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Abstract. This article explores one–dimensional, nonstationary nonlinear wave problems involving an underground 

pipeline and the surrounding soil medium. The two systems are interconnected through conditions at their contact 

surface. Nonlinear laws that describe the variation of the friction force, which occurs in two stages, govern these 

conditions. In the initial stage, the friction force develops in response to relative displacement. In the second stage, the 

friction behavior conforms to the Amontons–Coulomb law. The numerical solution to this problem was obtained by 

employing the method of characteristics, followed by the finite difference method. During the process of obtaining 

numerical solutions, it was observed that the discretization steps in the computational domains on two conjugate 

characteristic planes significantly influence the stability of the results. This article discusses these computational features 

and other important aspects relevant to achieving a stable numerical solution for the "underground pipeline–soil medium" 

mechanical system. By establishing appropriate discretization steps, stable numerical solutions were successfully derived 

for the wave problems in question. The analysis of the numerical results indicated that when a low–frequency seismic 

wave propagates in soil, it generates soliton–like interaction waves with large amplitudes in the underground pipeline. 

INTRODUCTION 

The challenges associated with the seismic resistance of underground pipelines are often simplified to  

one–dimensional models [1–4]. In references [1] and [2], the pipeline is treated as a one–dimensional extended rod, 

which simplifies the analysis of its seismic resilience. References [3] and [4] consider the pipeline in conjunction 

with the surrounding soil medium, where the wave propagation problems for both the pipeline and the soil are 

addressed separately. 

Non–stationary boundary value problems related to seismic wave propagation in soils are discussed in [5]. When 

a pipeline is situated within a soil medium experiencing a seismic load, the significantly greater deformation 

properties of the soil compared to those of the pipeline result in interaction forces at their contact surface. The 

longitudinal interaction laws between an underground pipeline and the surrounding soil are explored in [6], 

highlighting their notable nonlinearity due to the degradation of the soil contact layer under intense interaction [7]. 

The relevance of these laws to seismic resistance problems for underground pipelines is demonstrated in [4] and [7].  

However, incorporating the external soil medium into the seismic resistance analysis for underground pipelines 

introduces complex coupled wave problems. This approach necessitates the simultaneous exploration of numerical 

solutions in two domains and their synchronization. This article focuses on the challenges of algorithm development 

and the achievement of stable numerical solutions for such non–stationary one–dimensional coupled nonlinear wave 

problems. 

Numerous studies have been devoted to the wave processes in soils and numerical methods for solving wave 

problems for soils and underground pipelines were developed. The classical foundations of numerical methods and 

their practical application are presented in [8]. 

The three–dimensional numerical manifold method (3DNMM) has been further refined for mathematical 

modeling of wave propagation through homogeneous jointed rock masses, as discussed in [9]. To minimize the 



negative impact of artificial boundaries, a viscous non–reflecting boundary is introduced to effectively absorb wave 

energy, thus enhancing the 3DNMM. Additionally, to model the elastic recovery properties of the infinite problem 

domain, a viscoelastic boundary, which evolves from the viscous non–reflecting boundary, is applied to improve the 

3DNMM model. 

Reference [10] focuses on a numerical method for computer modeling of wave propagation in three–dimensional 

dynamic loading problems for complex structures. This method utilizes a grid–characteristic approach that employs 

unstructured tetrahedral hierarchical meshes, multiple time steps, and high–order interpolation. By allowing the use 

of multiple time steps, the grid–characteristic method enhances performance and significantly reduces computation 

time.  

In [11], an efficient method for modeling elastic wave propagation in unbounded domains is developed. It 

applies to soil–structure interaction problems involving scalar and vector waves, unbounded domains of arbitrary 

geometry, and anisotropic soil. A scalable boundary finite element method is used to derive a new equation for the 

unit impulse response matrix of displacement at the soil–structure interface. The proposed method is based on a 

piecewise linear approximation of the first derivative of the unit impulse response matrix of displacement and on the 

introduction of an extrapolation parameter to improve numerical stability. When combined, these two ideas allow 

the selection of significantly larger time steps compared to conventional methods, thus leading to higher efficiency. 

In reference [12], the study aims to develop an efficient finite–difference scheme for solving direct seismic 

problems based on the equations governing the dynamics of elastic media in an axisymmetric formulation. For the 

numerical implementation of the scheme on multiprocessor computing systems, a two–cycle splitting method with 

respect to spatial variables was employed. During the splitting stages, one–dimensional systems of equations were 

decomposed into subsystems representing longitudinal, transverse, and torsional waves. This paper focused 

specifically on the case of longitudinal waves. A comparison was made between explicit grid–characteristic schemes 

and implicit predictor–corrector schemes with controlled energy dissipation, using exact solutions that describe 

traveling monochromatic waves. 

In reference [13], traveling–wave solutions to the combined Korteweg–de Vries equation and a complex–

coupled equation were obtained using the automatic Bäcklund transform method. The finite–difference method was 

utilized for the numerical approximation of the exact solutions. Additionally, these exact traveling–wave solutions 

were compared with the numerical solutions through tables and figures.  

In reference [14], the Rayleigh wave velocity, a crucial parameter in ground motion analysis, was directly 

determined in an unconfined soil medium using numerical simulations with ABAQUS. The Rayleigh wave (R–

wave) velocity was calculated from the displacement time history of a finite element model. Based on the results, a 

linear prediction equation for determining the R–wave velocity in soil was proposed. For this purpose, a two–

dimensional finite element model was developed in conjunction with infinite elements at the boundary, subjected to 

dynamic loading. After confirming the presence of an R–wave in the soil medium through particle motion and 

verifying the displacement time history with analytical models, the R–wave velocity was determined using the 

positive peak vertical displacement of the particle. 

Mathematical modeling of wave processes in soils is closely linked to examining how waves interact with 

structures within a soil medium. One of the most significant types of underground structures is trunk pipelines. A 

study referenced as [15] investigated the impact of dynamic behavior and lateral soil pressure on the dynamics of 

box culverts buried in dry, non–cohesive soils through numerical methods. This research explored how relative 

flexibility affects the dynamic displacements of the structure by varying both the dynamic shear modulus of the 

non–cohesive soil and the structural characteristics of the models. The study investigated shear strains, horizontal 

accelerations, wall deformations, and lateral dynamic soil pressures at various points of the culvert through 

numerical analysis. The findings from this numerical analysis were validated against results from a previous study 

that utilized centrifuge modeling. It was observed that the deformation patterns of the numerical models of the 

culverts align well with the data obtained from the centrifuge tests. The analysis revealed that dynamic lateral 

pressures acting on the sidewalls increase as the wall flexibility coefficient decreases. For a rigid prototype, the 

dynamic force on the sidewalls of a box culvert can be as much as 2.8 times the lateral soil load at rest. In contrast, 

for a flexible prototype, this dynamic force is only 1.6 times the static soil load [15]. 

In [16], a mathematical model was developed to assess the impact of seismic blast waves on a rock mass, 

particularly during the excavation process, using the principles of dynamic elasticity theory. An original  

finite–difference computational scheme was created for the numerical solution of this boundary value problem, 

employing the finite–difference method. The application of the splitting method to address a two–dimensional 

boundary value problem reduced the task to solving one–dimensional spatial differential equations. Additionally, 

efficient computational software was developed to implement the resulting numerical algorithm. Numerical 

solutions for the model problem are presented in the context of an elliptical excavation shape. 



In [17], the challenge of accounting for highly uneven topography, inhomogeneities, and singularities in the 

ground domain is addressed. This consideration is essential for solving a variety of seismic problems, such as 

determining the locations of earthquakes. Therefore, employing a grid method that allows for a nonuniform 

distribution of grid nodes may be beneficial for modeling these issues. The longstanding use of finite–difference 

methods in modeling seismic wave propagation has enabled researchers to tackle this problem effectively. To 

validate the results, a numerical model was created using FLAC geotechnical software. 

The review article [18] discusses the perfectly matched layer (PML) method and its various formulations that 

have been developed over the past 25 years for numerical modeling and simulating wave propagation in unbounded 

media. To enhance computational efficiency, the proposed time–domain formulation of the PML employs a hybrid 

approach. This combines a mixed (displacement–deformation) formulation for the PML domain with a classical  

(displacement–based) formulation for the physical domain of interest. The methodology utilizes the standard 

Galerkin finite element method (FEM) for spatial discretization, alongside a Newmark time–domain scheme paired 

with a finite difference (Crank–Nicolson) scheme for temporal discretization. 

A brief analysis of studies [19] on the seismic interaction between soils and structures indicates that wave 

processes in soils and underground pipelines are being extensively researched worldwide. Most of the problems 

addressed in the literature are solved using numerical methods based on developed complex mathematical models 

that describe both one–dimensional and multidimensional motions of media and bodies. 

An analysis of references [20–22] suggests that developing mathematical models to understand wave 

propagation in soils and their interaction with underground structures is a crucial first step. When dealing with 

nonlinear models, challenges may arise in obtaining accurate solutions to the problems being studied. Since 

numerical solutions are approximate, it is crucial to conduct thorough numerical experiments to ensure that the 

answers to these questions are reliable. Therefore, when constructing mathematical models and numerical solution 

algorithms, it is essential to consider all the specific features that may impact the results. 

PROBLEM STATEMENT AND SOLUTION METHOD 

The general problem of wave propagation in a soil medium, including an underground pipeline, is  

three–dimensional. However, solving such a problem numerically can lead to significant mathematical challenges. 

Therefore, as proposed in sources [1–3], we will use a simplified calculation method. In this approach, the soil and 

underground pipeline are modeled as a coaxial composite rod system, consisting of two layers along the radius. 

In this model, the outer hollow rod represents the soil medium, while the inner rod represents the pipeline. Since 

we are focusing on a trunk pipeline, we assume its length is sufficiently large from the initial cross–section x = 0. 

The initial cross–section (x = 0, where x is the pipeline axis) is assumed to be a fixed cross–section of the soil and 

pipeline, where the seismic wave in the soil is set. 

This calculation scheme significantly simplifies the original three–dimensional problem, reducing it to a one–

dimensional model. This simplification, which is effective in studies [4, 20], retains the fundamental characteristics 

and essence of the wave propagation process within both the soil and the pipeline, despite the reduction in 

complexity. 

This article examines a non–stationary wave process in a soil medium and an underground pipeline. While most 

studies on the seismic resistance of underground pipelines focus on stationary vibrations under seismic loads, it is 

well–known that during earthquakes, the vibrations of both buildings and structures, as well as underground 

pipelines, are non–stationary. Therefore, understanding the initial stages of underground pipeline vibrations under 

seismic loads is of significant interest. In light of this, the article poses and solves non–stationary boundary value 

problems related to the processes being considered.  

The deformation laws for the soil and pipeline are assumed to be linear viscoelastic (a standard linear body): 
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 (1) 

Here and below, i=1.2. For i=1, the parameter values refer to the pipeline, and for i=2, to the soil. 

In (1), – is the longitudinal stress, – is the longitudinal strain, t – is time, ES– is the static modulus of elasticity, 

ED – is the dynamic modulus of elasticity, µ– is the bulk viscosity parameter, η– is the bulk viscosity coefficient. 

In [6], interaction laws were developed based on serial experiments on the interaction of underground structure 

elements with soil. The most adequate of these is the law developed based on a standard linear body in the following 

form: 

for 𝜎𝑁 > 𝜎𝑁 , 0 ≤ 𝑢 ≤ 𝑢 : 
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for 𝜎𝑁 > 𝜎𝑁 , 𝑢 > 𝑢 : 

 𝜏 = 𝑐 + 𝑓𝜎𝑁 (3) 

for, 𝜎𝑁 ≤ 𝜎𝑁 : 

 𝜏 = 0 (4) 

where τ– is the interaction (friction) force, и– is the relative displacement, u=ug–uc, ug– is the absolute soil 

displacement, uc– is the absolute pipeline displacement; u*– is the critical value of the relative displacement, upon 

reaching which the soil contact layer is completely destroyed; KxD – is the variable dynamic soil stiffness coefficient 

(as 𝑢̇ → ∞); KxS – is the variable static soil stiffness coefficient (as 𝑢̇ → 0); µS – is the variable parameter of soil 

shear viscosity; 𝑢̇=du/dt– is the rate of relative displacement of the pipeline and soil; IS=u/u* – is the parameter 

characterizing the structural destruction of the soil contact layer, 0≤ IS ≤1, for IS =0 is the soil contact layer when 

contact bonds between the outer surface of the pipeline and the soil are intact, and for IS =1, this bond is completely 

destroyed; fv– is the coefficient of internal friction of the soil; N– is the stress normal to the outer surface of the 

pipeline; 𝑁
* – is the ultimate tensile strength of the soil (from here on, compressive stresses are taken to be 

positive). 

Specific types of variable coefficients included in equations (2) and their physical justifications are given in [4, 

6]. Note that the above interaction laws (2) – (4), with the corresponding constitutive relations given in [4, 6], are 

nonlinear laws of interaction between an underground pipeline and the surrounding soil. 

The equations for the longitudinal motion of the pipeline and soil along the x–axis, coinciding with the pipeline 

axis, are of the following form: 

 
𝜌0 𝑖𝜕 𝑣𝑖 𝜕⁄ 𝑡 − 𝜕 𝜎𝑖 𝜕⁄ 𝑥 + 𝜒𝑖𝜎𝜏 𝑖 = 0

𝜕 𝑣𝑖 𝜕⁄ 𝑥 − 𝜕 𝜀𝑖 𝜕⁄ 𝑡 = 0
 (5) 

where vi– is the particle velocity (mass velocity); i, i – are longitudinal stresses and strains; 0i– is the initial 

density; χi=sign(v)– for the rod, and χi=–sign(v)– for soil; v = v2 – is the soil particle velocity; τ – is the reduced 

friction force acting per unit length of the rod. 

The values of τ for the pipeline and soil are determined from the following relationship: 

 𝜎𝜏 𝑖 = 4𝐷Hi 𝜏 (⁄ 𝐷Hi
2 − 𝐷Bi

2 ) (6) 

where τ – is the friction force (shear stress), determined from equations (2)–(4); DHi – are the outer diameters, and  

DBi – are the inner diameters of the pipeline and soil. 

The solution to the problem is reduced to integrating the nonlinear system (5), closed by equations (1), separately 

for the pipeline (i = 1, an internal problem) and separately for the soil (i = 2, an external problem). This system is 

coupled by nonlinear conditions on the contact surface between the pipeline and the soil, which determine the laws 

of variation of the interaction force (friction) τ according to equations (2)–(4). 

Boundary conditions are at x = 0, the load is specified as a sinusoidal wave at the initial cross–section of soil: 

 
𝜎 = 𝜎maxsin(𝜋𝑡/𝑇), 0 ≤ 𝑡 ≤ 𝜃

𝜎 = 0, 𝑡 > 𝜃
 (7) 

where T– is the half–period of the load, θ – is the duration of the load, max – is the amplitude of the load, and  – is 

the longitudinal stress acting along the x–axis. 

The conditions at the wave fronts in the soil and pipeline are initially set to zero. The initial conditions for the 

problems are also zero. 

Equations (5), closed by equation (1), are hyperbolic. They have real characteristics and characteristic relations. 

Solutions can be derived using these characteristic relations, which are represented as ordinary differential 

equations. 

The most widely used method for obtaining numerical solutions to the system of wave equations represented by 

equations (5) and (1) is the finite difference method [8]. 

The two systems of equations (1) for the soil and (5) for the pipeline are coupled systems that are solved 

separately. In reference [22], a method for numerically solving similar hyperbolic wave equations was developed 

using the theory of characteristics and the Hartree calculation scheme. This method reduces the system of wave 

equations to ordinary differential equations by employing the method of characteristics, after which the finite 

difference method is applied implicitly to numerically solve these ordinary differential equations. 



COMPUTATIONAL FEATURES OF OBTAINING NUMERICAL SOLUTIONS 

The discretization domains, according to the method given in reference [22], on the characteristic plane t, x for 

the soil medium and the pipeline are shown in Fig. 1. 

The main difference between the calculation schemes for the pipeline and soil is the space step value Δxc. The 

time step values Δt for the soil and the pipeline are the same and common. While the time steps Δt are the same for 

both calculation schemes, the space steps differ by the ratio of the longitudinal wave velocities: 

 𝛥𝑥𝑔 = 𝛥𝑥𝑐 𝐶og 𝐶oc⁄  (8) 

In this case, the space step for the soil Δxg, according to (8), is smaller by the ratio of the longitudinal wave 

velocities C0g / C0c . 

In Fig. 1, the spatial step for the pipeline is three times larger than that for the soil. 

 

FIGURE 1. Domains of numerical solution for problems of wave propagation in soil and pipeline. 

 

In Fig. 1, Fg– is the wave front in the soil; c0g– is the longitudinal wave propagation velocity in the soil; Δxg– is 

the discretization step in the soil along the x–axis; Δt– is the discretization step along the t–axis; ti+1 – is the upper, 

calculated time layer; ti– is the lower, initial time layer; Fc – is the wave front in the pipeline; c0c – is the longitudinal 

wave propagation velocity in the pipeline; Δxc – is the discretization step along the x–axis for the pipeline. 

Figure 1 shows two combined calculation schemes: the calculation schemes for the soil and the pipeline on the 

characteristic plane t, x. According to the Courant stability conditions, the characteristic must not extend beyond its 

cells for both the soil and the pipeline. This condition is satisfied here. 

D.R. Hartree [22] proposed a calculation scheme illustrated in Fig. 1. The advantages of both the method of 

characteristics and the D.R. Hartree calculation scheme are discussed in detail in reference [22]. The core idea of 

this method is to seek the numerical solution within the fixed time layer ti+1; the wave parameters in the time layer ti  

are considered known. The spatial steps Δxg and Δxc are chosen such that the characteristic lines do not extend 

beyond the boundaries of a rectangular cell with sides Δt, Δxg and Δt, Δxc. The slope of the characteristic lines is 

determined by the wave propagation velocity in the soil and the pipeline. 

The computational domain consists of the ordinate axis, where x=0, on one side, and the wave fronts in the 

pipeline Fc and soil Fg, on the other. This domain expands indefinitely between these two lines. As time t and spatial 

coordinates 𝑥 increase, the computational domain continues to grow. Consequently, the number of discrete points in 

the computational time layer ti+1  for the soil and pipeline also increases over time. This demand for computational 

resources is substantial, as it requires significant power to perform the calculations. To address this issue, two 

approaches are employed. First, after filling the numerical arrays for the time layer, a “discharge” process is carried 

out. This involves eliminating data associated with individual discrete points in the time layer, allowing for further 



calculations to be performed with doubled time steps Δt, Δxg and Δxc. While this procedure helps manage resource 

usage, it does result in some reduction in accuracy. Moreover, a sudden increase in the sampling steps Δt, Δxg, Δxc 

may cause abrupt changes (“jumps”) in the wave parameters.  

To avoid these artificial “jumps”, which can lead to a slight decrease in wave parameters, it is essential to 

perform calculations with constant steps Δt, Δxg, Δxc throughout the entire process. This approach requires 

considerable computational resources, including processing speed and RAM. Calculating low–frequency wave 

parameters can sometimes take several hours. Therefore, it is necessary to limit these calculations to a single period 

or half–period. This limitation is further complicated when conducting parallel calculations for both the soil and the 

pipeline. 

Figure 2 shows the types of calculation points on the calculation layer ti ti+1, on parallel planes tx. At t= ti, all 

wave parameters and friction values are known. Calculation models are provided for cases where the longitudinal 

seismic wave propagation velocity in the pipeline is C0c=5000 m/s, and in the soil, it is C0g=1000 m/s. In this case  

Kc=C0g / C0c=2. The wave velocity in the pipeline is five times greater than in the soil. Other values and ratios of 

wave velocities in the pipeline and soil are also possible. 

We convert to dimensionless variables and parameters using the following relationships (here, all parameters and 

quantities refer to the pipeline; for simplicity, their subscripts are omitted): 

 
𝑥0 = 𝜇 𝑥 𝑐0⁄  ;  𝑡0 = 𝜇 𝑥 ;  𝜎0 = 𝜎 𝜎max⁄ ; 𝜈0 = 𝜈 𝜈max⁄ ;

𝜀0 = 𝜀 𝜀max⁄ ; 𝜈max = −𝜎max 𝑐0⁄ 𝜌0 ;  𝜀max = 𝜎max 𝐸𝐷⁄  ;
 (9) 

Using dimensionless variables and parameters (9), equations (1)–(8) are non–dimensionalized. Then, the 

dimensionless time Δt0 and space ∆𝑥𝑐
0 steps for the pipeline become equal. 

To obtain reliable numerical results, the solution domain is discretized based on the Courant stability condition: 

 𝛥𝑥0 𝛥𝑡0⁄ ≤ 1 (10) 

In equation (10), Δx0 is the dimensionless spatial discretization step, and Δt0 is the dimensionless time 

discretization step. In Fig. 2 and further on, for simplicity, the superscripts are omitted. 

 

FIGURE 2. Typical discrete calculation points on the combined characteristic planes xt on the calculation time layer ti+1 ti. 

 

In Fig. 2, conditions (10) Δxc /Δt=1 for the pipeline and Δxg /Δt=2 for the soil ensure the stability of the 

numerical results. 

In both cases, the characteristic lines do not extend beyond the computational cell with sides Δxc , Δt for the 

pipeline and Δxg , Δt for the soil. 

When developing the algorithm for wave processes in the soil and pipelines, an important observation was made. 

The discretization step for the pipeline Δxc is five times larger than that for the soil, Δxg, i.е., Δxc / Δxg=5. Here, 

discrete point I at time ti+1  and point 1 coincide (Fig. 2). The next discrete points for the pipeline with the 

discretization step Δxc, are points II, III…X. The wave parameters can be calculated separately for the pipeline and 

the soil, using the respective discretization steps. In this approach, the values of the wave parameters in the soil for 

points P and L are determined through linear interpolation between points C and M. Although this method 

significantly reduces computation time on the computer, it comes at the cost of degraded accuracy and stability, as 

will be demonstrated below. 

Looking ahead, we observe that numerical experiments indicate that the wave parameters for the pipeline must 

also be determined at specific points in the soil, namely points 1, 2, 3, 4, 5, and 6, as illustrated in Fig. 2. In 



numerical calculations, when we define the spatial step Δxg for both the soil and the pipeline, the numerical solutions 

were found to be stable and smooth. However, this approach requires a significant amount of computational time. 

Another issue arises when calculating the wave parameters in the pipeline at the initial points 2, 3, 4, and 5, 

which must be determined using a separate algorithm. At these discrete points, the left characteristic line for the 

pipeline extends beyond the initial cross–section x=0. To address this problem, we utilize a linear interpolation 

method. Specifically, the wave parameters in the pipeline for initial points 2, 3, 4, and 5, located between points I 

and II (as shown in Fig. 4), are determined through linear interpolation between discrete points 1 and 6. The 

calculation of the wave parameters in the pipeline using the general algorithm commences after the calculations at 

point 1, from point 6, or from point II (as shown in Fig. 2) 

Therefore, numerical calculations of the wave parameters at time ti+1 for both the soil and the pipeline are 

modeled with the discrete spatial step Δxg. The time step is taken Δt= Δxc =5 Δxg for Kc=C0g / C01=0.2., and in other 

cases  

𝛥𝑡= 𝐾𝑐
-1𝛥𝑥𝑔 . 

Calculations for discrete points of the pipeline using the above algorithm can be continued up to point III for the 

case where the points are arranged as in Fig. 2. Already at point III, the right characteristic line for the pipeline 

extends beyond the wave front line Fg. Calculations of the soil wave parameters can be carried out up to discrete 

point IV. At point V, the soil characteristic line already intersects the front line Fg in soil. Therefore, the soil wave 

parameters and interaction forces for point V are determined by linear interpolation between points IV and VI. 

Discrete point VI lies on the soil wave front, where all wave parameters are zero, since this front represents the lines 

of weak discontinuity. 

Since the front line Fg is a weak discontinuity line, calculations of the wave parameters in the pipeline can be 

performed using a "through" calculation up to point VIII in Fig. 2. However, when the front line Fg is not a weak 

discontinuity line, this cannot be done. In this case, the wave parameters in the pipeline are also calculated taking 

into account the wave front in the soil. Calculations from point IX to point X are performed by interpolation. In this 

segment, the right–hand characteristic for the pipeline intersects the wave front line Fg in the pipeline. After the 

wave front Fg propagates in the pipeline, all soil particles are practically at rest. The equations for the wave front 

lines in the soil and the pipeline in dimensionless form are Δxg =Kct and Δxc=t, respectively. 

Another feature of the algorithm is the calculation of points between the fronts Fg and Fc. It is important to note 

that the longitudinal seismic wave acts only in the soil and is initiated by the wave load at section x=0. This load 

does not act at this section of the pipeline, i.e., the initial section of the pipeline is load–free. A wave in the pipeline 

is generated solely by the interaction force (friction) that arises at the interface between the pipeline and the soil, 

specifically at the soil contact layer. Because the soil deforms more significantly than the pipeline, the friction force 

in the pipeline section from x=0 to the wave front Fg in the soil acts as an active force, prompting the pipeline to 

move. As a result, this movement generates waves within the pipeline, leading to the development of stresses, 

strains, and other related effects. 

Behind the wave front Fg, a wave propagates through the pipeline. For this wave, the frictional force acts as a 

drag force (passive force), since there is no movement in the soil. Therefore, the wave in the pipeline behind the 

front Fg is quite weak. This same wave can generate a corresponding wave in the soil. However, as the calculation 

results show, it is practically zero. Based on numerical experiments, it was established that the main wave in the 

pipeline occurs from the initial section x=0 to the wave front in the soil Fg. In sections Fg Fc, where the soil is 

undisturbed, as will be shown below, significant stresses and strains do not occur in the pipeline. 

Thus, taking into account the above features, resolving equations, and, based on them, algorithms for calculating 

the parameters of waves in the soil and pipeline were developed. 

Soil characteristics are: 

0g= 20 kN/m3 – specific gravity of soil; 

DNg= 3 m – nominal outer diameter of the soil cylinder; 

DBg = 0.15 m – nominal inner diameter of the soil cylinder; 

K= 0.3 – lateral soil pressure coefficient; 

g=2=EDg / ESg=2– dimensionless quantity; 

C0g= 1000 m/s – longitudinal wave propagation velocity in soil; 

CgS = 500 m/s – transverse wave propagation velocity in soil. 

Steel pipeline characteristics are: 

0c = 78 kN/m3 – specific gravity of the pipeline material; 

DNc = 0.15 m – outer diameter of the pipeline; 

DBc = 0.14 m – inner diameter of the pipeline; 



c=1=EDc / ESc=1.02– dimensionless quantity; 

C0c =5000 m/s – longitudinal wave velocity in the pipeline; 

H1=1.425 m – laying depth of the pipeline in soil; 

µc=10000 s–1 – steel viscosity parameter; 

Lc =107 m – nominal pipeline length. 

Characteristics of the soil contact layer and pipeline–soil interaction are: 

fv=0.3 – coefficient of internal friction of soil; 

Cv =10 kN/m2 – soil cohesion coefficient; 

u*=10–3 m – relative displacement value at which the interaction process transitions to the Coulomb friction 

stage; 

α=1.5 – dimensionless coefficient in formula (9); 

χ=0.1 – dimensionless exponent in formula (11); 

vN=KxDN / KxSN=2– dimensionless quantity; 

v*=𝐾𝑥𝐷
* /𝐾𝑥𝑆

*  =4– dimensionless quantity. 

Load characteristics are: 

max=0.7 MPa – longitudinal wave amplitude; 

T= 10 s – half–period of a low–frequency longitudinal wave; 

θ= 100 s – conventional duration of a longitudinal wave; 

f= 1/2𝑇=0.05 s–1 – frequency of a longitudinal wave in soil. 

With these initial data, the frequency of longitudinal seismic waves is f= 1/2T=0.05 s–1. This is a low–frequency 

wave. However, computer implementation and obtaining a numerical solution encounter the greatest difficulties for 

low–frequency seismic waves. 

The above initial data are basic. If they are subsequently changed, this is noted separately. 

In addition to the above initial data, the most important parameters of the numerical solutions are the 

discretization steps Δt, Δxg and Δxc in the solution domain on the characteristic plane tx. 

Naturally, the accuracy and stability of the numerical solutions depend on the value of these discretization steps. 

Based on the analysis of numerical solutions of wave problems on the propagation of longitudinal waves in soils [5], 

the dimensionless time step is Δt0 = 0.1; 0.05, or 0.01. This corresponds for µc=104 s–1 to dimensional times  

Δt = Δt0/µc =10–5 s; 5*10–6 s, and 10–6 s. Then, for one half–period of the wave T=10 s, which corresponds to 

dimensionless time t0=105, the number of discrete points is n=T/Δt=106. For Δt0=0.01, which in the dimensional 

case is Δt =10–6 s, and n=107 along the t–axis. For Δt0= 0.05, Δt = 5*10–6; n=2*106. 

In the spatial coordinate x, the discretization steps are ∆𝑥𝑐
0=0.01 and ∆𝑥𝑐

0=0.1 for Δt0= 0.1. For Δt0=0.01, 

∆𝑥𝑔
0= 0.001 and ∆𝑥𝑔

0=0.01. 

In dimensional values, they take the following values: Δxc =0.05 m for Δx0=0.1 and Δxc =0.005 mm for 

∆𝑥𝑐
0=0.01. In these cases, the number of discrete points along the t0–axis and along the ∆𝑥𝑐

0–axis are the same and 

are 𝑛=106 for Δx0=0.1 and 𝑛=107 for 𝑥𝑐
0=0.01, respectively. 

During the action time T= 10 s, the half–period of a longitudinal seismic wave for 𝑥𝑐
0 = 0.1, the wave travels a 

dimensionless distance 𝑥𝑐
0=𝛥𝑥𝑐

0 · 𝑛=0.1·106=105 along the pipeline. In soil, it is 𝑥𝑐
0=Kc· 𝑡0

0=0.2·105=2·104. In 

dimensional values, they are xc=50000 m and xg=10000 m. 

Thus, for dimensionless Δt = 0.1 and Δxc = 0.1; Δxg =0.01, the values of t0=105; 𝑥𝑐
0=105 and 𝑥𝑔

0=2·104 are 

dimensionless. 

If the dimensionless sampling steps are taken ten times smaller, i.e., Δt0=0.01; 𝑥𝑐
0=0.01; 𝑥𝑔

0=0.001, the number of 

discrete points in the half–period of the seismic longitudinal wave reaches 107 points; 107 points in the pipeline, and 

ng=2·107 of discrete points in the soil. 

As noted above, pipeline calculations are performed using discrete points in the soil, and the number of 

computational points in the pipeline is also 2·107. These data demonstrate the resources required to perform 

numerical calculations of wave processes in the soil and pipeline on two superimposed parallel characteristic planes 

tx. The computational domains in plane tx expand during wave propagation, and the number of discrete points in the 

computational time layer ti+1 increases. Computational experiments have shown that the sampling steps Δt0= 0.05; 

𝑥𝑐
0= 0.01, and 𝑥𝑔

0= 0.01 are the most optimal. Increasing their values leads to instability of the numerical solution, 

while a decrease in their values yields good, consistent results. However, the latter case requires a significant 

amount of computation time (10–15 hours) on modern, high–performance computers. 

Therefore, in the case of low–frequency seismic waves, computer calculations were limited to one half–period of 

the waves propagating in soil. 



Let us consider the calculation results. In the first calculation option, the dimensionless discretization steps were 

Δt0= 0.1; 𝑥𝑐
0= 0.1; 𝑥𝑔

0= 0.01. 

Figure 3 shows the time profile of a longitudinal seismic wave in soil for the first half–period. Since the wave is 

low frequency, it propagates without attenuation, i.e., the wave amplitude remains unchanged g=0.7 MPa for all 

considered cross–sections x=0; 5; 10; 15; 20; 25, and 30m from the initial cross–section (curves 1–7). The curve of 

changesg(t) in these sections, practically lies on a single curve (Fig. 3). 

 

FIGURE 3. Half period of a seismic wave in soil with a frequency of f =0.05 s–1 at distances from the initial cross–section  

x= 0; 5; 10; 15; 20; 25; 30 m (curves 1–7) 

 

 

FIGURE 4. Changes in longitudinal stress over time in a pipeline at a cross–section of 5 m. 



A completely different pattern is observed for a wave propagating along a pipeline. Figure 4 shows the wave 

profile over time for a pipeline cross–section of x=5 m. At the initial cross–section of the pipeline, x =0 m, according 

to boundary condition (7), no load is applied. 

As seen from Fig. 7, the wave in the pipeline at x =5 m initially increases smoothly until x =2.8 sec. Then, strong 

instability in the stress value begins, lasting from 3 sec to 5 sec. The process then settles down again, and the 

stresses stabilize. The wave frequency remains virtually unchanged. The wave amplitude in the stability zones 

reaches  

c =125 MPa, which is significantly greater (by 178.6 times) than the wave amplitude in the soil (g =0.7 MPa). 

This occurs due to the active behavior of the friction force at the pipeline–soil interface. In other words, the soil 

around the pipeline deforms significantly and “drags” the pipeline along with it, leading to the formation of high 

longitudinal stresses in the pipeline. 

 A similar pattern is observed at other cross–sections (x =10; 15; 20; 25, and 30 m) of the pipeline. Instability in 

longitudinal stress values in the pipeline occurs over time intervals from 3 sec to 5 sec. The amplitude of the wave in 

the pipeline decreases from c =125 MPa at x =5 m to c =115 MPa. In this case, the pipeline is considered elastic  

(c =1.02), which prevents wave dissipation in the pipeline. Attenuation occurs due to the reduction in the active 

friction force on the outer surface of the pipeline. 

The instability in stress values is linked to the variability of cross–sectional velocities within the pipeline. Figure 

5 illustrates the changes in soil and pipeline cross–sectional velocities at x=0. The soil cross–sectional velocities 

vary smoothly from zero to a maximum of vg =1.6 m/s and then gradually decrease (red curve in Fig. 5). This 

behavior can be attributed to the interaction force (an active frictional force), which has a negligible impact on the 

wave parameters in the soil. This is primarily due to the substantial nominal outer diameter of the soil (DH=DNg=3 

m), which is significantly larger by a factor of 20 than the outer diameter of the pipeline (DH=DNc=0.15 m). 

 

FIGURE 5. Changes in longitudinal cross–sectional velocities over time in the pipeline (black curve) and in the soil (red curve) 

at the initial cross–section x =0 m. 

 

Instability in pipeline cross–sectional velocities, and consequently instability in relative velocities, leads to 

variability in shear stress values. 

In [21], an exact analytical solution was obtained for the wave problem of shock wave propagation in embedded 

elastic rods, such as cages (holders). When the lengths of the rod and the cage (sleeve) are equal, as the wave 

propagates along them, after a certain time, the cross–sectional velocities of the rod and cage become equal. In [21], 

the rod and cage interact according to the Amontons–Coulomb law of dry friction. 



In [20], a numerical solution was obtained for this problem in the case of viscoelastic rods and cages. Other laws 

of rod–cage interaction were also considered in [20]. In these cases, too, the velocities of the rod and cage cross 

sections become equal. 

However, when solving these problems numerically, the velocities of the rod and cage cross–sections cannot be 

exactly equal. As a result, the relative velocity changes around zero with alternating signs. Consequently, the shear 

stress values also become alternating. As a result, we observe a loss of stability in the numerical solution results in 

the friction force values and dependencies, followed by a loss of stability in all other wave parameters of the 

underground pipeline. 

In the second option, the discretization steps are Δt0= 0.01; 𝑥𝑐
0= 0.01; 𝑥𝑔

0= 0.001. In this case, they are an order of 

magnitude smaller than in the first option. 

The longitudinal stresses in the soil remain unchanged, as in Fig. 3. The changes in longitudinal stresses in the 

second option in the pipeline cross–sections at x = 5; 10; 15; 20; 25, and 30 m (curves 1–6) are shown in Fig. 6. All 

curves of changes in longitudinal stresses 1–6 practically overlap each other. The maximum stress value is  

1max =112 MPa, which is approximately the same as the result of the first option (Fig. 4). However, the results of 

the second option show virtually no instability or stress bifurcation. 

Figure 7 shows the changes in the velocity of pipeline sections over time at x =0; 5; 10; 15; 20; 25, and 30 m 

(curves 1–7). The amplitude of the velocity change is virtually identical to the result of the first option in Fig. 5. The 

results of the second method show no instability. 

 

FIGURE 6. Changes in longitudinal cross–sectional velocities over time in the pipeline (black curve) and in the soil (red curve) 

at the initial cross–section x =0 m. 



 

FIGURE 7. Velocity changes over time in pipeline cross–sections at x = 0; 5; 10; 15; 20; 25, and 30 m (curves 1–7). 

 

However, note that as the seismic wave amplitude in the soil decreases, for example, at max = 0.35 MPa, the 

instability of the wave parameters in the pipeline increases. 

In the third option, calculations were performed with discrete steps 𝑥𝑐
0= 0.01; 𝑥𝑔

0= 0.01; Δt0= 0.05. The amplitude 

of the longitudinal seismic wave in the soil was taken in dimensional form max =0.35 MPa. 

The values of other initial parameters remained unchanged. 

In this case, the pattern of change in the longitudinal stress wave in the soil over time is similar to the one in  

Fig. 3, with the only difference being that the stress amplitude is gmax =0.35 MPa. 

Changes in longitudinal stresses in pipeline cross–sections at x=0; 5; 10; 15; 20; 25, and 30 m (curves 1–7) are 

shown in Fig. 8. 

As can be seen from Fig. 8, the resulting numerical dependences c(t) are completely smooth, and no instability 

or bifurcations are observed. 



 

FIGURE 8. Changes in longitudinal stresses over time in pipeline cross–sections at x = 5; 10; 15; 20; 25 and 30 m (curves 1–7). 

 

The longitudinal stress in the pipeline reaches the maximum cmax =148.2 MPa. This value exceeds the amplitude 

of the longitudinal stress in the soil (gmax =0.35 MPa) by 423.4 times. This multiple excess is the result of the active 

frictional force (interaction) acting on the underground pipeline due to soil deformation in the longitudinal direction 

(along the pipeline axis). This maximum stress is reached gradually along the pipeline. At the initial cross–section of 

the pipeline, the load is unaffected, and the stress values are zero (line 1). At the next pipeline cross–sections at  

x= 5 m and 10 m (curves 2 and 3), the stress amplitude gradually increases and at x = 15 m, it practically reaches its 

maximum cmax =148.2 MPa (curve 4). Further, in the pipeline cross–sections at x = 20, 25, and 30 meters, this 

stress amplitude cmax = 148.2 MPa remains constant. A powerful wave with a high amplitude travels along the 

pipeline. Calculations indicate that the wave's propagation velocity along the pipeline is significantly lower than the 

speed of sound within it. This leads to the discovery of a new, soliton–like interaction wave that moves at a different 

velocity compared to conventional longitudinal waves in the absence of surrounding soil. The investigation of this 

wave's properties falls outside the scope of this study and will be addressed in future research. 

Figure 9 shows the changes in (longitudinal) strains over time in the soil (curves 10–70) and the pipeline (curves 

1–7) at x = 0; 5; 10; 15; 20; 25, and 30 m, respectively. 

As can be seen from Fig. 9, the longitudinal strains in all soil sections are identical (curves 10–70). In the 

pipeline, these strains, like the stresses, gradually increase until they reach an asymptotic value, which then remains 

constant. Notably, the maximum longitudinal strain in the pipeline (amplitude) is more than double the strain 

amplitude observed in the soil. 

It is known that the quasi–static theory of seismic resistance of underground pipelines [1, 20] is based on the 

hypothesis of equality of soil and pipeline strains under seismic impacts. As seen from Fig. 9, this hypothesis is not 

fulfilled. Nevertheless, the quasi–static theory is currently used as a basis for normative methods [20]. 



 

FIGURE 9. Changes in soil strains (curves 10–70) and pipeline (curves 1–7) over time at x = 0; 5; 10; 15; 20; 25, and 30 m. 

 

Figure 10 shows changes in the velocity of soil particles (curves 10–70) and pipeline cross–sections (curves 1–7) 

over time at x= 0; 5; 10; 15; 20; 25, and 30 m. As seen from Fig. 10, the velocities of soil particles and pipeline  

cross–sections are almost identical. According to the changes in the relative velocity of the soil and pipeline  

vt (Fig. 11), at x = 0, the maximum value of the relative velocity is vtmax = 0.0021 m/s (curve 1). At x = 5 m, the 

values are vtmax = 0.0004 m/s (curve 2), and at x = 10 m, vtmax = 0.0002 m/s. In the remaining sections at x = 15 m; 20 

m; 25 and 30 m (curves 4–7), the values of the relative velocity are practically zero. 

 

FIGURE 10. Changes in soil particle velocity (curves 10–70) and pipeline velocity (curves 1–7) over time in cross–sections at  

x = 0; 5; 10; 15; 20; 25, and 30 m. 



 

FIGURE 11. Changes in relative velocity over time in pipeline cross–sections at x = 0; 5; 10; 15; 20; 25, and 30 m (curves 1–7). 

These results confirm that the soil and pipeline velocities ultimately become equal, as in [21]. 

CONCLUSIONS 

The study focuses on the wave propagation process in a soil medium that contains an embedded underground 

pipeline, considering their interaction. Equations for the wave processes occurring in both the soil and the pipeline 

are defined and derived. Based on these equations, we develop an algorithm to numerically solve the wave problems 

using the method of characteristics and the finite difference method with an implicit calculation scheme. 

The features of the developed numerical solution algorithm and methods to overcome them are determined. 

Based on the developed algorithm, a program for numerically solving the wave problems was developed in the  

FORTRAN–2005 algorithmic language. The program was implemented on a computer, and numerical experiments 

were used to determine the stability and reliability conditions for the resulting numerical solutions. 

By conducting numerical experiments and analyzing the numerical solutions, the optimal discretization steps 

were determined in the solution domain on the characteristic plane tx for the soil medium and the underground 

pipeline. 

It has been established for the first time that an active interaction force, specifically friction, can generate a  

soliton–like wave in an underground pipeline. This wave propagates through the pipeline without attenuation at a 

velocity lower than the speed of sound in the material of the pipeline.  

Numerical calculations indicate that the assumption of equal longitudinal strains in both the soil and the pipeline, 

which underpins the standard quasi–static theory of underground pipelines, is not valid under the longitudinal action 

of a seismic wave. 
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