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Abstract. The article presents research focused on studying the stress-strain state of a circular plate reinforced with ribs 

under the influence of an external short-term dynamic thermal load. 

INTRODUCTION 

Nowadays, special attention is paid to ensuring the strength of thin elastic structures in engineering and 

construction that are subjected to various short-term dynamic loads and high-temperature effects, which cause 

deformation processes to occur at high rates. In this research, the problems of identifying structurally vulnerable 

regions of such structures and enhancing their strength by reinforcing these areas with ribs to redistribute accumulated 

stresses were addressed. A numerical solution algorithm was developed to determine the dynamic response of annular 

ribs with constant cross-sections under non-stationary vibrations and thermoelastic deformation states of a circular 

plate, taking into account the nonlinear geometric relationships between deformations and displacements. 

METHOD 

We consider a circular plate reinforced with ribs in a ring-like pattern. The ribs have a rectangular cross-sectional 

shape and are firmly attached to the inner surface of the plate in a circular arrangement. It is assumed that the outer 

surface of the plate is subjected to a short-term, instantaneously increasing load that varies with time and temperature 

. 

FIGURE 1.  Schematic view of the ribbed plate  

 

Mathematical Model of the Problem. Taking into account the axial symmetry of the external dynamic load, the 

differential equation of motion for the ribbed plate can be written in the following form [1,2]: 
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The boundary conditions for the structure are defined as follows: 

а) The edges of the plate are clamped:      𝑢=𝑤=𝜓=0; 

b) From the condition of symmetry, at the central point 0r =  of the shell: 𝑢=
𝜕𝑤

𝜕𝑟
=𝜓=0,

 

 

The initial conditions are given at time 𝑡=0 as follows: 𝑢=𝑤=0 

The expressions for the internal stress resultants including normal and shear forces, as well as moments 

corresponding to a unit section of the ribbed plate are determined as follows:  

𝑄=𝑄0+𝑄𝑅 ; 𝑁𝑖=𝑁𝑖
0+𝑁𝑖

𝑅;  𝑀𝑖=𝑀𝑖
0+𝑀𝑖

𝑅, (𝑖=1,2).  
For the case without ribs, the internal stress resultants are taken into account as follows: 
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Here, E is the modulus of elasticity and 𝜇 is the Poisson's coefficient.; 𝐷=Eh3(1+𝜇 )−1 12⁄ ;   The mid-surface 

deformation can be expressed as follows. 
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The deformation of an arbitrary point within the plate layer is as follows: 

 𝜀1
𝑧=𝜀1+𝑧

𝜕𝜓

𝜕𝑟
; 𝜀2

𝑧=𝜀2+𝑧
𝜓

𝑟
; 𝜀13

𝑧 =𝑓(𝑧) (
𝜕𝑤

𝜕𝑟
+𝜓) ; (4) 

 ( )f z  is a function. ( ) ( )0f z f z=  represents the distribution law of the 𝜎13
𝑂  stress through the thickness of the 

plate, while ( ) ( )1f z f z=  indicates the distribution law of the 𝜎13
𝑂  stress at points located in the ring [1]; 

𝑓𝑜(𝑧)=6[0,25 − (𝑧ℎ)2], 𝑘2=56; 𝑓1(𝑧)=
3ℎ(ℎ+2𝐻)

2(ℎ+𝐻)2 ⋅ (1+2𝑧ℎ)[1 − 2𝑧(ℎ+2𝐻)], 

Here, h  is the height of the ring. 

The stress forces generated in the cross-sections of ribs installed on a circular plate are determined as follows [3]: 
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Thus, the dynamic deformation problem of the plate consists of the joint solution of the system of equations (1)-

(5) given with the complete mathematical formulation and the boundary and initial conditions. 

Solving the problem. The obtained system of equations (1), written using finite difference expressions, is as 

follows [4-6]. 

 1 1 2 22 / ( / ) / ( )n n n n n n

i i i i i iu u u U a b bU a ac b+ −= − + −   − − ; 

 𝑤𝑖
𝑛+1=2𝑤𝑖

𝑛 − 𝑤𝑖
𝑛−1+𝜏2 𝑊𝑖

𝑛 𝑎⁄ ;   (6) 
1 1 2 22 ( ) / / ( / )n n n n n

i i i i ibU a c b a   + −= − +   − −  

 

Here, ( )a h F= + , b S= , 3( /12 )c h J= + . 
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Using the given equations, the 𝑢𝑖
𝑛, 𝑤𝑖

𝑛 , 𝜓𝑖
𝑛  values at any point of the finite difference grid at any time can be 

determined.  

Thus, the solution of differential equation (1) leads to calculations based on the recurrence formula (6). 

EXPERIMENTS 

Using the obtained equations (6), an instantaneously increasing ( ) 0

1 / , 0 ,
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
 load is applied to 

a ribbed circular plate with clamped edges. Here, 0 5P MPa= , 𝛼=10−3𝑠. The stress-strain state of the circular plate 

under the loading described above is analyzed. The geometric and physical characteristics of the circular plate are as 

follows: 0.5R m= ; 0.01h m= ; 0 75600E MPa= ; 𝜈=0,3; 32640 /kg m = . The coefficient of linear thermal 

expansion is ( ) 6 1

0 1 10T s   − −= + . The temperature field is given by the function ( )T T = . 

( ) 3

0 1 10E E E T= +  MPa, 
0 11.5 = ;𝑇𝜌=0.9𝜌+20; 𝜌=𝑟+𝑘𝛥𝜌, k=0.1……31;  0,0005m = . 

The following cases of the stress-strain state of a circular plate reinforced with ribs, associated with variations in the 

cross-sections of the ribs attached to the plate, are studied. 

Let a circular plate be equipped with four ribs spaced equally at 10 centimeters apart. We consider the following 

cases where the thickness and width of the ribs are changed without altering their cross-sectional area: 

Variant 1: The ribs have a thickness of 0.02ph m=  and a width of 0.067с m= ; 

Variant 2: The ribs have a thickness of 0.04ph m=  and a width of 0.034с m= ; 

Variant 3: The ribs have a thickness of 0.067ph m=  and a width of 0.02с m= ; 

The results obtained from the calculations for these variants are depicted in the graphs: 
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FIGURE 2. Bending shapes of the plates at different time moments for cases with rib geometric dimensions (a) 0.02ph m= ,

0.067с m= ; (b) 0.04ph m= , 0.034с m= ; (c) 0.067ph m= , 0.02с m= . 

 

As can be seen from Fig. 2, the smallest maximum displacement at the center of the circular plate is observed in 

Variant 3, where ribs with smaller width and greater height are used. This leads to the conclusion that, without 

changing the volume of rib material and while maintaining the same cross-sectional area, increasing the height of the 

ribs can enhance the structural stiffness.  
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FIGURE 3. At the time moment t = 0.6 μs, the distribution of internal stress forces along the radius: (a) radial moments, 

(b) normal forces, and (c) shear forces. 



CONCLUSION 

Three different variants were considered in which the width and height of the cross-section of the ribs attached to 

the circular plate were changed without altering the cross-sectional area. In these variants, the displacements of the 

plate points, internal stress forces, and moments are compared using graphs. As seen from Fig. 2, the smallest 

maximum displacement at the center point of the circular plate is observed in Variant 3, where ribs with smaller width 

and greater height are used. This leads to the conclusion that it is possible to increase the structural strength by 

increasing the height of the ribs without changing the volume of the rib material while keeping the cross-sectional 

area constant.  

Figure 3 illustrates the processes characterizing the stress forces and moments within the structure. It can be 

observed that the variation of the 𝑁1 normal stress along the radius is uniform across all three variants at different time 

moments. In contrast, the 𝑁2 normal force and the 𝑀2 bending moment exhibit non-uniform variations, with radial 

stresses increasing in a stepwise manner at the locations where ribs are attached. 
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