses are summarized in Tables 1 and 2, which also report
the corresponding R? and Mean Absolute Percentage Error (MAPE) values. Based on these comparisons, the
parameters obtained via logarithmic error minimization were selected for further analyses, as this approach provided
the best overall trade-off between R? and MAPE. Nevertheless, comparable performance was also achieved with the
percentage error minimization approach.

MSE=X[(zg*+K - y™)-t]? 3
|E|=ZI(totK - y™)-7l “4)
-
By =3 [ )
Elog= Z[log(TO-l'K : yn)'IOg(T)]z (6)
TABLE 1. Herschel-Bulkley Parameters at 25°C for Different Regression Method
Method To [Pa] K [Pa-sn] ni R? 1 MAPE

MSE 211 259 0.73 0.9988 9.69
|E| 220 23.6 0.75 0.9988 10.3
Ey, 180 48.9 0.62 0.9787 8.19
Elog 160 57.3 0.60 0.9810 8.72

TABLE 2. Herschel-Bulkley Parameters at 80°C for Different Regression Method

Method T, [Pa K [Pa-s1] s R? [ MAPE
MSE 10.0 61.9 0.27 0.9770 16.9
|E| 102 63.2 0.27 0.9761 17.3
Ey, 12.8 50.2 0.31 0.9699 15.6
Epog 10.7 554 0.30 0.9718 15.9
CFD MODELING

The CFD modeling of both the Cone-on-Plate and Plate-on-Plate configurations, at gap heights of H = 0.5 [mm]
and H = 1.0 [mm], was performed using the open-source finite volume software OpenFOAM®. In total, six models
were developed, combining three geometries with two operating temperatures. Each model was simulated under the
angular velocities as those employed in the experimental campaign, providing as outputs not only the torque exerted
by the grease on the rotating surface of the rheometer but also the full distribution of pressure, velocity, shear rate,
and other relevant fields within the computational domain. Fluid properties were defined according to the calibration
data obtained for the two temperatures under investigation. Regarding the viscosity at zero shear rate, this parameter
was set to 10,000 [Pa-s] in order to ensure that the Herschel-Bulkley model was effectively applied across the entire
domain. With this value, it can be readily verified that for shear rates higher than 1072 [s™!], the Herschel-Bulkley
model predicts lower viscosities since the viscosity calculated via the Herschel-Bulkley is always lower then p, in
the modeled volume.

To reduce computational effort while preserving accuracy, the domain was modeled as a 2° sector, exploiting the
cyclic symmetry of the system. A small central portion was removed to avoid the use of triangular elements, a
simplification justified by its negligible influence on the resulting torque. The modeled domain included both the
volume beneath the rotating element and an external region, thus accounting for the realistic grease behavior near
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the instrument’s edge (Fig. 3). This strategy also enabled the use of a two-phase (grease—air) solver, which offers
two main advantages: first, it allows validation of a solver that can later be extended to practical cases, e.g. bearings,
where grease is often studied in the presence of air; second, it improves the accuracy of flow predictions near the
rheometer boundaries.

All computational grids were composed exclusively of hexahedral cells. Mesh quality was ensured by checking
an aspect ratio below 6, a maximum skewness lower than 0.65, and a maximum non-orthogonality below 33. The
cell count was determined through mesh sensitivity analyses. In the Cone-on-Plate model, the grid consisted of
5,175 cells, including 10 cells across the grease thickness and three cells in the angular discretization. For the Plate-
on-Plate configuration, 29,795 cells were used for H = 0.5 [mm] and 65,180 cells for H =1.0 [mm], with angular
discretization of five cells in both cases. The grease layer was modeled with consistent element sizes, resulting in 15
cells for the smaller gap and 30 cells for the larger one.

Scale 6:1

Cone-on-Plate

Scale 4:1

Plate-on-Plate
H=0.5 mm

Scale 2:1

Plate-on-Plate
H=1.0 mm

FIGURE 3. Mesh and Initial Conditions (red = grease, blue = air) of the Computational Domain

Boundary conditions included cyclic symmetry on the lateral sides, a prescribed rotational velocity on the
moving surfaces, and a no-slip condition on the stationary plates (Fig. 4). At the outer boundary, atmospheric
pressure was imposed, allowing for fluids inlet and outlet. The initial phase distribution was set according to the
experimental observations. The torque acting on the upper cylindrical surface was not included in the post-
processing.

The two-phase solver was defined as incompressible, due to the low velocities and forces involved, and laminar,
as the high viscosity of the grease dominated over inertial effects. The system was treated as isothermal, with
temperature controlled externally by the rheometer, and transient, to enable application to future simulations of
bearing geometries. Although a steady-state solver could have been employed, it was deemed less useful for
subsequent studies. The governing equations—continuity, momentum conservation, and volume fraction transport—
were solved within this framework.

Simulations were conducted under the same operating conditions as in the experimental campaign. A variable
time step was adopted, with the Courant number limited to 0.5 to ensure both high computational efficiency and
numerical stability. Convergence was considered achieved either after 10 seconds of simulated physical time,
corresponding to the duration of the experimental measurements, or when the torque variation over fifty consecutive
time steps fell below 0.1%.
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FIGURE 4. Boundary Conditions for Different Configurations
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RESULTS AND DISCUSSIONS

Cone-on-Plate Results

In this section, the results of the Cone-on-Plate model are presented to assess its consistency. Two validation

checks were performed: the first concerned the shear rate within the fluid volume beneath the cone, and the second
compared the torque predicted by CFD with both analytical and experimental values. With regard to the first check,
the simulations showed that the variation of shear rate within the region of interest remained below 1% with respect
to the theoretical value. Minor deviations were observed near the central area (close to the rotational axis), where the
cone approaches a flat geometry, and at the outer edge due to boundary effects; however, these had only a negligible
influence on the overall torque. This indicates that the model is highly consistent with the calibration conditions.

Such consistency is further supported by the second check, shown in Fig. 5, where the CFD torque results (red

square markers) align almost perfectly with the analytical predictions of the Herschel-Bulkley equations (blue line).
This confirms that the closer the analytical model matches the experimental data, the lower the errors expected in the
CFD calculations.
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FIGURE 5. Experimental vs Analytical vs CFD results for 25°C (a) and 80°C (b) for Cone-on-Plate
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Plate-on-Plate Results

In this section, the results obtained for the Plate-on-Plate configuration are presented. Figure 6 illustrates, as an
example, the shear rate distribution within the investigated domain for the same rotational speed (w=53.93
[rad/s]) and temperature (25 [°C]), but with two different gap heights: H= 0.5 [mm] and H = 1.0 [mm)]. The figure
clearly shows that the shear rate varies linearly with both radius and height. Indeed, when using a vertical scale
corresponding to half the gap thickness (H = 0.5 [mm]), the results are very similar to those obtained with H = 1.0
[mm]. An edge effect near the outer boundary is also evident in both cases.

Shear Rate (1/s)
5.0e+01 200 300 400 500 600 700 800 900 1000 1100 1200 1.3e+03

* | jﬁ | |

)

Shear Rate (1/5)
2.5e+01 100 150 200 250 300 350 400 450 500 550 600  6.5e+02
A L | I | | | | |

FIGURE 6. Example of shear rate field at ©=53.93[rad/s] and temperature of 25 [°C] in Plate-on-Plate configuration H
=0.5 [mm] (upper) H=1.0 [mm] (lower)

Figures 7 and 8 compare the CFD predictions with experimental results in terms of rotational speed versus
torque. Figure 7 reports the results for H = 0.5 [mm], while Figure 8 refers to H = 1.0 [mm]. In both cases, the
results are presented at two different temperatures: 25 [°C] (a) and 80 [°C] (b).

For H = 0.5 [mm] at 25 [°C] (Fig. 7 (a)), the agreement between CFD and experiments is very good. The curves
show similar trends, and the numerical values differ by less than 8% for rotational speeds above 25 [rad/s]. The
mean percentage error is 6%, with a maximum error of 16% at the lowest speed. In general, CFD tends to
overestimate torque at higher angular velocities. At 80 [°C] (Fig. 7 (b)), the agreement remains satisfactory, with a
mean error of 3.3% and a maximum error of 14% at the lowest speed, although the CFD and experimental trends
deviate slightly.

For the larger gap (H = 1.0 [mm)]), similar considerations apply. At 80 [°C] (Fig. 8 (b)), the mean error is 4.6%,
with a maximum error of 10.9% at the lowest speed, again with CFD generally overestimating torque. However, at
25 [°C] (Fig. 8a), the CFD results deviate more significantly from the experiments. In this case, the CFD torque
increases more rapidly than the experimental measurements, leading to larger discrepancies at higher rotational
speeds. The mean error is 15.8%, with a maximum error of 18.5% at the highest speed.

This discrepancy prompted the authors to perform additional numerical tests. Specifically, CFD simulations were
carried out using a sector model without the upper dome present in the original geometry, in order to minimize edge
effects. These tests produced slightly improved results, but the mean error was reduced by no more than 3%,
remaining around 12%. Furthermore, alternative Herschel-Bulkley models obtained through different regression
strategies were also implemented. As expected, since the current regression strategy already underestimated torque
at high rotational speeds compared to the others, these additional models produced even larger errors. The larger gap
thickness may introduce temperature gradients, uncontrolled shearing effects, or a non-uniform distribution of the
base oil. These hypotheses will need to be verified in future studies.
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FIGURE 8. Experimental vs CFD results for 25°C (a) and 80°C (b) for Plate-on-Plate, H=1.0 mm

CONCLUSIONS

This study developed and applied a systematic methodology to calibrate the Herschel-Bulkley model for
lubricating greases and to verify its implementation in CFD simulations. The results demonstrated that the choice of
regression strategy plays a crucial role in determining the model parameters: among the different approaches tested,

028praccionia M SMT?2025.docx M ainDocument

AIPP Review Copy Only

10



Auto-generated PDF by ReView 3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

logarithmic error minimization provided the best overall balance across the explored shear rate range, while
percentage-error-based regression also produced comparable results. Verification with the Cone-on-Plate
configuration confirmed the internal consistency of the methodology, as CFD predictions closely matched the
analytical Herschel-Bulkley formulation. The Plate-on-Plate configuration, on the other hand, introduced additional
complexities due to shear rate gradients and edge effects. At elevated temperature and smaller gap thickness, the
agreement between CFD and experiments was very good, with mean errors below 5%. However, at ambient
temperature and larger gaps, significant discrepancies emerged, with CFD generally overestimating torque and mean
errors exceeding 15%. These differences may be related to the presence of temperature gradients, uncontrolled
shearing effects, or a non-uniform distribution of the base oil, hypotheses that will need to be examined in future
studies.

The numerical analyses also showed that simplified CFD domains, in which the upper dome was removed,
slightly reduced the discrepancies but were not sufficient to fully eliminate them, suggesting that boundary effects
linked to geometry remain significant. Another important aspect concerns the choice of the zero-shear viscosity Llo.
In this study, the value selected did not strongly influence the results because the investigated volume was
characterized by relatively high shear rates. Nonetheless, a robust methodology for defining po is required, as this
parameter is fundamental for describing grease motion at very low shear rates, which are particularly relevant for
reservoir effects in practical applications.

In conclusion, the proposed framework provides a reproducible link between rheometry and CFD through
temperature-calibrated Herschel-Bulkley models. While the approach demonstrated promising predictive capability,
especially at high shear rates and elevated temperatures, further refinements and modifications are needed to address
pre-shear history, extended temperature dependence, aging effects, and low-shear rheology. Addressing these
aspects will be essential to enable more reliable, service-oriented simulations of grease-lubricated rolling bearings.
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