

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Efficiency Of Low-Water-Requiring Cements And Concrete Mixtures And Concretes Based On Them With Basalt (Slag) Aggregate

AIPCP25-CF-AMSMT2025-00043 | Article

PDF auto-generated using **ReView**

Efficiency of Low-Water-Requiring Cements and Concrete Mixtures and Concretes Based on Them With Basalt (Slag) Aggregate

Sultonbek Babayev

Samarkand State Architecture and Construction University, base doctarant. Uzbekistan, Samarkand.

Corresponding author: babayev.sultonbek@samdaqu.edu.uz

Abstract: The shortage of material and energy resources in the world requires the effective use of local raw materials and industrial waste in the building materials industry. In developed countries, it is important to increase the volume of cement production, use industrial waste in production, reduce the cost of cement by reducing the amount of clinker in its composition without reducing the quality of cement, and increase its efficiency. In particular, as a result of the increased demand for cement, special attention is paid to the development of energy-efficient production technologies using existing local raw materials and industrial waste.

INTRODUCTION

When applied, building materials, objects and structures must withstand external forces and environmental influences. Therefore, the building material used in the preparation of items, materials must be resistant to physical and chemical, mechanical influences, vapor in the air, gas exposure, temperature changes, humidity, water Frost exposure when repeatedly frozen and melted. To develop the production of building materials, we have a large supply of raw materials. The abundance of fossil resources and raw material products (oil and gas production, precious stones, iron ores, limestone, gypsum, etc.) The abundance of fossil resources and raw material products (oil and gas production, precious stones, iron ores, limestone, gypsum, etc.k.) Opens up wide opportunities for the development of the production of building materials. At the same time, the widespread use of industrial waste in the production of building materials is also one of its main tasks. For example, from slags with industrial waste of metallurgy, various dense, porous and fibrous-structured objects are obtained in the construction materials industry. The use of industrial waste, along with the expansion of the raw material base for building materials, also provides the opportunity to free up most of the land occupied by waste, to clean the environment. One of the main tasks in the development of the production of building materials is to make more use of domestic raw materials and increase the quality of products derived from it. For example, basalt slag, which is a local raw material, gives the economic effect of obtaining solid heavy concrete, based on Lime and sand.

In our republic, further deepening economic reforms in the building materials industry, improving and developing production, their economic efficiency at the modern stage, the production of energy-efficient low-water demanding Cements with a high-quality recognition price of complex and rational use of domestic raw materials and industrial waste sources, as well as obtaining concretions based on them are urgent problems.

The decree of the president of the Republic of Uzbekistan dated July 6, 2022 PQ-307 "on organizational measures for the implementation of the innovation development strategy of the Republic of Uzbekistan in 2022-2026", PF-158 of September 11, 2023 "on the effective use of the local raw materials base and the development of an industry based on advanced technologies", "on the radical improvement of environmental problems affecting human life in the Republic", it also serves to carry out research work in the implementation of the tasks set out in all regulatory legal acts related to this activity

RESEARCH OBJECT AND MATERIAL

- As the main object of the study, low-water demanding cements developed on the basis of basalt (shlaki) rock, physical and mechanical and exploratory properties of concrete mixtures and ready-made concrete samples were obtained from them.
- The following raw materials and components were used in the production process:
 - * Basalt (shlaki) rock — derived from local sources, the average particle size is 0.5–5 mm. the main object of the study, low-water demanding cements developed on the basis of basalt (shlaki) rock, physical and mechanical and exploratory properties of concrete mixtures and ready-made concrete samples were obtained from them.
 - The following raw materials and components were used in the production process:
 - * Basalt (shlaki) rock — derived from local sources, the average particle size is 0.5–5 mm.
 - Portlandsement (M500) — according to standard gost 10178-85 [1] requirements.
 - * Mineral additives-microsilicate and ash (fly ash), in a ratio of 5-15%.
 - Water-clean drinking water according to technical requirements.
 - Chemical additives-superplastifiers (based on polycarboxylate) to reduce the water-cement ratio.

LITERATURE REVIEW AND METHODS

The study was carried out at the following stages:

1. Sample preparation

- Cement mixtures and concrete mixtures were prepared at a water-cement ratio (w/c) of 0.25–0.40 intervals.
- The mixtures were prepared in a concrete mixer (with a capacity of 20 l) according to the 3-stage mixing technology: mixing dry components, adding water and additives, final homogenization. The study was carried out at the following stages:

1. Sample preparation

- Cement mixtures and concrete mixtures were prepared at a water-cement ratio (w/c) of 0.25–0.40 intervals.
- The mixtures were prepared in a concrete mixer (with a capacity of 20 l) according to the 3-stage mixing technology: mixing dry components, adding water and additives, final homogenization.

2. Laboratory tests

- * Determination of crustal performance-Abram cone deposition method (GOST 10181-2014) [2].
- * Compression and hardening dynamics - using Vicat pribori (GOST 310.3-76)[3].
- * Concrete density-according to GOST 12730.1-78[4].
- Compressive strength-determination according to GOST 10180-2012 in samples hardened for 7, 14 and 28 days.
 - Water permeability coefficient-according to GOST 12730.5-84[5].Concrete density-according to GOST 12730.1-78[4].
 - Compressive strength-determination according to GOST 10180-2012 in samples hardened for 7, 14 and 28 days.
 - Water permeability coefficient-according to GOST 12730.5-84[5].
 - Freezing-using freezing / thawing cycles (GOST 10060.0-95)[6].

3. Efficiency assessment criteria

- The level of attainment of performance determined by the minimum water consumption.
- Increase in compression strength (%) for 28 days.
- * Improved density and waterproofing indicators.
- Increase in frost resistance indicators (number of cycles).

4. Data processing

The experimental data obtained was processed statistically, calculating the average arithmetic values, dispersion and standard deviations. Microsoft Excel and OriginPro applications were used for analysis. The results were presented in the form of tables and graphs, efficiency indicators were compared with theoretical models.

This study was carried out within the framework of the priority “effective use of the local raw material base and development of an industry based on advanced technologies”, which is listed in the annex of Decree No. 158 of the president of the Republic of Uzbekistan on the strategy of Uzbekistan-2030 (adopted on September 11, 2023).

Major researchers around the world with problems of creating and using local raw materials and industrial waste, mineral Binder and producing high-quality concretions using them, developing their compositions, improving

physical and mechanical and technical characteristics and increasing their strength, including: Volzhensky A. V..[7], Pashyenko V.[7], Pashyenk V.[7], Pashyenko A.A.[8], Timashev V.V., Schmidt M.[9], Zhao Qinglin, Chen.[7], Pashyenko A[7], PashyenkoV.[7], Pashyeko A.A.[8], T[7], Pashyenko AV.[7], PashV.[7], Pashyenv.[7], Pashyenko A.A.[8], T[7], PashyesV.[7], Pashyenko A.A.[8], Timashev V.V., Schmidt M.[9], Zhao Qinglin, Cheng Xin, Stark J., Wicht B., Batrakovted significantly to the resolution of these issues.

Scientists of our country have conducted a number of studies in the study of the development of the composition of building materials on the basis of domestic homashyo and industrial waste, improving the structure and properties and improving their effectiveness. Odilkhaqayev A.ScScientists of our coScientists oScientists of ouscientists of ourScientistssScientists of oScientists of fsScientists of our scientists of our country have conducted a number of studies in the study of the development of the composhieved significant results in this area based on their research in different years.

Analysis of the research carried out showed that significant positive results were obtained in the field of improving the production of low-water demanding Cements and creating resource-efficient technologies. However, the fact that there is insufficient research in our Republic aimed at developing effective compositions of low-water demanding cements suggests that it requires more extensive research work in the Soha.

The local raw material consists of optimizing high-quality low-water demanding cement compositions using technogenic waste (basalt shale) while saving the amount of cement clinker and their application in the production of the underlying concretions.

The object of the study was obtained low-water demanding Cements and concretions using cement clinker, basalt slag, Barkhan sand and superplastifier JK-02.

The subject of the study is the physical-chemical, physical-mechanical and technical-economic parameters of low-water demanding Cements and the concretions on which they are based, using man-made waste and local raw materials.

In cement production, the forming components in roller and gear zm-800 mills are a scientifically based solution to improve the physical and mechanical properties of Cements and concretes obtained by joint grinding, that is, mechanical activation and modification. According to the results of this scientific research work, the determination of the specified properties of Cements and concretions depends on the physicochemical target effect on cement, which is indicated by the exact formation.

RESULTS

Low water is of the type of cements obtained using such a method of mechanical activation and modernization of the components that make up in the production of demanding Cements, and in their preparation it is necessary to take into account the type and properties of chemically active mineral additives used for modification.

The effect of a comparable Surface Surface on the normal thickness and hardening time of cement is shown in Table 1.

TABLE 1. Composition and properties of PS-500 and low-water demanding cements

T/r	PS clinker quantity, %	Gypsum stone, %	Basalt slake, %	Barkhan sand	JK-02 amount, %	Specific surface area, m ² /kg	Water-cement ratio, %	Strength, MPa	
								3 days	28 days
1	95	5	0	0	0	320	25,6	15	51.9
2	65	5	15	15	0.6	500	17.0	29	68.7
3	55	5	15	15	0.8	550	18.0	26	59.2
4	45	5	15	15	1	570	19,0	19	50.8

The mill showed a high strength when the strength of the 3-day Strength of the crushed cement to 550 m²/kg softness was compared to the contrast sample, i.e. a simple portlandement sample that was not mechanoactivated,

and can be seen to be 19 MPa, 26 MPa, 29 MPa respectively. This can be explained by the fact that the results depend on the degree of softness of the cement and the amount of active mineral particles in the cement.

TABLE 2. Qizilqumsement SEM I 42.5 and the amount and description of raw materials that make up low water demanding cement

№	Cement name	PS clinker, %	Basalt slate, %	Ash, %	Barkhan sand, %	Super. JK-02, %	Hypostasis, %	Comparison surface area, m ² /kg	Normal thickness, %	strength	
										Given hot-wet processing, MPa	28 days, MPa
1	SEM I 42.5	95	-	-	-	0.8	5	450	25.1	48.3	51.1
2	KSTS-50	50	15	15	15	0.6	4.4	578	17.8	50.8	52.3
3	KSTS-50	50	15	15	15	0.8	4.2	580	18.1	52.2	55.5
4	KSTS-50	50	15	15	15	1.0	4.0	579	17.3	51.9	53.8
5	KSTS-55	55	10	15	15	0.6	4.4	581	17.9	55.8	59.9
6	KSTS-55	55	15	10	15	0.8	4.2	580	17.9	59.2	63.5
7	KSTS-55	55	15	15	10	1.0	4.0	579	17.6	60.1	61.8
8	KSTS-60	60	5	15	15	0.6	4.4	580	18.6	60.2	63.3
9	KSTS-60	60	15	15	5	0.8	4.2	585	17.0	63.8	65.9
10	KSTS-60	60	15	5	15	1.0	4.0	587	17.3	62.1	64.5
11	KSTS-65	65	5	10	15	0.6	4.4	589	17.5	65.8	67.6
12	KSTS-65	65	15	10	5	0.8	4.2	590	17.9	67.4	70.1
13	KSTS-65	65	15	10	5	1.0	4.0	587	19.0	69.0	71.4
14	KSTS-70	70	5	15	5	0.6	4.4	595	17.4	70.2	73.9
15	KSTS-70	70	10	10	5	0.8	4.2	600	18.8	74.0	78.8
16	KSTS-70	70	15	5	5	1.0	4.0	597	19.0	71.1	75.2

Low water has been studied for the strength of the demanding cement stone in natural conditions and in compositions given hot wet treatment.

TABLE 3. Optimal compositions of heavy concrete.

T/r	Cement type	Material consumption, (kg/m ³)				Plasticizer JK-02	S/S	Mobility brand	Mixture density (kg/m ³)
		Cement	sand	Flint	water				
1	SEM I 42.5 N	400	687	1202	175	-	0.44	P5	2464
2	KSTS-50	400	725	1225	135		0.34	P3	2485
3	SEM I 42.5 N JK-0.8%	400	712	1207	160	0.8	0.40	P4	2479
4	KSTS-50	400	703	1254	130		0.33	P3	2487

The scientific study carried out from the results of the experiment shows from Table 3 that in terms of the technological properties of a heavy concrete mixture of equal Mobility, s/S=0.26, the mixture was found to be effective (T/r No. 4) with a density of 2507 kg/m³.

TABLE 4. Strength of concrete number 1-4 based on Table 3.

T/r	Cement type	Concrete strength R_{squeeze} , (kg/sm ²)			Clinker consumption, 1m ³ , S _{kg}	Comparative robustness R_{casting} , (kg/sm ² /kg)			
		Concrete hardening period				Concrete hardening period			
		1 day	Heat treatment	28 days		1 day	Heat treatment	28 days	
1	SEM I 42.5	145	492	530	420	0.35	1.17	1.26	
2	KSTS-50	187	502	576	210	0.89	2.88	3.11	
3	SEM I 42.5, JK-02-0.8%	195	498	545	420	0.46	1.46	1.66	
4	KSTS-50	218	505	555	231	0.94	2.96	3.0	

When the properties of heavy concrete based on low-water demanding cements of basalt scale (rock) are analyzed, the decrease in water demand due to the reduction of contact points between the grains of different basalt scale (rock) with a high concentration of basalt scale (rock) indicates a certain amount of strength.

The composition and properties of the concrete mixture based on SEM I 42.5 and low water demanding Cements are presented in Table 5.

TABLE 5. Experimental test results

T/r	Cement	Material consumption, kg/m ³				K _{dipping} , sm	S/S	Density, kg/m ³			
		Cement consumption	fillers		water						
			sand	Flint							
1	SEM I 42.5+SP JK-02	420	795	1100	175	10	0.42	2490			
2	KSTS-50	420	755	1200	130	9	0.31	2505			
3	KSTS-55	420	775	1200	128	9	0.30	2523			
4	KSTS-60	460	764	1200	138	9	0.30	2562			
5	KSTS-65	480	768	1200	133	7	0.29	2581			
6	KSTS-70	480	772	1200	133	7	0.29	2585			

Table 5 shows that “Qizilqumsement” SEM I 42.5, superplastifier JK-02 – 0.8%, low water-demanding cement-based heavy concrete samples of basalt scale (gravel) showed high strength of hardened concretes from heat treatment under normal conditions or. Table 5 shows that “Qizilqumsement” SEM I 42.5, superplastifier JK-02 – 0.8%, low water-demanding cement-based heavy concrete samples of basalt scale (gravel) showed high strength of hardened concretes from heat treatment under normal conditions or. The main reasons for this are due to the high degree of softness of the cement, the presence of a basalt scale (masonry)-10%, a superplastifier-0.8%, active and chemical additives in the composition, the formation of a high-strength structure under their influence. That is, the S / S ratio is small, the mobility of the concrete mixture (K-immersion) is equal, has a positive effect on the high density.

CONCLUSIONS

- Crushed basalt slag has a high dispersion and is considered an effective mineral waste, due to its vitreous structure and high specific surface area, it was found in literature analysis that low water is an active mineral additive in demanding cement-based systems.

2.. Crushed basalt slag has a high dispersion and is considered an effective mineral waste, due to its vitreous structure and high specific surface area, it was found in literature analysis that low water is an active mineral additive in demanding cement-based systems.

2. In studies on low-water demanding cements, it was found that the crystallization process and the factors that create the curing system are desirable as an addition to the softness of the cement, the high strength of the cement stone formed

3. Using modern methods of physical and chemical and physical and mechanical research, the properties of raw materials and components used in research work were studied and carried out using modern research methods of physical and chemical and physical and mechanical research, and scientific analysis was carried out.

4. Optimal parameters of low water demanding Cements with a specific surface surface area of 550-600 m²/kg "cement clinker, basalt scale (gravel), ash, Barkhan sand, superplastifier in a five-System System, a mathematical demanding regression of the selection of logical and structural quantities of raw materials for low water cement with basalt scale (Gravel)has been developed.

5. Using the method of mathematical planning of carried out scientific research experiments, a mathematical regression on the optimization of low – water demanding cement compositions obtained by mechanical activation of components with an optimal parameter of 65-75% cement clinker, basalt scale (gravel) – 15%, Barkhan sand-10%, and the optimization of technological parameters of production according to the results of the analysis.

REFERENCES

1. ГОСТ 10178-85. Портландцемент и шлакопортландцемент. Технические условия. (М.: Стандартинформ, 2011), 28 с.
2. ГОСТ 10181-2014. Смеси бетонные. Методы испытаний. (М.: Стандартинформ, 2015), 40 с.
3. ГОСТ 310.3-76. Цементы. Методы определения сроков схватывания и равномерности изменения объема. (М.: Стандартинформ, 2008), 12 с.
4. ГОСТ 12730.1-78. Бетоны. Методы определения плотности. (М.: Стандартинформ, 2010), 12 с.
5. ГОСТ 12730.5-84. Бетоны. Методы определения водопроницаемости. (М.: Стандартинформ, 2009), 16 с.
6. ГОСТ 10060.0-95. Бетоны. Методы определения морозостойкости. (М.: Стандартинформ, 2012), 25 с.
7. А. В. Волженский, Минеральные вяжущие вещества. (Л.: Стройиздат, 1986), 464 с.
8. А. А. Пащенко, В. В. Тимашев, Строительные материалы: Учебник для вузов. М.: Высшая школа, (2005). – 543 с.
9. M. Schmidt, Q. Zhao, X. Cheng, J. Stark, B. Wicht, Advances in clinker reduction technologies for sustainable cements. Cement and Concrete Research. Vol. **124**, pp. 105–114, (2019).
10. В. Г. Батраков Модифицированные бетоны. Теория и практика. М.: (Стройиздат, 1990), 368 с.
11. Ю. М. Баженов, Л. И Дворкин., М. Я. Бикбау, Технология бетона. (М.: Издательство АСВ, 2011). 528 с.
12. В. Г. Хозин, В. Р. Фаликман, Инновационные технологии модификации цементных систем. – Казань: Казанский государственный архитектурно-строительный университет, 312 с. (2015).
13. R. Z. Rahimov, V. I. Kalashnikov, N. F. Bashlykov, A. N. Bosman, A. V. Sheinfeld, V. P. Kuzmina, L. Ya. Komar, Use of industrial waste in cement composites: Experience and prospects. Procedia Engineering. Vol. **172**, pp. 149–156, (2017).
14. A. I. Odilxo'jayev, T. A. Otaqo'ziyev, N. X. Babayev, Qurilish materiallari texnologiyasi. – Toshkent: "Fan va texnologiya", 320 b. (2018).
15. E. U. Qosimov, Z. P. Po'latov, N. A. Samig'ov, Kam suv talabchan sementlar va ularning samaradorligi. Toshkent: Oliy ta'l'm, 210 b. (2021).
16. D. L. Davids, "Recovery effects in binary aluminum alloys," Ph.D. thesis, Harvard University, (1998).
17. R. C. Mikkelsen (private communication).

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 Wall Whitman Road, Suite 300, Melville, NY 11747-4300 USA; Phone 516-576-2268; Email: rights@aip.org.

Article Title ("Work"): Efficiency Of Low-Water-Requirement Cements And Concrete Mixtures And Concretes Based On Them With Basalt (Steg) Aggregate

(Please indicate the final title of the Work. Any substantive changes made to the title after acceptance of the Work may require the completion of a new agreement.)

All Author(s): S.S. Babayev

(Please list all the authors' names in order as they will appear in the Work. All listed authors must be fully deserving of authorship and no such authors should be omitted. For large groups of authors, attach a separate list to this form.)

Title of Conference: 3rd International Conference Advanced Mechanics: Structure, Materials, Tribology
Name(s) of Editor(s): Valentin Popov

All Copyright Owner(s), If not Author(s):

(Please list all copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(ies) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approved of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #3 below):

S.S. Babayev

Author(s) Signature

11.24.2025

Date

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner

Authorized Signature and Title

Date

3. If an Author is a U.S. Government employee, such Author must please sign below. The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature

Print Name

Date

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract #s: _____

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University, <http://arxiv.org/>.

Commercial and noncommercial scholarly use: Noncommercial scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. Commercial uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrdclst/>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is not considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.