

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Verification of the Physical Model of Deformable Rock Mass from Equivalent Materials

AIPCP25-CF-AMSMT2025-00029 | Article

PDF auto-generated using **ReView**

Verification of the Physical Model of Deformable Rock Mass from Equivalent Materials

Arthur Manko^{1, a)} and Ekaterina Muraveva^{1, b)}

¹ Moscow State University of Civil Engineering (National Research University), Yaroslavskoe sch., 26, Moscow, 129337, Russia.

^{a)} Corresponding author: arthur_manko@mail.ru
^{b)} MuravievaEA@mgsu.ru

Abstract. Currently, numerous projects are being developed for the reconstruction and construction of underground structures in seismically active areas where bedrock with irregular fracturing lies close to the surface or protrudes above ground. The problem with calculating such structures is that, given the variety of mathematical models for numerical calculations of rock masses and structures, there are no clear recommendations on their application in specific seismic conditions. This study has identified the key parameters for the creation of an equivalent material of deformable solids. This model represents the behavior of fractured rock. The proposed results can be applied to optimize strategies for the construction of underground structures. Prediction of rock pressure and prevention of rock mass collapses.

INTRODUCTION

It is critically important to conduct a thorough and comprehensive study of the geomechanical behavior of fractured rock masses, especially in seismically active regions. Understanding the influence of fractures on the stress-strain state (SSS) of a rock mass is essential. Studying fracturing from microcracks to large faults is the key to safe and effective construction of underground structures. Solving this complex problem requires a comprehensive approach. Such an approach combines advanced numerical modelling methods and in-depth analysis of engineering-geological conditions. Verification of numerical models capable of adequately reproducing the real structure of fractured rock masses obtained under dynamic influences will make it possible to avoid the influence of the scale effect. It will also make it possible to obtain accurate estimates of the parameters necessary for the design of stable and reliable underground structures.

In recent years, issues related to modelling physical phenomena in rock masses in seismic areas have become particularly acute. Despite all the advances in science and technology, such problems still require solutions and verification. Assessing the stress-strain state of rock masses and technical structures allows us to identify patterns in their behavior under various conditions, as well as develop recommendations for the safe and efficient conduct of construction, mining operations, and the development of mineral deposits. G.Yu. Berdichevsky, A.N. Marchuk, N.N. Melnikov, and V.G. Orekhov [1-4] studied the stresses, strength, and stability of critical structures located in rock massifs. I.P. Dobrovolsky, A.A. Kozyrev, and D.G. Osik [5-8] devoted their work to establishing the principles of tectonic stress distribution in the Earth's crust, seeking to create a scientific basis for the geomechanical support of underground construction and safe exploitation of deposits. The list of researchers could go on. One thing remains paramount: a comprehensive study of geomechanical phenomena to ensure safety and reliability in any mining operations.

This article presents the results of the authors' scientific work within the framework of their dissertation research from 2022 to the present.

For a long time, only the elastic and deformation properties of rock masses were taken into account when calculating and modelling rock masses for seismic effects [9]. Over time, it became clear that physical and mechanical characteristics alone cannot be used to accurately calculate the stability of rock masses and underground structures. Physical experiments are necessary. As part of the research, one of the authors attempted to numerically

model a three-axis compression experiment [10]. As a result, it was concluded that mathematical modelling can be applied in experiments with a transversely isotropic medium. Therefore, it was decided to conduct further research using physical experiments on equivalent materials. These materials were to replace real fractured rock masses in laboratory conditions.

MATERIALS AND METHODS

Selection of Equivalent Material

Research into fractured rock masses and their stability in seismic areas is extremely difficult. The problem is not so much that there are certain difficulties with traveling to the region. The main problem is delivering research equipment to hard-to-reach areas. And it is not possible to study rock samples in a laboratory under our conditions. Therefore, it was decided to conduct a physical experiment on equivalent materials.

Equivalent material is material whose physical and mechanical properties are in a certain ratio to those of the material under study. Doctor of Technical Sciences, Professor Georgy Nikolayevich Kuznetsov gave this material the name "equivalent" [11]. Equivalent material Similar approaches emerged around the turn of the 20th century and found extensive application in physical research from the early 1900s onward, continuing with Kuznetsov's work until the 1990s. Later, mathematical modeling gained prominence over its physical counterpart as computational capabilities advanced swiftly. Nevertheless, physical modeling retains significance in contemporary practice. [12, 13].

For the equivalent material recipe [14-16], further research will use G-16 sculptural gypsum, chalk (construction and molded), and fine sand without inclusions. Chalk is a brittle material in terms of its mechanical properties, while gypsum is plastic. Depending on the amount of sand, gypsum, and water, the resulting material should have elastic-plastic properties. In this case, sand is the material that creates the granular structure of the resulting equivalent material.

All subsequent tests were carried out in a laboratory environment. The tests were conducted using the SI ASIS GT 2.05-1 axial loading complex equipped with a GT 7.3.41-1 triaxial testing chamber manufactured by NPP GEOTEK LLC. Maximum equipment parameters: lateral compression – 10 kN, axial load – 10 kN. Geometric parameters of the cylindrical model: diameter – 50 mm, height – 100 mm. Approximately 40 experiments were conducted to find the optimal composition of the equivalent material. The most indicative results obtained during the research are presented below.

- Experiment No. 1. A mixture based on G-16 gypsum diluted in a ratio of 1:3 (one part water to three parts gypsum). The sand additive accounted for 3% of the total dry matter volume.
- Experiment No. 2. Cylindrical school chalk was used as an inclusion, placed vertically along the axis of the sample and fixed in the mold with G-16 sculptural gypsum (ratio 1:3). The sand content was 3% of the total volume of dry components.
- Experiment No. 3. School chalk, ground into fine fractions, was mixed with gypsum in equal proportions (50/50 ratio). Water was used for mixing in a ratio of 2 parts to 1 part of the dry mixture (1:2). The proportion of sand was 3% of the total volume of the dry mixture.
- Experiment No. 4. G-16 gypsum was mixed with MTD-2 construction chalk in a ratio of 75/25 percent, respectively, and then mixed with water in a ratio of 1:4. Sand was added in an amount of 3% of the total volume of the dry mixture.

Experiment No. 1 turned out to be the longest in terms of time. The test lasted almost four days. The sample failed at a vertical pressure of 5.33 MPa. Analysis of the results showed a linear failure pattern. This material demonstrated behavior close to elastic. Consequently, the resulting formulation is unsuitable for creating an elastic-plastic model.

Experiment No. 2 revealed that the introduction of brittle rod elements significantly reduces the strength limit of the equivalent material: $R_{3c}\downarrow$ decreased from 5.33 MPa to 0.73 MPa. At the same time, the material retained its elastic properties within the limits of Hooke's law.

Experiment No. 3 showed the ineffectiveness of the approach to creating an equivalent material based on the conglomerate principle. Complete destruction of the sample was recorded at a stress deviator of only 0.13 MPa. However, this experiment indicated the advisability of further using chalk in powder form, as well as the need to select the optimal proportion of G-16 sculptural gypsum and MTD-2 construction chalk powder to achieve elastic-plastic properties.

Figure 1 shows photographs of the results of triaxial destruction of the equivalent material in experiment No. 4. The sample was left in operation over the weekend, was destroyed in 30 hours, and by the time the sample was removed, it had become slightly saturated with distilled water from the volumetric compression flask due to a torn rubber cuff. Because of this, we believe that the sample has severe internal failure, although according to the readings, the volumetric deformation in this experiment was the smallest compared to similar ones.

Consequently, the elastic-plastic properties of the equivalent material can be obtained using the formula from experiment No. 4. However, the elasticity and plasticity properties of the material also depend on the amount of water in the equivalent material. They also depend on the drying time [17]. The next step of the experiment is aimed at selecting the moisture content (and drying time) in such a way as to obtain elastic-plastic deformation.

FIGURE 1. Results of experiment No. 4 on selecting a recipe for equivalent material: (a) view of the sample in the triaxial compression device after the end of the experiment, (b) view of the sample after removal from the device.

Refine the physical properties of the resulting physical model

Often, when mathematical models are applied to solve pressing problems, there is a discrepancy between what the theory predicts and how the system actually behaves in reality. If data obtained from field studies is available, the adequacy of the modeled results can be assessed. Otherwise, when it is not possible to directly compare the results of numerical modeling of the stress-strain state with field data, physical experiments are used. In situations where it is difficult to recreate the necessary experimental conditions in the laboratory, an alternative is physical modeling using equivalent materials. Physical modelling, used to determine the deformation and strength characteristics of structures, has a long history and remains relevant, particularly for verifying the results obtained during modelling [18, 19].

FIGURE 2. One of the model verification samples prior to the experiment

To conduct the experiment, five identical specimens were created from similar materials. After fabrication, each specimen was cut with perpendicular incisions at angles of 0° and 90° (see Fig. 2) to reproduce the defect. A low-melting compound was used to simulate the crack, similar to the work [20], which has similar deformation characteristics and physical and mechanical properties to clay. The specified values of the defect inclination angles were based on the study by D. Deere [21] and represent the maximum and minimum values at which defects have a noticeable effect on the structure of rocks.

After the artificial defects were applied, the specimens were subjected to various types of mechanical stress, simulating the conditions that occur in rock masses. In particular, uniaxial compression, biaxial compression with lateral restraint, and cyclic loads were applied to simulate dynamic processes such as blasting or seismic activity. Deformation, stress and failure indicators were recorded for each type of impact. Strain gauges installed on the surface of the specimens and an optical deformation analysis system were used to more accurately determine the stress fields near the defects.

The results of the experiments showed a significant influence of defect inclination angles on the strength and deformation characteristics of the workpieces. Thus, samples with 90° notches demonstrated greater resistance to uniaxial compression compared to samples with 0° notches. This is because vertical cracks effectively redistribute the load, preventing stress concentration at critical points. At the same time, under biaxial compression, the difference in strength between samples with different defect angles became less pronounced, as lateral confinement contributed to stabilising the structure and reduced the influence of individual cracks.

Under cyclic loading, accelerated development of fatigue cracks was observed in samples with notches at an angle of 0° . Apparently, horizontal notches served as stress concentrators, initiating failure under repeated loading. In samples with vertical notches, the fatigue failure process was slower, indicating higher resistance to cyclic loading.

The data obtained indicate the need to take into account the orientation of natural cracks and faults when designing mine workings and assessing the stability of rock masses. The main purpose of the tests was to identify the fundamental influence of the orientation of the cracks in the sample relative to the installation on the simulation results.

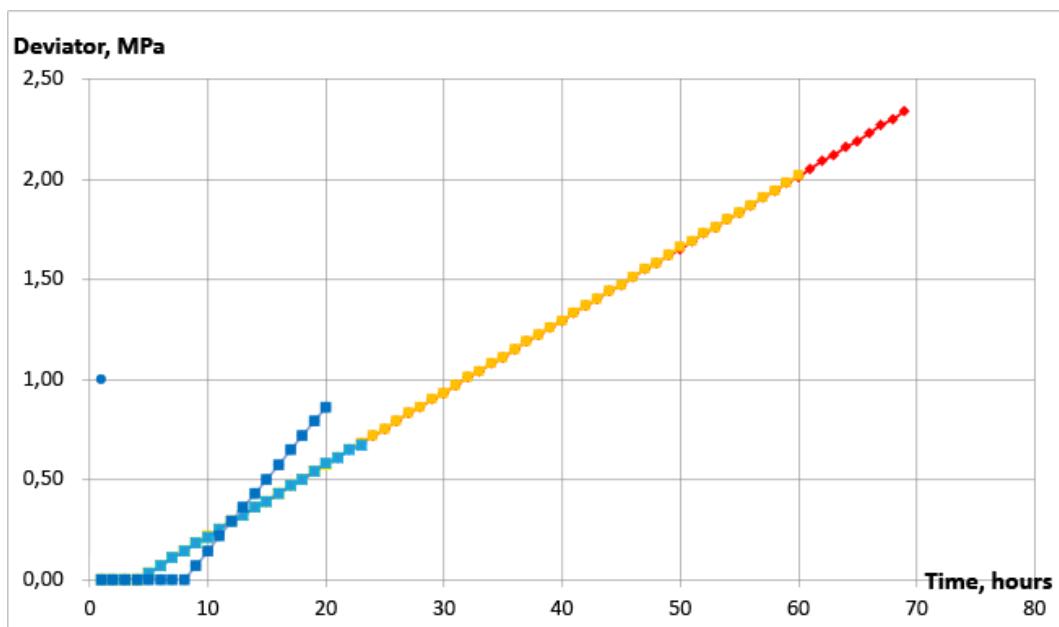


FIGURE 3. Graph of equivalent material research results

The main objective of the experiments was to determine the key impact of the location of cracks in the sample, relative to its fixation in the installation, on the results of the simulated calculations. The results obtained were compiled into a single graph, shown below (Fig. 3).

After creation, the samples were subjected to a drying process according to the following scheme:

- Samples No. 1 and No. 2 were kept under natural hardening conditions for 150 days;
- Sample No. 3 was autoclaved for 5 hours until a stable mass was achieved;
- Sample No. 4 was autoclaved for 8 hours;
- Sample No. 5 – after 8 hours of autoclave treatment, was rapidly cooled to a temperature of 16°C, then saturated with water by soaking, dried naturally for 3 days and re-treated in an autoclave for 4 hours.

Thus, with the exception of sample No. 5, the samples were made in pairs. The purpose of creating sample No. 5 was to achieve viscous failure. Samples Nos. 1 and 2 were intended to demonstrate elastic failure, and samples Nos. 3 and 4 – elastic-plastic failure. In all experiments, except for the experiment with sample No. 5, a pressure of 400 kPa was created in the triaxial compression chamber; for sample No. 5, it was increased to 800 kPa.

With the exception of experiment number five, the results of all tests, regardless of the method of fixing the sample in the test chamber (orientation of cracks relative to the device), hardening conditions, sample moisture level and other factors, demonstrate a linear relationship. The results of the fifth experiment, due to significant comprehensive compression, do not correlate with the others, but they also form a linear dependence, albeit at a different angle to the X-axis. Experiment No. 5 can be excluded from consideration when verifying the results.

The limit values of deviatoric stresses vary in the range from 0.67 MPa to 2.34 MPa, while the vertical deformation up to the moment of specimen failure ranges from 1 mm to 4 mm.

Thus, regardless of the location of the sample in the setup, the data obtained can be considered reliable, since the results of experiments 1 to 4 correspond to the Mises-Schleifer line, which indicates the correctness of the tests performed. Considering the presence of plastic flow according to Mises and the initial elastic stage described by Coulomb's law, it can be concluded that with this physical experiment scheme and the use of a single equivalent material composition, the average values of the results, regardless of the initial characteristics of the material, will demonstrate elastic-plastic behaviour.

RESULTS

A single inclined crack located at angles of 0, 5, 20, 45, and 60 degrees was taken as the basis for the single crack system. All these crack angles, except for 60 degrees, were taken from the work of D. Deere [16], and 60 degrees from the work of R.E. Goodman [22].

Based on the experiment planning matrix [23], the optimal number of basic physical experiments was determined, varying from 1 to 3 for each crack angle considered. The cracks themselves were formed by sawing into an already hardened sample that had reached the required strength. A low-melting material was used to fill the cracks, imitating the properties of clay soil in terms of deformation parameters and physical and mechanical characteristics. After the experiments, average graphs were constructed for each crack angle. For a clear comparison, the results were combined into a general graph, shown in Fig. 4.

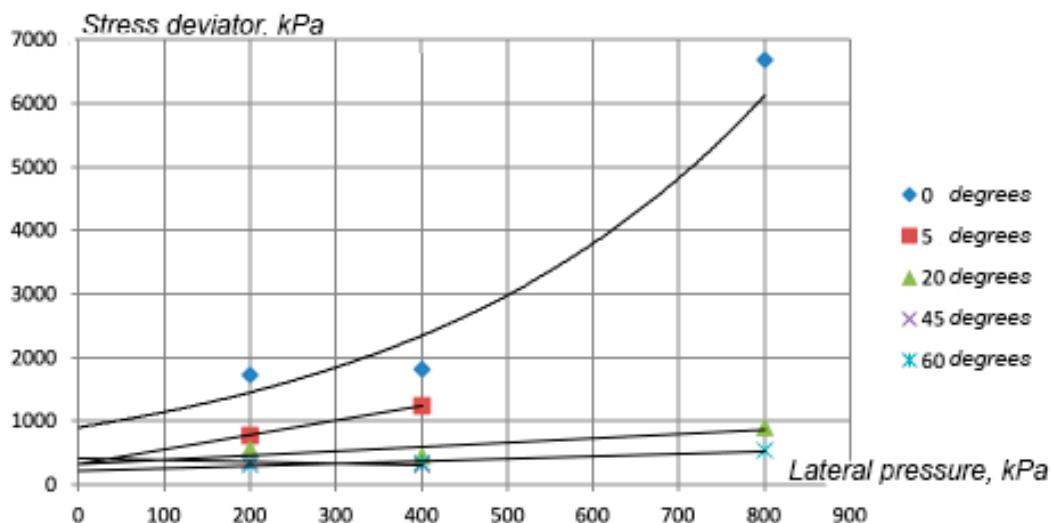


FIGURE 4. Single crack test results

Experiments with single cracks revealed abnormal behaviour of horizontal cracks (with an inclination angle of 0°). The results for this crack significantly exceeded the indicators of other single cracks, differing by several times. In this regard, further consideration of cracks with an angle of 0° was excluded. In addition, according to the RQD classification proposed by D. Dear [20], the presence of a horizontal fracture in samples less than 10 cm long significantly reduces the calculated strength of the rock, up to its complete loss.

The remaining tests showed similar characteristics: the stress deviator varied from 200 kPa to 1170 kPa, with an average value of about 600 kPa. Cracks with angles of 60° and 45° showed similar results at different lateral compression values. In turn, the crack with an angle of 20°, after reaching a lateral compression of 200 kPa, when the stress deviator approached the values of other cracks, began to show increased stability. Thus, when analysing orthogonal cracking, special attention should be paid to cracks with angles of 5°, 20° and 60°.

To study orthogonal cracks, samples of the same material described above were used. Orthogonal intersecting cracks were made in the samples, extending from the centre of the sample. The cracks were then filled with molten plasticine to simulate the 'bonding' of the sample parts. Samples with angles of 5°, 20°, 45°, 60° and 90(0)° were made. The 90° crack had not been studied previously; its introduction was due to the impossibility of creating two strictly orthogonal cracks at an angle of 0°. Thus, the 90(0)° variant represents a vertical crack perpendicular to the horizontal one.

After conducting 3-5 tests for each angle of inclination of the orthogonal cracks, the most representative results were selected. The results for angles of 5°, 20°, 60° and 90(0)° were of greatest interest. The results of these tests are shown in Fig. 5.

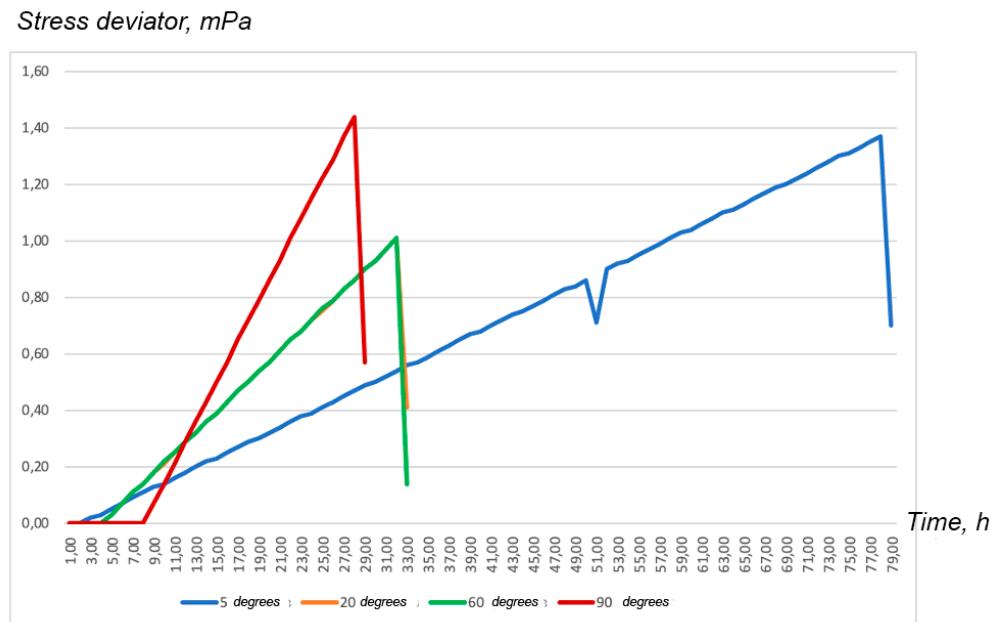


FIGURE 5. Results of some orthogonal crack tests

Analysis of the test results for orthogonal intersecting cracks showed that for cracks at angles of 20° and 60°, there was a coincidence not only in the time of failure, but also in the magnitude of the stress deviator. The crack at an angle of 5° showed the greatest resistance to failure: the deformation of the sample reached 32 mm, while the average deformation of the other samples was about 15 mm. The highest stress deviator value (1440 kPa) was recorded for an orthogonal crack at an angle of 90(0)°, but the time to failure of the sample was minimal.

As a result, the results of modelling a sample made of equivalent materials with orthogonal cracks at an angle of 90(0)° were used to create the first preliminary three-dimensional calculation scheme for mathematical modelling.

CONCLUSION

Analysis of tests on orthogonal intersecting cracks showed that the data for cracks located at angles of 20 and 60 degrees were similar not only in terms of time to failure, but also in terms of stress deviator magnitude. The sample with a 5-degree crack showed the greatest resistance to failure: its deformation was 32 mm, while the average deformation of the other samples was about 15 mm. The maximum deviator value of 1440 kPa was recorded for an orthogonal crack at an angle of 90(0) degrees, but the failure time of this sample was the shortest.

Thus, for the initial three-dimensional calculation within the framework of mathematical modelling, the results of modelling a sample made of equivalent materials with orthogonal cracks located at an angle of 90(0) degrees were used.

Based on these results, stress-strain state (SSS) analysis of a sample with an orthogonal crack at an angle of 90(0) degrees was chosen as the starting point for constructing a three-dimensional model. This choice was made not only because of the maximum deviator value recorded for this configuration, but also because the orthogonal arrangement of cracks simplifies the procedure for constructing the finite element mesh and boundary conditions within the mathematical model. The simplicity of the simulation allows minimizing computational costs at the initial stage and focusing on verifying the adequacy of the selected failure model.

The resulting three-dimensional model allowed for a detailed analysis of the stress distribution in the vicinity of the crack tip. Stress concentration zones were identified, which correspond to the most likely locations for crack initiation. The model also allowed for an assessment of the influence of sample size and boundary conditions on the fracture process.

In the future, it is planned to expand the model to include an analysis of the influence of different crack angles, using the experimental data obtained for cracks located at angles of 5, 20, and 60 degrees. This will allow the creation of a more universal model describing the fracture of materials with orthogonal intersecting cracks under various loading conditions. The simulation results will be verified using experimental data obtained from the analysis of various crack configurations.

REFERENCES

1. G. Y. Berdichevskii and V. I. Shcherbina and M. S. Galyamina and L. E. Polyak. *Information-diagnostics system-a mandatory component for monitoring the technical condition of water-development works* (Power Technology and Engineering, 2009) pp. 275-279.
2. A. N. Marchuk, *Static operation of concrete dams* (Energoatomizdat, Moscow, 1983), p.208.
3. A. N. Marchuk and N. A. Marchuk, *Dams and Geodynamics: Field Observations*, (Association of Organizations and Employees in the Hydropower Industry, Hydropower of Russia, Saint Petersburg, 2020), p. 315.
4. N.N. Melnikov and Yu. A. Epimakhov and N. N. Abramov, *Scientifically-intensified large-span underground-structures construction in rock masses* (Publishing House of the Kola Scientific Center of the Russian Academy of Sciences, Apatites, 2008), p. 221.
5. V.G. Orekhov and M.G. Zertsalov, *Mechanics of Engineering Structures and Mountain Massifs Destruction* (DIA Publishing House, Moscow, 1999), p. 330.
6. I.P. Dobrovolsky, *Mathematical theory of preparation and prediction of a tectonic earthquake* (Fizmatlit, Moscow, 2009), p. 236.
7. D. G. Osika and V. I. Cherkashin, *Energy and Fluid Dynamics of Seismicity* (Russian Academy of Sciences, Dagestan Scientific Center, Institute of Geology, Moscow, 2008.), p. 243.
8. A.A. Kozyrev and S.N. Savchenko, *On the management of the stress-strain state of the rock mass during the sinking of mine workings in shock-hazardous conditions* (Bulletin of the Moscow State Technical University, Moscow, 2014), pp. 221-224.
9. L.V. Ershov and L.K. Liberman and I.B. Neiman, *Rock mechanics* (The bowels, Moscow, 1987), p. 192.
10. D.A. Denisova and A.I. Koryagina and A.S. Malkova and E.A. Muraveva, *On mathematical modeling of a physical experiment on triaxial compression of a model made of equivalent material* (Economics of construction, 2024) pp. 292-294.
11. G.N. Kuznetsov and M.N. Budko, *Instruments and measurement methods used in the study of rock pressure on models using the equivalent materials method*. In *Presentation at the Workshop on Instruments Used in Rock Pressure Studies at the Skochinsky Geophysical Laboratory* (VNIMI, Leningrad, 1962.), p.16.
12. A.Zh. Zhusupbekov and B.O.Kaldanova, *Investigation of the mechanical properties of the soil base using the equivalent material method* (Bulletin of the N. Isanov Kyrgyz State University of Construction, Transport, and Architecture, 2016), pp. 392-396.
13. A.N. Kholodilov and R.S. Istomin and V.I. Kirilenko, *Improvement of the method for producing equivalent materials for modeling nonlinear geomechanical processes in underground mining* (Mining information and analytical bulletin (scientific and technical journal), 2024), pp. 108-122.
14. A.M. Kozina, *The technique of modeling with equivalent materials* (Ugletechizdat, Moscow, 1957), p. 27.
15. V.V. Basov and S.V. Rib, *Selection of equivalent material for physical modeling of geomechanical processes in the vicinity of coal mine preparation workings* (Bulletin of the Siberian State Industrial University, 2016), pp. 32-35.
16. Ko Den Ho, *Research on equivalent materials for modeling rock pressure manifestations* (Ugletechizdat, Moscow, 1958), p. 26.
17. A. M. Kozina and E. P. Rutkovskaya, *Guidelines for selecting and testing equivalent materials for modeling* (Ministry of the Coal Industry of the USSR. USSR Academy of Sciences. A. A. Skochinsky Institute of Mining. Laboratory of Mining Pressure, Moscow, 1974), p. 40.
18. V. A. Fedorov and E. G. Kholina and M. F. Bulatov and I. B. Kovalenko, *Design of a Molecular Dynamics Model for High-Performance Computing of Conformational Changes in Microtubule Protofilaments Associated with the Anticancer Drug Taxol* (Mathematical Biology and Bioinformatics, 2023), pp. 105-112.
19. J. A. Zavadsky, *Creating a model for contractual transactions using digital currencies of central banks for payment processing* (Studies of the XII. inter-university scientific-practical interdisciplinary conference. Collection of articles by conference participants, Moscow, 2024), pp. 98-107.
20. V.A. Hyamyalyainen and A.V. Uglanitsa and G.Ya, the USSR Patent No. 1154465 A1 (7 May 1985)

21. D.U. Deere, *Technical Description of Rock Cores for Engineering Purpose* (Rock Mechanics and Engineering Geology, 1963), pp. 16-22.
22. R.E. Goodman, *Introduction to rock mechanics* (Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons, New York, 1989), p. 562.
23. A.F. Boyko and E.Yu. Kudennikov, *An accurate method for calculating the required number of repeated experiments* (Bulletin of Belgorod State Technological University named after V.G. Shukhov, 2016), pp. 128-132.

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 Walt Whitman Road, Suite 300, Melville, NY 11747-4300 USA; Phone 516-576-2268; Email: rights@aip.org.

Article Title ("Work"):

(Please indicate the final title of the Work. Any substantive changes made to the title after acceptance of the Work may require the completion of a new agreement.)

All Author(s):

(Please list **all** the authors' names in order as they will appear in the Work. All listed authors must be fully deserving of authorship and no such authors should be omitted. For large groups of authors, attach a separate list to this form.)

Title of Conference: _____

Name(s) of Editor(s) _____

All Copyright Owner(s), if not Author(s):

(Please list **all** copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(ies) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript file.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approval of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #3 below):

 Author(s) Signature Print Name Date

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner Authorized Signature and Title Date

3. If an Author is a U.S. Government employee, such Author must please sign below. The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature Print Name Date

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract #(s) _____ [1.16.1]

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University, <http://arxiv.org/>.

Commercial and noncommercial scholarly use: *Noncommercial* scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. *Commercial* uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrdclist/>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is *not* considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.