

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Formulation of a Boundary Value Problem for Longitudinal-Radial Vibrations of a Transversely Isotropic Cylindrical Shell Interacting with a Viscous Fluid

AIPCP25-CF-AMSMT2025-00037 | Article

PDF auto-generated using **ReView**

Formulation of a Boundary Value Problem for Longitudinal-Radial Vibrations of a Transversely Isotropic Cylindrical Shell Interacting With a Viscous Fluid

Kazokboy Mamasoliev^{1, a)}, Elbek A. Ismoilov^{2, b)}, Zokir Khudoyberdiyev^{2, c)}

¹⁾ Samarkand State University of Architecture and Construction, Samarkand, Uzbekistan.

²⁾ Samarkand State University, Samarkand, Uzbekistan.

a) q.mamasoliyev@mail.ru

b) Corresponding author: eismoilov.samsu@gmail.com

c) xudoyberdiyevz@mail.ru

Abstract. This article investigates longitudinal-radial vibrations of a transversely isotropic cylindrical shell subjected to unsteady viscous fluid action. The problem is considered in a cylindrical coordinate system, and the motion of the shell and fluid is modelled based on the corresponding differential equations. The vibration process is described dynamically, taking into account the physical and mechanical properties of the shell and fluid materials. The stress-strain state of the shell is determined by equations based on boundary and contact conditions. The results obtained serve as a theoretical basis that can be used in solving practical problems.

Keywords: boundary conditions, contact conditions, cylindrical shell, deformation, displacement and stress, longitudinal-radial vibration, transverse-isotropic, viscous fluid.

INTRODUCTION

Within the framework of elasticity theory, numerous studies have been conducted on the study of the deformed and vibration states of cylindrical shells. The deformation of transversely isotropic cylindrical shells under normal pressure was analyzed using the theory of anisotropic shells [1]. These researches utilized the equations of three-dimensional elasticity theory, identified some errors compared to classical theory, and proposed asymptotic solutions describing the stress-strain state of anisotropic shells.

The longitudinal vibrations of a cylindrical elastic shell filled with a viscous compressible fluid were studied in [2] and the general equations of longitudinal-radial vibrations were derived taking into account the dynamic interactions between the internal fluid and the shell medium. These results allow us to analyze the coordinated motions between the cylindrical shell and the fluid.

Bango and Guz [3] studied the propagation of waves in the interaction of a compressible viscous fluid with a pre-deformed elastic layer and proposed general solutions based on the three-dimensional linear theory of elasticity and the Navier-Stokes equations. Their work is of great importance in the analysis of wave processes in hydroelastic systems.

Also, [4–6] consider the problems of determining the flow velocity, pressure distribution, and waveforms propagating along the surface of elastic cylindrical shells filled with viscous fluid. In [7,8], based on the theory of potential flow, an analysis of the pressure of a viscous fluid is carried out, and using the Galerkin method and the contour method, the influence of fluid viscosity and rotational inertia on the stability of the shell is evaluated.

Research on torsional and longitudinal-radial vibrations of viscoelastic shells is presented in [9–12], where the dynamic properties of multilayer shells are analyzed based on the Boltzmann–Volterra integral model. Within the framework of these works, general solutions have been developed that lead to refined equations of the Timoshenko

type. The results of the study show that the parameters of viscoelastic material have a significant effect on vibration frequencies and energy dissipation. Changes in the thickness and elasticity modules of the layers are also evaluated as the main factor determining the dynamic priority of the structure and the nature of the vibrations. These scientific results provide a theoretical basis for improving the vibration resistance of shell systems and preventing resonance phenomena.

In the special case of cylindrical shells, the interaction of conical shells with the environment and axisymmetric vibrations have been analyzed [13,14]. This paper investigates the influence of the geometric parameters of the shell and the elastic properties of the external environment on the natural frequencies. The results obtained serve as an important scientific basis for assessing the priority of cylindrical structures and their effective design.

The paper considers mathematical modeling of mechanical problems [15]. In this case, it can be used to study the interaction of a cylindrical shell with an elastic base. In general, the literature analyses the issues of vibration, deformation, and priority of cylindrical shell systems filled with viscous fluid based on various theoretical approaches, and the results obtained provide a scientific basis for a more in-depth study of longitudinal-radial vibrations in the interaction of a cylindrical shell with a viscous fluid.

Cylindrical shells interacting with liquids are widely used in many areas of modern technology, including aerospace structures, energy systems, hydraulic structures, oil and gas pipelines, and biotechnical structures. During the operation of such systems, it is very important to study their dynamic properties in detail, especially to determine oscillatory processes and ensure their stability and rigidity. Therefore, the analysis of the oscillatory states of shells interacting with liquids is one of the most relevant areas of research in the mechanics of deformable solids.

Previous studies have often examined the interaction of shells made of isotropic materials with ideal or incompressible fluids. However, many real technical materials, such as composite or layered structures, have transversely isotropic properties. Since their elastic parameters vary with direction, an approach based on the theory of anisotropic materials is required for accurate modeling of oscillatory processes in this case. At the same time, the viscosity of the fluid also has a significant effect on the dynamics of the system, since viscous forces cause energy dissipation and changes in oscillation frequencies..

This paper presents a mathematical model of a boundary value problem for longitudinal-radial vibrations of a transversely isotropic cylindrical shell interacting with a viscous fluid. The structure of the problem is based on a joint consideration of the equations of elastic dynamics of the shell and the Navier–Stokes equations of the fluid. Conditions of continuity of surface motion and forces between the shell and the fluid are introduced, and complete boundary value problems are formulated. This approach allows for a more realistic modelling of the physical properties of the fluid-shell system vibrations and provides a theoretical basis for the analysis of complex problems in applied mechanics.

RESEARCH METHOD

The problems of unsteady vibrations of transversely isotropic cylindrical layers and shells interacting with an internal viscous fluid are formulated. For this purpose, the types of vibrations of cylindrical transversely isotropic layers and shells are given. For these, the basic equations of elasticity theory and expressions for internal and external forces acting on the surface of isotropic cylindrical layers and shells are given. Problems concerning longitudinal-radial vibrations of circular cylindrical transversely isotropic layers and shells are formulated.

In the case of longitudinal-radial vibrations of a circular transversely isotropic cylindrical shell, if the components of the displacement vector U_r and U_z are non-zero, then the components of the stress tensor $\sigma_{rr}, \sigma_{rz}, \sigma_{\theta\theta}, \tau_{rz}$ are also non-zero.

Consequently, the equations of motion for a circular transversely isotropic cylindrical shell are as follows:

$$\begin{cases} \frac{\partial \sigma_{rr}}{\partial r} + \frac{\partial \sigma_{rz}}{\partial z} + \frac{\sigma_{rr} - \sigma_{\theta\theta}}{r} = \rho \frac{\partial^2 U_r}{\partial t^2}; \\ \frac{\partial \sigma_{rz}}{\partial r} + \frac{\partial \sigma_{zz}}{\partial z} + \frac{\sigma_{rz}}{r} = \rho \frac{\partial^2 U_z}{\partial t^2}; \end{cases} \quad (r_1 \leq r \leq r_2). \quad (1)$$

The components of the strain tensor are written as follows, using the non-zero components of the displacement vector:

$$\varepsilon_{rr} = \frac{\partial U_r}{\partial r}; \quad \varepsilon_{\theta\theta} = \frac{U_z}{r}; \quad \varepsilon_{zz} = \frac{\partial W}{\partial z}; \quad \gamma_{rz} = \frac{\partial W}{\partial r} + \frac{\partial U_z}{\partial z} \quad (2)$$

Longitudinal-radial vibrations of a transversely isotropic cylindrical shell arise under the action of forces $f_r(z, t)$ and $f_z(z, t)$ applied to its inner and outer surfaces. In this case, the boundary conditions are as follows:

a) when $r = r_1$

$$\begin{aligned}\sigma_{zz}(r, z, t) \Big|_{r=r_1} &= -p_{zz}(r, z, t) \Big|_{r=r_1}; \\ \sigma_{rr}(r, z, t) \Big|_{r=r_1} &= -p_{rr}(r, z, t) \Big|_{r=r_1}.\end{aligned}\quad (3)$$

b) when $r = r_2$

$$\begin{aligned}\sigma_{zz}(r, z, t) \Big|_{r=r_2} &= f_z(z, t) \Big|_{r=r_2}; \\ \sigma_{rz}(r, z, t) \Big|_{r=r_2} &= f_z(z, t) \Big|_{r=r_2}.\end{aligned}\quad (4)$$

c) the initial conditions are assumed to be zero.

In the case of longitudinal-radial vibrations of a circular transversely isotropic cylindrical shell, the equations of motion are solved together with the boundary conditions, and a system of vibration equations is compiled.

Using the above boundary and initial conditions, we derive the general equation for longitudinal-radial vibrations of a circular cylindrical transversely isotropic shell. The components of the stress tensor of a cylindrical body in an axisymmetric coordinate system can be written as.

$$\sigma_{rr} = C_{11} \frac{\partial U_r}{\partial r} + C_{12} \frac{U_r}{r} + C_{13} \frac{\partial U_z}{\partial z}; \quad \sigma_{\theta\theta} = C_{12} \frac{\partial U_r}{\partial r} + C_{11} \frac{U_r}{r} + C_{13} \frac{\partial U_z}{\partial z}; \quad \sigma_{zz} = C_{13} \left(\frac{\partial U_r}{\partial r} + \frac{U_r}{r} \right) + C_{33} \frac{\partial U_z}{\partial z}; \quad (5)$$

here

$$C_{ij}(\zeta) = a_{ij} \left[\zeta(t) - \int_0^t f_{ij}(t-\xi) \zeta(\xi) d\xi \right];$$

$f_{ij}(t)$ Kernels of elastic-flexible operators satisfying the condition of integration over t time; a_{ij} is elastic constants of the material.

Let us substitute the expressions for stresses (5) into the equations of motion (1) given above

$$\begin{aligned}C_{11} \frac{\partial^2 U_r}{\partial r^2} - \frac{C_{12}}{r^2} U_r + \frac{C_{12}}{r} \frac{\partial U_r}{\partial r} + C_{13} \frac{\partial^2 U_z}{\partial r \partial z} + C_{44} \left(\frac{\partial^2 U_r}{\partial z^2} + \frac{\partial^2 U_z}{\partial r \partial z} \right) + \frac{C_{11} - C_{12}}{r} \frac{\partial U_r}{\partial r} + \frac{C_{12} - C_{11}}{r^2} U_r &= \rho \frac{\partial^2 U_r}{\partial t^2}; \\ C_{44} \left(\frac{\partial^2 U_r}{\partial r \partial z} + \frac{\partial^2 U_z}{\partial r^2} \right) + C_{13} \left(\frac{\partial^2 U_r}{\partial z \partial r} + \frac{1}{r} \frac{\partial U_r}{\partial r} \right) + C_{33} \frac{\partial^2 U_z}{\partial z^2} + C_{44} \left(\frac{1}{r} \frac{\partial U_r}{\partial z} + \frac{1}{r} \frac{\partial U_z}{\partial r} \right) &= \rho \frac{\partial^2 U_z}{\partial t^2};\end{aligned}\quad (6)$$

Describe the components of the displacement vector as follows:

$$U_r = \int_0^\infty \begin{cases} \sin kz \\ -\cos kz \end{cases} dk \int_{(i)} \tilde{U}_r e^{pt} dp; \quad U_z = \int_0^\infty \begin{cases} \cos kz \\ \sin kz \end{cases} dk \int_{(i)} \tilde{U}_z e^{pt} dp. \quad (7)$$

Let us substitute expressions (7) into the system of differential equations of motion (6).

$$\begin{aligned}\tilde{C}_{11} \left(\frac{\partial^2 \tilde{U}_r}{\partial r^2} + \frac{1}{r} \frac{\partial \tilde{U}_r}{\partial r} - \frac{1}{r^2} \tilde{U}_r \right) + \tilde{C}_{44} k^2 \tilde{U}_r - k \left(\tilde{C}_{13} + \tilde{C}_{44} \right) \frac{\partial^2 \tilde{U}_z}{\partial r} &= \rho p^2 \tilde{U}_r; \\ \tilde{C}_{44} \left(\frac{\partial^2 \tilde{U}_z}{\partial r^2} + \frac{1}{r} \frac{\partial \tilde{U}_z}{\partial r} \right) - k^2 \tilde{C}_{33} \tilde{U}_z - k \left(\tilde{C}_{44} + \tilde{C}_{13} \right) \left(\frac{\partial \tilde{U}_r}{\partial r} + \frac{\tilde{U}_r}{r} \right) &= \rho p^2 \tilde{U}_z;\end{aligned}\quad (8)$$

The second member of the system of equations (8) can be written as follows

$$\begin{aligned}\tilde{\Delta}_0 \tilde{U}_r + \left(\tilde{C}_{44} \tilde{C}_{11}^{-1} k^2 - \rho p^2 \tilde{C}_{11}^{-1} \right) \tilde{U}_r - k \tilde{B}_1 \frac{\partial \tilde{U}_z}{\partial r} &= 0; \\ \tilde{\Delta}_0 \frac{\partial \tilde{U}_z}{\partial r} - \left(k^2 \tilde{C}_{33} \tilde{C}_{44}^{-1} + \rho p^2 \tilde{C}_{44}^{-1} \right) \frac{\partial \tilde{U}_z}{\partial r} - k \tilde{B}_2 \tilde{\Delta}_0 \tilde{U}_r &= 0;\end{aligned}\quad (9)$$

Here

$$\tilde{\Delta}_0 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} - \frac{1}{r^2}; \quad \tilde{B}_1 = (\tilde{C}_{13} + \tilde{C}_{44}) \tilde{C}_{11}^{-1}; \quad \tilde{B}_2 = (\tilde{C}_{13} + \tilde{C}_{44}) \tilde{C}_{44}^{-1};$$

As above, we can form expressions for the interchangeable migrations of \tilde{U}_r and \tilde{U}_z as follows:

$$\begin{aligned}
\tilde{U}_z &= \frac{1}{\alpha^2 k \tilde{B}_1} \sum_{n=0}^{\infty} \left\{ k \tilde{B}_1 \alpha_1^2 \alpha_2^2 (\tilde{P}_n - \alpha^2 \tilde{P}_{n-1}) \tilde{U}_{z,0} - (\alpha_1^2 - \alpha^2)(\alpha_2^2 - \alpha^2) \tilde{P}_n \tilde{U}_{r,0} \right\} \frac{(r/2)^{2n}}{(n!)^2} + \\
&+ \frac{\xi}{k \tilde{B}_1} \sum_{n=0}^{\infty} \eta_{6,n}(r) \left[k \tilde{B}_1 (\tilde{P}_{n+1} - \alpha^2 \tilde{P}_n) \tilde{U}_{z,1} \right] - (\alpha_1^2 - \alpha^2)(\alpha_2^2 - \alpha^2) P_n U_{r,1} \frac{(r/2)^{2n}}{(n!)^2}; \\
\tilde{U}_r &= \frac{\xi}{r} \tilde{U}_{r,1} + \frac{1}{\alpha^2} \sum_{n=0}^{\infty} \left[(\alpha^2 \tilde{P}_{n+1} - \alpha_1^2 \alpha_2^2 \tilde{P}_n) \tilde{U}_{r,0} + k \tilde{B}_1 \alpha_1^2 \alpha_2^2 \tilde{P}_n \tilde{U}_{z,0} \right] \frac{(r/2)^{2n+1}}{(n!)(n+1)!} + \\
&+ \xi \sum_{n=0}^{\infty} \eta_{7,n}(r) \left[(\alpha^2 \tilde{P}_{n+1} - \alpha_1^2 \alpha_2^2 \tilde{P}_n) \tilde{U}_{r,1} + k \tilde{B}_1 \tilde{P}_{n+1} \tilde{U}_{z,1} \right] \frac{(r/2)^{2n+1}}{n!(n+1)!}.
\end{aligned} \tag{10}$$

Here

$$\tilde{P}_n = \sum_{i=0}^{n-1} \alpha_2^{2(n-i-1)} \alpha_1^{2i}; \quad \tilde{P}_0 \equiv 0; \quad \tilde{P}_1 \equiv 1; \quad \tilde{P}_2 = \alpha_1^2 + \alpha_2^2; \quad \alpha_1^2 \alpha_2^2 P_{-1}^2 = -1.$$

Let us express the stresses through the components \tilde{U}_z and \tilde{U}_r of this displacement vector, for which we apply operators λ , λ_1^2 , λ_2 to (8) and (10):

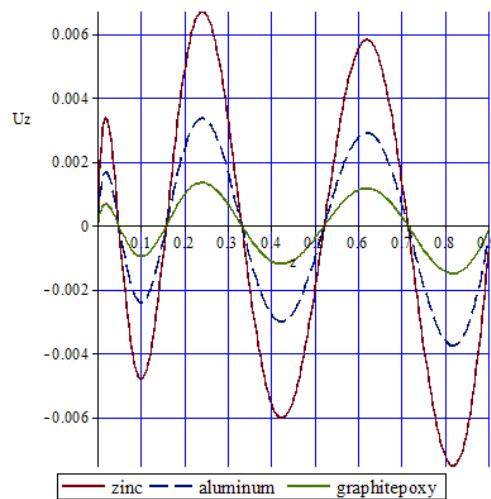
$$\begin{aligned}
\lambda &= C_{11}^{-1} \left(\rho \frac{\partial^2}{\partial t^2} - C_{44} \frac{\partial^2}{\partial z^2} \right); \\
\lambda_1^2 &= C_{11}^{-1} \left(\rho^2 C_{44}^{-1} \frac{\partial^4}{\partial t^4} - \rho (1 + C_{33} C_{44}^{-1}) \frac{\partial^4}{\partial t^2 \partial z^2} + C_{33} \frac{\partial^4}{\partial z^4} \right); \\
\lambda_2 &= \rho (C_{11}^{-1} + C_{44}^{-1}) \frac{\partial^2}{\partial t^2} - \left(C_{44} C_{11}^{-1} + C_{44}^{-1} C_{33} + C_{44}^{-1} C_{11}^{-1} (C_{13} + C_{44})^2 \right) \frac{\partial^2}{\partial z^2};
\end{aligned} \tag{11}$$

(11) performing mathematical simplifications and introducing definitions using action operators, we write it in the following form,

$$\begin{aligned}
A_{11} \frac{\partial U_{z,0}}{\partial z} + B_{11} U_{r,0} + N_{11} \frac{\partial U_{z,1}}{\partial z} + M_{11} U_{r,1} &= S_{11} f_r(z, t); \quad A_{21} \frac{\partial U_{z,0}}{\partial z} + B_{21} U_{r,0} + N_{21} \frac{\partial U_{z,1}}{\partial z} + M_{21} U_{r,1} = S_{21} f_r(z, t); \\
A_{31} \frac{\partial U_{z,0}}{\partial z} + B_{31} U_{r,0} + N_{31} \frac{\partial U_{z,1}}{\partial z} + M_{31} U_{r,1} &= S_{31} p_s; \quad A_{41} \frac{\partial U_{z,0}}{\partial z} + B_{41} U_{r,0} + N_{41} \frac{\partial U_{z,1}}{\partial z} + U_{r,1} = 0;
\end{aligned} \tag{12}$$

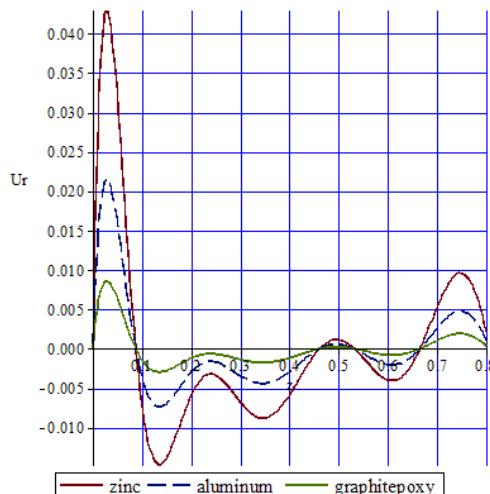
the following definitions are included here

$$\begin{aligned}
A_{11} &= a_{11} \frac{\partial^4}{\partial t^4} + a_{12} \frac{\partial^4}{\partial t^2 \partial z^2} + a_{13} \frac{\partial^4}{\partial z^4} + a_{14} \frac{\partial^2}{\partial t^2} + a_{15} \frac{\partial^2}{\partial z^2}, \quad B_{11} = b_{11} \frac{\partial^4}{\partial t^4} + b_{12} \frac{\partial^4}{\partial t^2 \partial z^2} + b_{13} \frac{\partial^4}{\partial z^4} + b_{14} \frac{\partial^2}{\partial t^2} + b_{15} \frac{\partial^2}{\partial z^2}, \\
N_{11} &= n_{11} \frac{\partial^4}{\partial t^4} + n_{12} \frac{\partial^4}{\partial t^2 \partial z^2} + n_{13} \frac{\partial^4}{\partial z^4} + n_{14} \frac{\partial^2}{\partial t^2} + n_{15} \frac{\partial^2}{\partial z^2}, \quad M_{11} = m_{11} \frac{\partial^4}{\partial t^4} + m_{12} \frac{\partial^4}{\partial t^2 \partial z^2} + m_{13} \frac{\partial^4}{\partial z^4} + m_{14} \frac{\partial^2}{\partial t^2} + m_{15} \frac{\partial^2}{\partial z^2}, \\
S_{11} &= s_{11} \frac{\partial^2}{\partial t^2} + s_{12} \frac{\partial^2}{\partial z^2}, \quad A_{21} = a_{21} \frac{\partial^4}{\partial t^4} + a_{22} \frac{\partial^4}{\partial t^2 \partial z^2} + a_{23} \frac{\partial^4}{\partial z^4}, \quad B_{21} = b_{21} \frac{\partial^4}{\partial t^2 \partial z^2} + b_{22} \frac{\partial^4}{\partial z^4}, \\
N_{21} &= n_{21} \frac{\partial^4}{\partial t^4} + n_{22} \frac{\partial^4}{\partial t^2 \partial z^2} + n_{23} \frac{\partial^4}{\partial z^4}, \quad M_{21} = m_{21} \frac{\partial^4}{\partial t^4} + m_{22} \frac{\partial^4}{\partial t^2 \partial z^2} + m_{23} \frac{\partial^4}{\partial z^4}, \quad S_{21} = s_{21} \frac{\partial^3}{\partial z \partial t^2} + s_{22} \frac{\partial^3}{\partial z^3}, \\
A_{31} &= a_{31} \frac{\partial^4}{\partial t^4} + a_{32} \frac{\partial^4}{\partial t^2 \partial z^2} + a_{33} \frac{\partial^4}{\partial z^4} + a_{34} \frac{\partial^3}{\partial t^3} + a_{35} \frac{\partial^3}{\partial t \partial z^2} + a_{36} \frac{\partial^2}{\partial t^2} + a_{37} \frac{\partial^2}{\partial z^2}, \\
B_{31} &= b_{31} \frac{\partial^4}{\partial t^4} + b_{32} \frac{\partial^4}{\partial t^2 \partial z^2} + b_{33} \frac{\partial^4}{\partial z^4} + b_{34} \frac{\partial^2}{\partial t^2} + b_{35} \frac{\partial^2}{\partial z^2}, \\
N_{31} &= n_{31} \frac{\partial^4}{\partial t^4} + n_{32} \frac{\partial^4}{\partial t^2 \partial z^2} + n_{33} \frac{\partial^4}{\partial z^4} + n_{34} \frac{\partial^3}{\partial t^3} + n_{35} \frac{\partial^3}{\partial t \partial z^2} + n_{36} \frac{\partial^2}{\partial t^2} + n_{37} \frac{\partial^2}{\partial z^2}, \\
M_{31} &= m_{31} \frac{\partial^4}{\partial t^4} + m_{32} \frac{\partial^4}{\partial t^2 \partial z^2} + m_{33} \frac{\partial^4}{\partial z^4} + m_{34} \frac{\partial^2}{\partial t^2} + m_{35} \frac{\partial^2}{\partial z^2}, \quad S_{31} = s_{31} \frac{\partial^2}{\partial t^2} + s_{32} \frac{\partial^2}{\partial z^2},
\end{aligned}$$


$$A_{41} = a_{41} \frac{\partial^4}{\partial t^4} + a_{42} \frac{\partial^4}{\partial t^2 \partial z^2} + a_{43} \frac{\partial^4}{\partial z^4}, \quad B_{41} = b_{41} \frac{\partial^4}{\partial t^2 \partial z^2} + b_{42} \frac{\partial^4}{\partial z^4}, \quad N_{41} = n_{41} \frac{\partial^4}{\partial t^4} + n_{42} \frac{\partial^4}{\partial t^2 \partial z^2} + n_{43} \frac{\partial^4}{\partial z^4},$$

$$M_{41} = m_{41} \frac{\partial^4}{\partial t^4} + m_{42} \frac{\partial^4}{\partial t^2 \partial z^2} + m_{43} \frac{\partial^4}{\partial z^4}.$$

In these definitions, $a_{ij}, b_{ij}, n_{ij}, m_{ij}$ depends on quantities that depend on the geometric and physical parameters of the cylindrical shell under consideration [16]. By solving this system of equations (12) using the necessary functions of type $U_{r,0}, U_{z,0}, U_{r,1}$ and $U_{z,1}$, it is possible to find the displacements and stresses arising at the points of their cross-sections during unsteady oscillations of circular transversely isotropic cylindrical layers and shells interacting with an internal viscous fluid.


RESULTS ANALYSIS

To solve the system of equations (12), use the finite difference method. The geometric dimensions of the circular cylindrical shell for solving the system of equations using the finite difference method in Maple are as follows: $l=1\text{ m}$, $r_1=0.2\text{ m}$, $r_1=0.128\text{ m}$. Let us compare the displacements that occur in them under the action of torque when the material of a transversely isotropic cylindrical shell interacting with a viscous fluid (zinc $\rho=7140\text{ kg/m}^3$, $C_{11}=1.583 \cdot 10^{11}\text{ N/m}^2$, $C_{12}=0.315 \cdot 10^{11}\text{ N/m}^2$, $C_{13}=0.474 \cdot 10^{11}\text{ N/m}^2$, $C_{33}=0.616 \cdot 10^{11}\text{ N/m}^2$, $C_{44}=0.40 \cdot 10^{11}\text{ N/m}^2$, graphite epoxy $\rho=1700\text{ kg/m}^3$, $C_{11}=0.139 \cdot 10^{11}\text{ N/m}^2$, $C_{12}=0.064 \cdot 10^{11}\text{ N/m}^2$, $C_{13}=0.064 \cdot 10^{11}\text{ N/m}^2$, $C_{33}=1.160 \cdot 10^{11}\text{ N/m}^2$, $C_{44}=0.070 \cdot 10^{11}\text{ N/m}^2$) changes (Fig. 1 and Fig. 2). We compare the displacements arising in them under the action of torque when changing the material of a transversely isotropic cylindrical shell interacting with a viscous fluid (Fig. 1 and Fig. 2). Using the solutions of the obtained system of equations for longitudinal-radial vibrations of a circular cylindrical shell, we construct graphs of the change in the components of the displacement vector U_z and U_r as a function of the coordinate z .

FIGURE 1. Graph showing the change in the displacement vector component U_z as a function of the z coordinate when the material of the cylindrical shell changes.

Figure 1 shows a graph of the change in the displacement vector component U_z as a function of coordinate z for shell materials – zinc, aluminium and graphite epoxy resin – under a torque $10 \cdot 10^3 \text{ N} \cdot \text{m}$ applied to the end face of a circular cylindrical shell interacting with an internal viscous fluid.

FIGURE 2. Graph showing the change in the displacement vector component U_r as a function of the z coordinate when the material of the cylindrical shell changes.

Figure 2 shows a graph of the change in the displacement vector component as a function of coordinate z when torque U_r is applied to the end face of a circular cylindrical shell interacting with an internal viscous fluid $10 \cdot 10^3 N \cdot m$ for shell materials: zinc, aluminium, graphite epoxy resin.

CONCLUSION

This paper develops a mathematical model of the boundary value problem for longitudinal-radial vibrations of a transversely isotropic cylindrical shell interacting with a viscous fluid. The problem was considered in a cylindrical coordinate system and modeled based on the elastic theory of shell and fluid motion and the Navier-Stokes equations. A complete boundary value problem is formulated, taking into account the conditions of surface adhesion between the shell and the fluid. By solving the system of equations (12), the displacements and stress states of the shell are determined, and the dynamic properties of a circular cylindrical layer under the influence of an internal viscous fluid are analyzed. The calculations used the finite difference method and the Maple mathematical package, and a comparison was made of the amplitudes of vibrations of shells made of different materials – zinc, aluminum and graphite epoxy.

The results show that the shell material and fluid viscosity have a significant effect on the dynamic properties of the system. In particular, as the elastic modulus of the material increases, the displacement decreases, while viscosity weakens the amplitude of oscillations and increases energy dissipation. The results of the study serve as an important theoretical basis for determining the vibration processes of cylindrical shells interacting with viscous fluids, assessing their priority, and effectively designing structures used in aerospace, hydraulic, and energy engineering.

REFERENCES

1. S. M. Bauer, O. G. Klets, N. F. Morozov, Behavior of transversally isotropic cylindrical shells under dynamic application of radial pressure, *Mechanics of Solids*, Vol. **43**, No. 4, pp. 539–544, (2008). DOI:10.3103/S0025654408040031
2. Kh. Khudoynazarov, B. Yalgashev, Longitudinal vibrations of a cylindrical shell filled with a viscous compressible liquid, *E3S Web of Conferences*. **264**, 02017, (2021). <https://doi.org/10.1051/e3sconf/202126402017>
3. N. Guz, A. P. Zhuk, A. M. Bagno, Dynamics of elastic bodies, solid particles, and fluid parcels in a compressible viscous fluid (Review), *International Applied Mechanics*, Vol. **52**, No. 5, (2016). DOI 10.1007/s10778-016-0770-6

4. H. Yajuan, S. Yunhui, P. Panpan, Theoretical study on fluid velocity for viscous fluid in a circular cylindrical shell, *The Open Mechanical Engineering Journal*, 9. pp. 826-830, (2015).
5. S. M. Aul'chenko, V. O. Kaledin, Yu. V. Anikinab, Modeling a mechanism of decreasing the drag of a shell of revolution streamlined by a viscous fluid, *Technical Physics Letters*, **33**, No. 9. pp. 755-757, (2007). DOI:10.1134/S106378500709012X
6. J. O. Kim, H. Y. Chun, Interaction Between the Torsional Vibration of a Circular Rod and an Adjacent Viscous Fluid, *Journal of Vibration and Acoustics*, **125**, (2016). DOI: 10.1115/1.1525004
7. W.-B. Ninga, M. Zhong, G. Hua, Y. Luo, Dynamic response of a functionally graded cylindrical shell subjected to swirling annular flow including the fluid viscous effects, *International Journal of Mechanical Sciences*, **134**, pp. 136–143, (2017). <https://doi.org/10.1016/j.ijmecsci.2017.09.053>
8. U. Saydullaev Filtering suspensions taken into account convective transfer of particles during pulsational pressure oscillations, *AIP Conf. Proc.*; 3244 (1), 020073, (2024).
<https://doi.org/10.1063/5.0241642>.
9. B. F. Yalgashev, E. A. Ismoilov and Z. B. Khudoyberdiev. Torsional vibrations of layered cylindrical viscoelastic shells and rods, *AIP Conference Proceedings* 2637, 030023 (2022);
<https://doi.org/10.1063/5.0118588>
10. D. Kholikov, Z. Shukurov; E. Ismoilov, K. Xaydarova, Experimental determination of the intensified deformed state of elastic thin-walled shell, *AIP Conf. Proc.* 3177, 050020 (2025).
<https://doi.org/10.1063/5.029593>
11. K. Khudynazarov, K. Mamasoliyev, E. Ismoilov, Non-stationary influence of a transverse-isotropic cylindrical shell with a viscous compressed fluid, *AIP Conf. Proc.* 3177, 050005 (2025)
<https://doi.org/10.1063/5.0294882>
12. D. Kholiqov, J. Abdurazzoqov, R. Usmonov, K. Xaydarova, Free torsional vibration of an elastic thin-walled cylindrical shell with variable cross sectio, *AIP* 2024/11/27 060029-1.
<https://doi.org/10.1063/5.0241748>
13. R. Khalmurodov, Kh. Ismoilov, Frequency Analysis of Axisymmetric Vibrations of a Conical Shell in a Deformable Medium, *AIP Conference Proceedings* 3244, 060032 (2024).
<https://doi.org/10.1063/5.0241498>
14. R. Khalmurodov, Kh. Ismoilov, Z. Khudayberdiyev, B. Babajanov, Vibar-tion of a circular truncated conical shell interacting with a deformable medium, *AIP Conference Proceedings* 3177, 050011 (2025).
<https://doi.org/10.1063/5.0295160>
15. K. Mamasoliyev, M. Mirsaidov, Mathematical model and analytical solution of the contact problem of bending a slab lying on an inhomogeneous combined base, *AIP Conf. Proc.* 3177, 050006 (2025),
<https://doi.org/10.1063/5.0295291>
16. E. A. Ismoilov, Equations of longitudinal-radial vibrations of a transversally isotropic cylindrical shell interacting with an internally viscous fluid, *Ilm Sarchashmaliari* Scientific and theoretical, methodological journal, pp. 35-41, (2025).

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 Walt Whitman Road, Suite 300, Melville, NY 11747-4300 USA; Phone 516-576-2268; Email: rights@aip.org.

Article Title ("Work"):

Formulation of a Boundary Value Problem for Longitudinal- Radial Vibrations of a Transversely Isotropic Cylindrical Shell Interacting with a Viscous Fluid

All Author(s):

Kazokboy Mamasoliev

Elbek A. Ismoilov

Zokir Khudoyberdiyev

Title of Conference: AMSMT2025

Name(s) of Editor(s): Valentin L. Popov

All Copyright Owner(s), if not Author(s):

(Please list all copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(ies) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

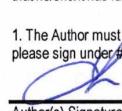
Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.


Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript file.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approval of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #3 below):

 Elbek A. Ismoilov **13.10.2025**
Author(s) Signature Print Name Date

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner Authorized Signature and Title Date

3. If an Author is a U.S. Government employee, such Author must please sign below. The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature Print Name Date

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract #(s) _____ [1.16.1]

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University, <http://arxiv.org/>.

Commercial and noncommercial scholarly use: Noncommercial scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. Commercial uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrclist/>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is *not* considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.