Simultaneous Action of Bending and Compression in Plates Supported by Thin-Walled Ribs.
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Abstract. In this article, free oscillation of the plate is considered when the sides of , a are hinged and other sides of  are free. Free sides connected with thin, open profile rods. Bending graphs of the plate's midsurface were obtained and analyzed using Fure transforms. Furthermore, the graphs are presented for various values of the parameter a, assuming a constant external load during plate bending.
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INTRODUCTION
Problem Statement and Literature Review. It is known that considering constrained torsion in thin-walled open-profile ribs allows for a more thorough identification of the reserves for increasing the torsional stiffness of such ribs. Therefore, the influence of constrained torsion manifests in the increased degree of edge clamping of the plate when thin-walled open-profile ribs are used as supporting elements.
In the literature [2, 3, 4, 6], the following method for formulating boundary conditions along the contact line of the plate with the supporting ribs is described. The loads transmitted by the plate to the ribs (bars) are considered equal but opposite in direction to the forces in the corresponding sections of the plate. Then, kinematic conditions of equal displacements at the contact points of the supporting ribs with the plate are introduced into these force conditions.
In publications [1, 5], a methodology for establishing refined boundary conditions at the junction line of the plate with the rib is proposed, allowing for the consideration of the constraint of the deplanation of the end sections of the ribs. In this case, the degree of deplanation constraint is accounted for by a certain parameter .
SOLUTION METHOD
As far as we know, a closed-form solution to the problem of a compressed-bent rectangular plate can be obtained in single trigonometric series only when two parallel edges are hinged on rigid supports, while the other two edges can be fixed arbitrarily (solution by M. Levi).
Consider the problem of a compressed-bent plate where the edges x=0, a are hinged on rigid supports, and the edges ​ are rigidly connected to elastic thin-walled open-profile ribs ( Fig.1).
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Figure 1. Compressed-bent plate.

Let the load be applied to the edges x=0, a. The governing equation for the problem can be expressed as follows
	 	  (1)
The solution to equation (1), satisfying the boundary conditions of hinged supports at the edges x=0, has a known form.
The solution to equation (1), satisfying the boundary conditions of hinged supports at the edges x=0, has a known form.
	    	 (2)
The transverse load q(x,y) can be expressed in the form of a Fourier series as follows 
	 	 (3)
where the coefficients of this series are
	 	 (4)
Substituting (2) and (3) into (1) will yield an equation for determining the function 
	  	 (5)
In the future, for simplicity, we will assume q=constq = \text{const}q=const; then from (4) we will obtain

The solution to equation (5) depends on the nature of the roots of the characteristic equation. In this context, we will consider two cases below.
I option: Let  be such that all roots of the characteristic equation derived from (5) are real, and therefore the solution can be expressed in the form
	 	     (6)
where the particular solution takes the form
	 	(7)
In (6)
	          	(8)
II. option: Let now , then one pair of roots of the characteristic equation will be real, and the other will be imaginary. In this case, the solution of equation (5) has the form

	 	(9)
where
	 	(10)
The particular solution  and the parameter  are given by the formulas (7) and (8).
III option, since  is not considered separately, it can be approached as closely as desired from either option I or II.
Now let’s impose boundary conditions on each of the functions  according to (6) and (7):
III option, when N is not considered separately, it can be approached as closely as desired from either option I or II.
Now let’s impose the boundary conditions on each of the functions according to (6) and (7):
Boundary conditions for elastic clamping at the edges    :
	,	(11)
where 
 	    ,    ,       , 	   (12)
	 	 (13)
	 	    (13a)
Boundary conditions for elastic support at the edges :
	, 	 (14)
where 
	,      ,      ,  	(15)
	 by  	(16)
	 by  .	 (16a)
To simplify the solution, we will use the symmetry of the problem and assume  .
To simplify the solution, we will use the symmetry of the problem and assume 
I option
	 	 (17)
II option
	   	(18)
In (17) and (18), the following notations are introduced
	  .	
	,    	(19)
	   	
By finding the constants  and from (17) and (18), the expression for the deflection (2) can be presented in its final form
I option ()
		
	 	(20)
where
		
		
	 	 (21)
	.	
II option (): It reduces to the formula (20) by substituting in the last expression in curly braces with the following expression
	 	(22)
where 
		
	 	 (23)
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FIGURE 2. The graph of the deflection at the center of the plate as a function of the magnitude  .

To illustrate the influence of longitudinal forces  on the magnitude of deflections of a compressed-bent plate (under ), Fig. 2 presents a graph constructed based on (20) and (22) for various values of  and . When constructing the graph, it is accepted that:  For all curves, it is assumed that  represents the hinged support of the ends of the supporting rods. Solid lines refer to free end deflection of the rods, while dashed lines indicate their complete restraint
From the solution to the problem of the compressed-bent plate, it follows that for  (where  is the critical load value in the stability problem of the plate),  Considering that the problem is examined in a linear framework, the sufficiently accurate values of the curves in Fig. 2 (and in the following figures related to compressed-bent plates) are limited by the inequality 
The last inequality ensures small deflections, which are assumed in the linear theory of plate bending. 
From the graph in Fig. 2, it can be concluded that longitudinal forces increase the deflections at the center of the plate more significantly the lower the resistance of the supporting rods to the deflection of the longitudinal edges.
Moreover, if such resistance is completely absent (), then the change in   from zero to infinity has little effect on the quantitative relationship with 
Now, let us consider special cases of the general solutions (20) and (22). Suppose the stiffness in bending of the supporting rods is so great that the deflection of the edges of the plate    can be neglected, i.e., we can assume    ( Fig. 3).
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FIGURE 3. Compressed-bent plate.

In this case, the formulas for the deflections of the compressed-bent plate will take the form derived from (20) and (22).
I option ()
	 	(24)
II option ()
	  	(25)
In (24), (25) it is indicated
		
	   	 (26)
		
Under specific assumptions about the value of the coefficient , the solutions (24) and (25) coincide with those known in the literature. For example, when   matches    from [26].
Based on formulas (24) and (25), Fig. 4 presents the graph of the deflection at the center of the plate as a function of the magnitude . When constructing the graph,   is assumed. As before, solid lines refer to free end deflection of the supporting rods, while dashed lines indicate complete restraint of deflection.
It should be noted that the differences in boundary conditions for deflection displacements at the ends of the supporting rods have a lesser effect on the values of the plate deflections than on the values of the critical load parameters. 
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FIGURE 4. The graph of the deflection at the center of the plate as a function of the magnitude 

Now let us turn to another specific case, when the plate is hinged to elastic supporting rods, i.e.  (Fig. 5)
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FIGURE 5. Compressed-bent plate.

The formulas for deflections (3.14) and (3.15) in this case will take the form
I option
		
		(27)
II option
		
		(28)
Equations (27) and (28) introduce the notations
		
	 	  (29)

Figure 6 presents the graph of the deflection at the center of the plate as a function of the magnitude , based on formulas (27) and (28). In the construction,  is assumed. Solid lines correspond to the case where shear deformation is considered in the bending of the supporting rods (), while dashed lines are plotted without considering shear (). The graph indicates that differences in boundary conditions at the ends of the rods (hinged support, i.e., , or rigid clamping, i.e., ) significantly affect the deflection values. For instance, Figure 4 shows that to achieve the same relative deflection at the center of the plate (e.g., 0.2) with hinged support and clamping at the ends of the supporting rods, the compressive force must be increased by approximately 2 times in the latter case
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FIGURE 6. The graph of the deflection at the center of the plate as a function of the magnitude 
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