

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Modeling of AZ31 Magnesium Alloy Fracture under Dynamic Loading Using a Failure Model of Active Type

AIPCP25-CF-AMSMT2025-00030 | Article

PDF auto-generated using **ReView**

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 West Whitman Road, Suite 300, Melville, NY 11747-4300 USA; Phone 516-576-2268; Email: rights@aip.org.

Article Title ('Work'): *Modeling of AZ31 Magnesium Alloy Fracture under Dynamic Loading Using a Failure Model of Active Type*

(Please indicate the final title of the Work. Any substantive changes made to the title after acceptance of the Work may require the completion of a new agreement.)

All Author(s): *Sergey A. Zelepugin, Vladimir V. Skripnyak, Vladimir A. Skripnyak, Alexander E. Kiryushkin*
 (Please list all the authors' names in order as they will appear in the Work. All listed authors must be fully deserving of authorship and no such authors should be omitted. For large groups of authors, attach a separate list to this form.)
 Title of Conference: *3rd International Conference Advanced Mechanics: Structure, Materials, Tribology*
 Name(s) of Editor(s) *Prof. Dr. Valentin Popov*

All Copyright Owner(s), if not Author(s):

(Please list all copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(ies) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s) employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights: to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript file.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approval of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #2 below):

 Sergey A. Zelepugin *S.H.* *30.08.2025*
 Author(s) Signature Print Name Date

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner	Authorized Signature and Title	Date
-------------------------	--------------------------------	------

3. If an Author is a U.S. Government employee, such Author must please sign below. The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature	Print Name	Date
------------------	------------	------

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract #*(s)* _____ [1.16.1]

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University, <http://arxiv.org>.

Commercial and noncommercial scholarly use: *Noncommercial* scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. *Commercial* uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embarго period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrdclist/>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is *not* considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.

Modeling of AZ31 Magnesium Alloy Fracture under Dynamic Loading Using a Failure Model of Active Type

Sergey A. Zelepyugin^{1, 2, a)}, Vladimir V. Skripnyak^{1, b)}, Vladimir A. Skripnyak^{1, c)}
and Alexander E. Kiryushkin^{1, d)}

¹National Research Tomsk State University, 36 Lenin Avenue, Tomsk, Russia, 634050

²Tomsk Scientific Centre SB RAS, 10/4 Akademicheskii Avenue, Tomsk, Russia, 634055

^{a)} Corresponding author: szel@yandex.ru

^{b)} skrp2012@yandex.ru

^{c)} skrp2006@yandex.ru

^{d)} sashakir94@mail.ru

Abstract. A kinetic fracture model of active type is presented, and model constants are selected to describe spall fracture in AZ31 magnesium alloy under shock-wave loading. The specific volume of microdamage is used as a damage parameter. This parameter, which is part of the total volume of the medium, is included in the governing equations and continuously modifies the material properties, causing stress relaxation. Numerical calculations of the impact of an aluminum plate on a cylindrical specimen made of AZ31 magnesium alloy at an initial impact velocity of 660 m/s are performed in a two-dimensional axisymmetric statement. The formation of a spall plate in the AZ31 magnesium alloy specimen is demonstrated when tensile stresses exceed a critical value of ~0.3 GPa. The calculation results are compared with experimental data, and qualitative and quantitative agreement is obtained.

INTRODUCTION

Currently, one of the pressing issues is the study of the behavior of magnesium alloys under quasi-static and dynamic loading [1–3]. Magnesium alloys receive such attention due to their excellent mechanical properties (low density, high specific strength, etc.), resulting in their use in aerospace and automotive engineering, computer technology, etc.

An important task is to evaluate the deformation and fracture characteristics of magnesium alloys under dynamic loading. It is important to select optimal parameters for the governing equations, including the Johnson-Cook, Zerilli-Armstrong, and other models [4–7]. It is also necessary to develop fracture models for magnesium alloys under shock-wave loading [8–11].

The goal of this study is to substantiate the applicability of the kinetic fracture model of active type [12] for describing spall fracture in an AZ31 magnesium alloy specimen and to select the constants for this model.

PROBLEM STATEMENT

This paper numerically simulates the impact of an aluminum plate with a cylindrical specimen made of AZ31 magnesium alloy. The impact conditions correspond to those of experiment [9]. The diameter of the impact plate is 40 mm, and the plate thickness is 0.85 mm. The diameter of the cylindrical specimen is also 40 mm, and the specimen height is 4.97 mm. The initial impact velocity is chosen to be 660 m/s.

This problem is characterized by the presence of an axis of symmetry, so the simulation is performed in a two-dimensional axisymmetric setting.

The general system of equations describes the unsteady adiabatic motion of an elastic-plastic medium using a model of a damaged medium. In this model, the volume of a medium element consists of the volume of the undamaged

portion and the volume of microdamage, with microdamage uniformly distributed throughout the volume of the medium. The average density of the damaged medium is adjusted to account for the volume of microdamage.

The general system of equations includes the equations of continuity, motion, and energy [13, 14]. The equation of state determining the pressure in the undamaged portion of the medium is chosen in the Mie-Grüneisen form. A method for determining the equation of state parameters using the Hugoniot shock adiabatic constants is employed. Plastic flow is modeled using the von Mises yield condition.

To simulate the initiation and evolution of microdamage, a kinetic model of active fracture is used [12]. In this model, the rate of change in the specific volume of microdamage is determined by the equations:

$$\frac{dV_f}{dt} = \begin{cases} 0, & \text{if } |P_c| \leq P^* \text{ or } (P_c > P^* \text{ and } V_f = 0) \\ -\text{sign}(P_c)K_f(|P_c| - P^*)(V_2 + V_f), & \text{if } P_c < -P^* \text{ or } (P_c > P^* \text{ and } V_f > 0) \end{cases} \quad (1)$$

$$P^* = P_k V_l / (V_f + V_l). \quad (2)$$

Here, V_f is the specific volume of microdamage, P_c is the pressure in the undamaged component of the medium, and V_l , V_2 , P_k , and K_f are model constants. The constants in (1, 2) were selected by comparing the results of calculations and experiments recording the free surface velocity when loading the specimen with plane compression pulses. The same set of material constants can be used to calculate both the growth and collapse of microdamage, depending on the sign of P .

When constructing model (1), it was assumed that the material contains potential fracture nucleus of identical initial sizes with an effective specific volume V_l , on which cracks or pores form and grow when the tensile pressure exceeds the critical value P^* , which decreases as the resulting microdamage grows. A typical change in the critical value P^* as a function of the specific volume of microdamage V_f is shown in Fig. 1. In this case, the parameters V_l and P_k had the following values: $V_l = 2.5 \cdot 10^{-6} \text{ m}^3/\text{kg}$, $P_k = 1.5 \text{ GPa}$.

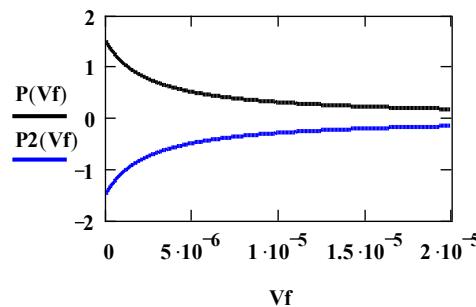


FIGURE 1. A typical change in the critical value P^* (2) as a function of the specific volume of microdamage.

The lower curve $P_2(V_f)$ in Fig. 1 demonstrates the change in the critical value of P^* under tensile pressures. Microdamage initiation in an initially undamaged medium occurs when the tensile pressure exceeds P_k (in this case, -1.5 GPa). As the specific volume of microdamage increases, the critical value of P^* decreases, facilitating the failure of the material. When the pressure reverses sign, the change in the critical value of P^* is characterized by the upper curve, which shows an increase in P^* with decreasing V_f . In the region between the curves, no change in the specific volume of microdamage (either increase or decrease) occurs.

The value of V_l for a material without initial porosity is set within the range of 0.2–2.0%, on average 1% or $0.01V_0$, where V_0 is the initial relative volume, a quantity inversely proportional to the material density. The value of V_2 is selected from the interval of $0.00001V_0 < V_2 < V_l$. Constants V_3 , V_4 are chosen in the interval of 10–40% of the initial relative volume. Quantity P_k is selected in the interval of $S_k < P_k < \sigma_{sp}$, where S_k is the true quasistatic tensile stress, σ_{sp} is the material spallation strength, determined from the experiments on collision of plates. Constant K_f is selected in the interval of (0.1–0.01) $1/(\text{GPa} \cdot \text{s})$.

The spall fracture of the AZ31 magnesium alloy is described using the following coefficients of the fracture model: $V_l = 8.38 \cdot 10^{-3} \text{ cm}^3/\text{g}$, $V_2 = 5.59 \cdot 10^{-4} \text{ cm}^3/\text{g}$, $V_3 = 0.03 \text{ cm}^3/\text{g}$, $V_4 = 0.2 \text{ cm}^3/\text{g}$, $K_f = 0.007 \text{ (m} \cdot \text{s})/\text{kg}$, $P_k = -0.3 \text{ GPa}$.

Other constants characterizing aluminum and magnesium alloy AZ31 can be found in [8].

This paper uses dependences of material strength properties on the specific volume of microdamage. Equations (3) present the dependences for the yield strength and shear modulus, and Fig. 2 shows a typical form of such dependences. The yield strength for ductile metals and alloys decreases linearly with increasing material damage level up to a critical value of the specific volume of microdamage (constant V_4), after which the material is considered to be destroyed, and the yield strength becomes zero. The shear modulus changes relatively little with increasing material damage.

$$G = G_0 \frac{V_3}{(V_f + V_3)} \quad \sigma = \begin{cases} \sigma_0 \left(1 - \frac{V_f}{V_4}\right), & \text{if } V_f \leq V_4 \\ 0, & \text{if } V_f > V_4 \end{cases} \quad (3)$$

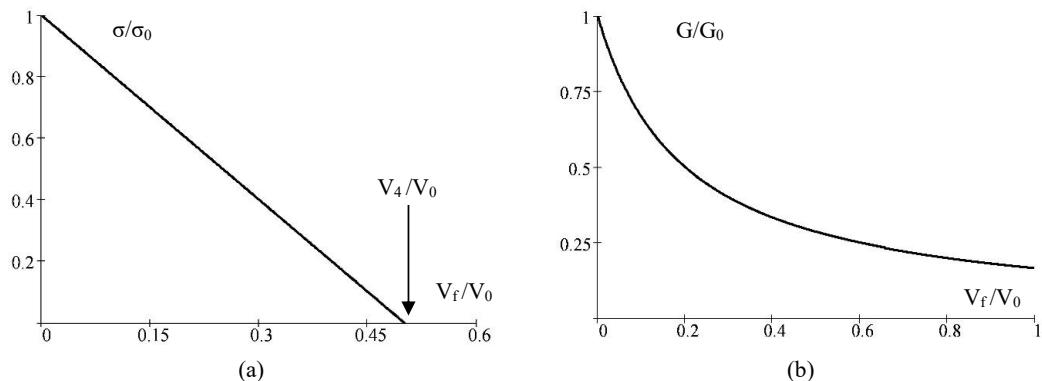
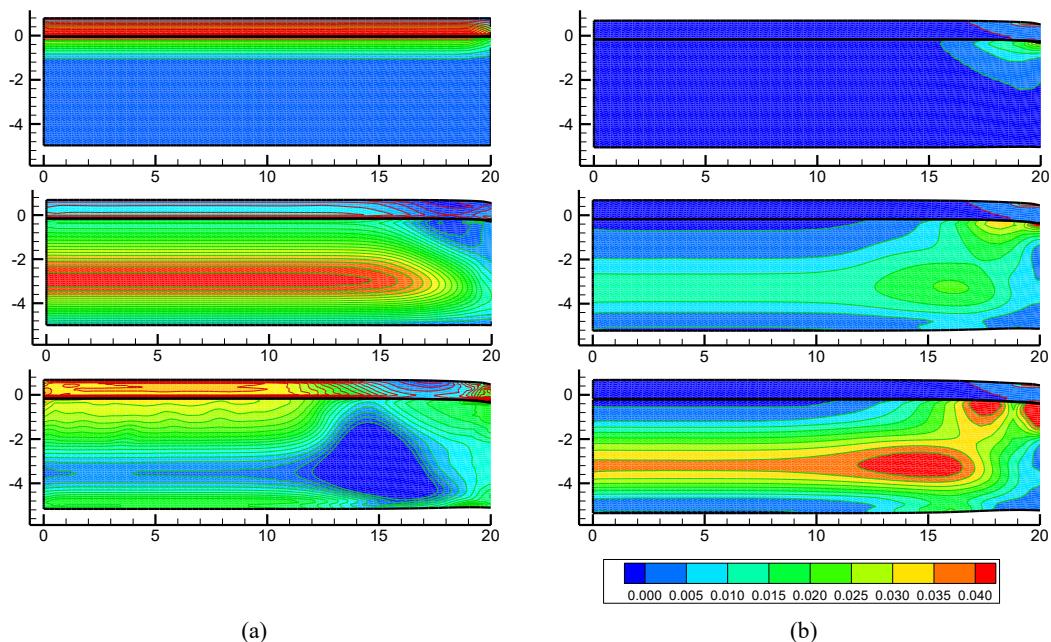


FIGURE 2. Typical dependences of yield strength (a) and shear modulus (b) on the specific volume of microdamage.

The problem was solved using a modified finite element method [13]. This FEM modification was developed by G. Johnson [15] and involves implementing the principle of local action at the computational time step for high-speed processes, eliminating the need for a global stiffness matrix. The research computer code COMP2, developed by the first author of this paper, was used for numerical modeling.

RESULTS AND DISCUSSION

Figure 3 illustrates the dynamics of shock wave propagation (Fig. 3a) and the initiation and development of microdamage regions (Fig. 3b) in the specimen and impactor. Axes are in mm.


Figure 3a shows the change in pressure fields and contours at successive time instants of 0.1, 0.8, and 1.3 μ s (from top to bottom, respectively) in the radial cross-section of the interacting bodies. For the time instant of 0.1 μ s, the range from 0 to 5.2 GPa was selected with an interval of 0.3 GPa. The results demonstrate the propagation of plane shock fronts along the impactor-plate and the target-specimen. Shock front unloading is observed on the free lateral surface. However, a significant portion of the shock front remains plane, confirming the applicability of the one-dimensional analytical estimates given in [9], at least up to a certain point in the impact process.

Middle fragment of Fig. 3a corresponds to a time moment of 0.8 μ s. The pressure range for this time moment was chosen from -0.25 to 1.86 GPa with an interval of 0.1 GPa. By this time, the shock front has moved to the center of the specimen. As it propagates, the pressure amplitude in the shock wave decreases. Also, due to unloading waves from the side surface of the specimen and the rear surface of the impactor, the shock front length is reduced. A distinctive feature of this moment in the process is the appearance of negative (tensile) pressures. In these areas, according to the active fracture model (1, 2), microdamage zones can initiate and grow.

The lower fragment of Fig. 3a corresponds to a time of 1.3 μ s. The pressure range for this time was chosen from -0.39 to 0.34 GPa with an interval of 0.02 GPa. The pressure amplitude has dropped significantly by this time. A characteristic feature of the process at this point in time is the formation of a region of negative pressure along the sample's radius, approximately one-third of the sample's height from its rear surface. In this region, rear spalling is possible. A region of negative pressure near the side surface of the sample has also developed significantly, extending from the front to the rear surfaces, encompassing the entire height of the sample.

Figure 3b shows the change in the fields and contours of the specific microdamage volume at successive time instants of 1, 1.5, and 2 μ s (from top to bottom, respectively) in the radial cross-section of the interacting bodies. The range of variation for this parameter was chosen to be common for all presented time instants and was 0–0.04 cm^3/g with an interval of 0.005 cm^3/g .

The calculation results for the time instant of 1 μ s (the upper fragment of Fig. 3b) demonstrate the initiation of microdamage regions near the lateral surface, with these regions forming in both the specimen and the impactor. The middle fragment of Fig. 3b, corresponding to the time instant of 1.5 μ s, shows the formation of spall fracture along the specimen radius. Moreover, the rear spall region is aligned with the fracture regions near the lateral surface of the specimen.

FIGURE 3. Fields and contours of process parameters in the sample: (a) pressure, (b) specific volume of microdamage.

The lower fragment of Fig. 3b, corresponding to a time of 2 μ s, demonstrates the development of both the rear spall fracture and the fracture areas near the side surface. The shape of the microdamage areas at a time of 2 μ s indicates the formation of a spall plate with a radius of approximately 2/3 of the specimen radius and a thickness of approximately 2.2 mm.

Another characteristic feature of this process is the absence of development of microdamage in the impactor at the stage of influence of shock and reflected waves. This indicates that the impactor fails via a different mechanism associated with plastic deformation.

CONCLUSION

The research results presented in this article demonstrate that the active-type kinetic fracture model can be successfully applied to describe spall fracture in the AZ31 magnesium alloy specimen under shock-wave loading.

The constants for this model are selected, the methodology for their selection is described, and it is determined that the damage in the AZ31 polycrystalline alloy, starting nucleation upon the development of tensile stresses, is equal to 0.3 GPa.

ACKNOWLEDGMENTS

The research was supported by the Russian Science Foundation (grant no. 24-79-10103, <https://rscf.ru/project/24-79-10103/>). The authors thank the Russian Science Foundation for the support.

REFERENCES

1. L. Zhang, Q. Yuan, J. Tamm, Q. Dong, H. Lv, F. Wang, A. Tang, J. Eckert, and F. Pan, Enhancing the room-temperature plasticity of magnesium alloys: Mechanisms and strategies. *Journal of Magnesium and Alloys* **12**(12), 4741–4767 (2024). <https://doi.org/10.1016/j.jma.2024.12.008>
2. E. Tur and F. Öztürk, AZ31 magnesium alloy in the aerospace industry: A review on the effect of composition, microstructure, and mechanical properties on alloy performance. *Kocaeli Journal of Science and Engineering* **7**(2), 109–130 (2024). <https://doi.org/10.34088/kojose.1334496>
3. V. V. Skripnyak and V. A. Skripnyak, Hexagonal close-packed (hcp) alloys under dynamic impacts. *Journal of Applied Physics* **131**, 165902 (2022). <https://doi.org/10.1063/5.0085338>
4. F. Zhang, Z. Liu, Y. Wang, P. Mao, X. Kuang, Z. Zhang, Y. Ju, and X. Xu, The modified temperature term on Johnson-Cook constitutive model of AZ31 magnesium alloy with {0002}. *Journal of Magnesium and Alloys* **8**(1), 172–183 (2020). <https://doi.org/10.1016/j.jma.2019.05.013>
5. S. A. Zelepugin, R. O. Cherepanov, and N. V. Pakhnutova, Optimization of Johnson–Cook constitutive model parameters using the Nesterov gradient-descent method. *Materials*, **16**, 5452. (2023). <https://doi.org/10.3390/ma1615452>
6. V. A. Skripnyak, M. O. Chirkov, and V. V. Skripnyak, Mechanical behavior of aluminum alloy 1520 under tension in the range of strain rates from 10^{-1} to 10^3 s $^{-1}$. *Vestnik TSU. Math. Mech.* **86**, 120–135. (2023). <https://doi.org/10.17223/19988621/86/9>
7. V. V. Skripnyak and V. A. Skripnyak, Mechanical behavior of titanium alloys in a mechanical punch test. *Vestnik TSU. Math. Mech.* **89**, 147–161 (2024). <https://doi.org/10.17223/19988621/89/11>
8. S. A. Zelepugin, V. V. Skripnyak, V. A. Skripnyak, and A. E. Kirushkin, Fracture model of an AZ31 magnesium alloy under dynamic loading. *Russ Phys J.*, **68**, 229–236 (2025). <https://doi.org/10.1007/s11182-025-03423-1>
9. G. V. Garkushin, G. I. Kanel', and S. V. Razorenov, High strain rate deformation and fracture of the magnesium alloy Ma2-1 under shock wave loading. *Physics of the Solid State* **54**, 1079–1085 (2012). <https://doi.org/10.1134/S1063783412050101>
10. D. D. Mallick, S. E. Prameela, D. Ozturk, C. L. Williams, M. Kang, G. M. Valentino, J. T. Lloyd, J. W. Wilkerson, T. P. Weihs, and K. T. Ramesh, Spall strength in alloyed magnesium: A compendium of research efforts from the CMEDE 10-year effort. *Mechanics of Materials* **162** 104065 (2021). <https://doi.org/10.1016/j.mechmat.2021.104065>
11. S. Ashitkov, P. Komarov, S. Romashevskiy, E. Struleva, and S. Evlashin, Shock compression of magnesium alloy by ultrashort loads driven by sub-picosecond laser pulses. *Journal of Applied Physics* **132**, 175104 (2022). <https://doi.org/10.1063/5.0082476>
12. G. I. Kanel and V. V. Sherban, Plastic deformation and spall fracture of Armco iron in a shock wave. *Combustion, Explosion, and Shock Waves*, **16**(4), 93–103 (1980).
13. V. A. Gorelski, S. A. Zelepugin, and A. Yu. Smolin, Effect of discretization in calculating three-dimensional problems of high-velocity impact by the finite-element method. *Computational Mathematics and Mathematical Physics*, **37**(6), 722–730 (1997).
14. V. A. Gorel'skii, S. A. Zelepugin, and V. N. Sidorov, Numerical solution of three-dimensional problem of high-speed interaction of a cylinder with a rigid barrier, taking into account thermal effects. *International Applied Mechanics* **30**(3), 193–198 (1994). <https://doi.org/10.1007/BF00847334>
15. G. R. Johnson, Numerical algorithms and material models for high-velocity impact computations. *International Journal of Impact Engineering* **38**, 456–472 (2011). <https://doi.org/10.1016/j.ijimpeng.2010.10.017>