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INTRODUCTION.
The mixed finite element method (MFEM) is based on the idea of simultaneously approximating displacements, stresses, and strains. This leads to an increase in the number of corresponding equations and a higher computational cost. Therefore, it becomes necessary to conduct studies aimed at exploring the capabilities of MFEM that is, the investigation of the existence, uniqueness, and stability of solutions, as well as assessing the method’s effectiveness in solving specific problems in mechanics. The present work is devoted to the development of MFEM in the context of linear elasticity problems and its mathematical justification. Conditions for the solvability of the corresponding discrete problems are obtained [1-6].
STATEMENT OF THE PROBLEMS (ISSUE)
Let us consider a boundary value problem of linear elasticity in a generalized formulation [7].
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To construct mixed finite element methods (MFEM), we perform an approximation, replacing the spaces and , where  and , with finite-dimensional subspaces  and . In this case, the parameter is .


On the domain , we perform the discretization :

	    	(4)







Here, the diameter of the circumscribed sphere around  is , and the diameter of the inscribed sphere in  is denoted by . The number of subsets  is denoted by  — a constant that does not depend on .


Let the sets of nodes for displacements and stresses (strains) be denoted by  and , respectively [8-9]:

	 	(5)




The sets of piecewise polynomial functions for  and  are defined as follows:  and , possessing certain properties.

	 	 (6)

		                  (7)

	       	                                      (8)

	         	                                    (9)





the collection of subsets in  containing the nodes  and  is denoted by  and , respectively.
Using linear combinations of the above-mentioned basis functions, we define the functions for displacements and stresses (strains):

	          	     (10)

	               	   (11)


They, in turn, are  and , which are finite element spaces satisfying the following conditions:

	  	 (12)

	  	 (13)

	 	(14)


Therefore, (13) and (14) are the approximating spaces for displacements and stresses (strains), respectively, with the following conditions holding:  and .






Let us consider the finite-dimensional spaces  and . Their elements are the following basis functions:  and , with  and . 










It is assumed that  and  hold if  and . Then,  and  are mapping operators from  to  and from  to , respectively. They are defined as follows:

	  	(15)

	   	  (16)
From conditions (6) and (7), we obtain:

	  	  (17)

	  	   (18)
Thus, the following functions correspond to the numerical parameters (17) and (18):

	   	  (19)

	   	   (20)

With the following formulas, we introduce a set of functions: . 
where

		  (21)





The notation  refers to polynomial coordinate functions within the bounds of , satisfying the condition: . Let  denote the linear span of the functions :

	 	(22)







Based on the independence of , we obtain the independence of the functions  . Therefore, the dependence of  is interpreted by  as a Hilbert space dependence. Then the linear operator  acts from  to , defined by the following relations:

	 	 (23)


 is the image of the operator .
SOLUTION OF THE PROBLEM

Find  such that

	; 	  (24)

	; 	 (25)

	; 	 (26)


An arbitrary function from  and  is uniquely represented in the form of (19) and (20). Then (24)–(26) can be represented in the following form:

	 	 (27)

	,  	  (28)

	, 	 (29)






The adjoint operators ,  and  to the operators ,  and  are defined by the relations:

	 	 (30)

	 	(31)

	 	(32)

Next, we introduce the linear operator :

	  	 (33)

Then  is represented in the form:


	   в     	 (34)


In detail, we define the linear operator  as :

	 	 (35)

where  is represented in the form:


	   в   	 (36)

Next, we define the linear operator :

	 	(37)

where  is represented in the form:


	   в   	 (38)



Let  denote the transpose of the operator , where  is defined as follows:

	 	 (39)

Then  can be represented in the form:


	 в   	 (40)




Based on the definition of the operators , , , , equations (29)–(31) can be written in the form of operator equations:


	 в   	(41)


	 в  	(42)


	 в  	(43)
In this case,

	 	(44)

	 	 (45)

Taking into account that  can be represented in the form:


	 в  	 (46)




where  is the restriction of the operator  to , and the element  is defined by the formula:

	 	 (47)



The element  is the restriction of  to .
Taking into account the above formulas, the system of equations (41)–(43) can be written in the form:


	 в   	 (48)


	 в   	(49)


	 в  	 (50)
The latter system can be represented as a single operator equation:


  в                                                                         (51)

In this case, the linear operator  is defined by the formula:


	  в  	 (52)

The element  is defined by the formula:ой:


	  в  	 (53)
Thus, equations (48)–(50) define the system of finite element equations for the problem of elasticity theory [2].


Let's consider the question of existence and uniqueness of the approximate solution. To this end, we define scalar products on the spaces  and .


	  в  	 (54)


	  в  	(55)



It follows that (55) is a norm on  and that it is a Hilbert space isomorphic to . According to (54) and the operator , we obtain:


	  в  	 (56)







And this ensures that  is the operator of canonical isometry from  into ; then there exists , the inverse of , called the Ross operator, and  is unique. Defining in  the scalar product:

	 	(57)

Let us establish that  is also a Hilbert space such that.

	  	 (58)



















Now we construct a scalar product on ; for this we establish a correspondence between  and . To each element ,  we associate its projection onto . This association is an operator in . Denote the operator that performs this by . By definition is the operator of orthogonal projection of  onto . The element  is the orthogonal projection of ,  onto . This means that the difference  −  is orthogonal (with respect to the inner product in)  to any arbitrary element from , i.e.

	  	(59)


Based on the definitions of the operators  and , we have:

	 	 (61)


As is known,  and , we have:


	 в  	(62)

Thus,  is uniquely determined by the formula:

	 	 (63)

This makes it possible to define the operator  using the following expression:

		(64)

Let us note some properties of the orthoprojector . Based on (59), we have:

		(65)
Next,


	    в 	 (66)
Using (65) as well as the Cauchy–Bunyakovsky–Schwarz inequality, we find:

		(67)
it follows that

	 	 (68)



the equality holds only on the common elements of  and . Based on (68), the norm of the operator  is:

	 	 (69)
Suppose

	 	(70)



Here,  is a positive number independent of . The given relations make it possible to define the scalar product on :

		(71)

the norm in  is defined by the formula:

	 	 (72)

The norm in  is defined by the formula:

		 (73)
Based on the following relations:

	 	(74)



It can be concluded that  is the operator of the canonical isometry from  to  and is represented as:

	 	 (75)



Obviously,  is the Riesz operator for , and a scalar product can be introduced on :

	 	(76)





and  is also a Hilbert operator/space. Based on the above relations, we will show that (51) has a unique solution. It is necessary to assume certain properties regarding the operator . We consider  to be a linear, self-adjoint, positive definite, and bounded operator from  to , with the condition that:

	 	 (77)

	 	(78)
Taking into account that,

	 	(79)
and

		(80)
based on (79), we have:

		(81)
Moreover, based on the Cauchy–Bunyakovsky–Schwarz inequality and (78), we obtain:

		 (82)



Thus,  is a positive definite and bounded operator  from  to.



Then there exists an operator  acting from  to  such that

	  	(83)

This means that equation (51) has a unique solution that depends continuously on the right-hand side, i.e., on the element , and we obtain the following estimates:

	  	 (84)

	 	(85)

		(86)
As a result, we obtain the following estimates:

		(87)

		 (88)

		(89)

Since  has this property, then by the embedding theorem and the equivalence of norms

		(90)


Based on the formula for determining the element  and the norm of , we obtain:

	 	 (91)
As a result, estimates (84)–(86) take the following form:

	 	(92)

		(93)

		(94)

Therefore, the solution of the system of equations (48)–(50) exists and depends continuously on .


It is not difficult to show that the problem (48)–(50) has a unique solution. Let  and  be two solutions. Substituting them into (48)–(50) and subtracting one set of equations from the other, we obtain:



Then, by virtue of (92)–(94), we have . Therefore, the problem (48)–(50) is well-posed.
CONCLUSION
In conclusion, we note that condition (70), used in the consideration of the existence, uniqueness, and stability of the solution to the discrete problem (48)–(50), also plays an important role in proving the convergence of the mixed approximation process. At the same time, the lower bound estimates of the quantity 11111 are constructed for each specific projection-grid scheme and often are not a trivial task. Attempting to ignore condition (70) leads to an ill-conditioned system of equations upon mesh refinement, from which the discrete solution is determined with unsatisfactory accuracy.
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