

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Experimental Analysis of the Bending of a Beam Laying on an Elastic Base

AIPCP25-CF-AMSMT2025-00047 | Article

PDF auto-generated using **ReView**

Experimental Analysis of the Bending of a Beam Laying on an Elastic Base

Dilshod Kholikov^{1,4,a)}, Kamola Khaydarova^{1,b)}, Khudaynazar Akhatov^{2,c)},
Ilhom Turayev^{3,d)} Abror Egamkulov^{1,e)}

¹ Samarkand State University, 140104, University blv. 15, Samarkand city, Uzbekistan.

² Urgut branch Samarkand State University, Uzbekistan.

³ Samarkand State University of Architecture and Construction

⁴ Samarkand campus of Zarmed University

^{a)} dilshodxoliquov2586@mail.ru

^{b)} Corresponding author: xaydarovakamolaxakimovna@gmail.com

^{c)} khudaynazar92@gmail.com,

^{d)} turayev2020@gmail.com

^{e)} abroregamkulov298@gmail.com

Abstract. The article is devoted to the experimental determination and analysis of the deflection of a beam lying on an elastic foundation under the influence of a static force. In the experiment, a steel beam was installed in a free position on the foundation and subjected to a uniformly distributed static force. The settlement values were determined theoretically based on the Winkler, Pasternak, Vlasov and elastic-plastic medium models (Coulomb-Mohr) and compared with the experimental results. The obtained results showed that the interaction between the beam and the elastic foundation is quite complex and that theoretical models need to be adapted to practical conditions. This study is of practical importance in assessing the stability of foundation structures and soil structures.

Keywords: grunt, beam, bed stiffness coefficient, Winkler model, Pasternak model, Vlasov models.

INTRODUCTION

Beams on elastic foundations are very common in engineering. Such structures include: building foundations, railway superstructures (rails and sleepers), and ship hulls. Several basic mathematical models are used to perform calculations that take into account the interaction of buildings with the foundation, each of which has its own advantages and disadvantages. The choice of a specific modeling method is a complex multifactorial task. The purpose of this article is to summarize the most common soil models for practical calculations and to clarify those using experimental results.

As we know, in practice, most construction projects use strip foundations as the foundation of buildings. When strip foundations are used for buildings, the force increases, that is, the force exerted on the foundation from the beginning to the end of construction (the ground part of the building, 1st, 2nd, 3rd floors, etc., in sequence). The main goal of the experiment is to study the interaction between the foundation and the soil, and the mutual influence of the foundation and the soil on each other in real conditions. For this purpose, a specially designed flatbed tray was developed in the laboratory. In it, a strip-shaped steel strip (foundation or beam) was placed on the soil embedded in the tray, adapted to apply force to it and measure its deflection. The main goal of the experiment was to determine the bending moment and shear forces generated in the beam because of the bending of the metal beam under the influence of concentrated forces and spreading forces. Before conducting the experiment, we determine the bending moment of a metal beam experimentally and analytically. To do this, we apply a force concentrated at the center of the beam,

which is mounted on two supports, and measure the maximum deflection produced in it. We will gradually record the deflection of the beam in relation to the applied force. A graph of the relationship between the deflection of the beam and the applied force is drawn. The deflection of the beam should not be allowed to pass into the plastic zone. For the experiment, we will consider beams of different lengths and thicknesses.

FIGURE 1. Experimental determination of the hardness of a metal beam

FORMULATION OF THE PROBLEM

The stiffness of a metal beam is determined by the following formula.

$$EJ = \frac{Eb^3}{12} \quad (1)$$

Based on formula (1), we can calculate the deflection of the beam with the experimentally obtained values (Table 1). Here, EJ is the stiffness of the beam, P is the external load.

TABLE 1. Experimentally obtained values

The height of the beam (1 m)		
Load [N]	tilt (m)	stiffness E [N/m ²]
3.33	0.00062	135.6*10 ⁹
22.95	0.00404	144.7*10 ⁹
42.57	0.00654	165.87*10 ⁹
62.195	0.00934	169.69*10 ⁹
81.815	0.01228	169.77*10 ⁹
101.43	0.0151	171.17*10 ⁹
		E _{ort} =159.48*10 ⁹

In the experiment performed based on the figure shown (Figure 2), assuming gravel with a fraction of 10 mm as the soil, the geometric dimensions of the metal strip as the beam are l=1000 mm, width b=50 mm, and thickness h=5 mm. The soil layer height H=1300 mm.

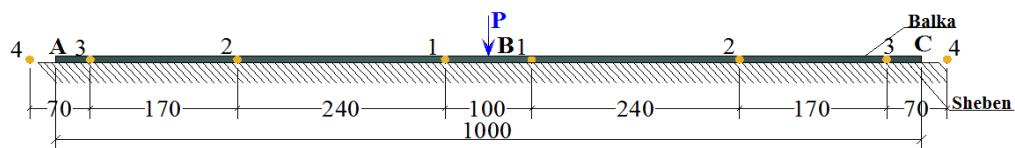


FIGURE2. Metal hammer with a base of soil

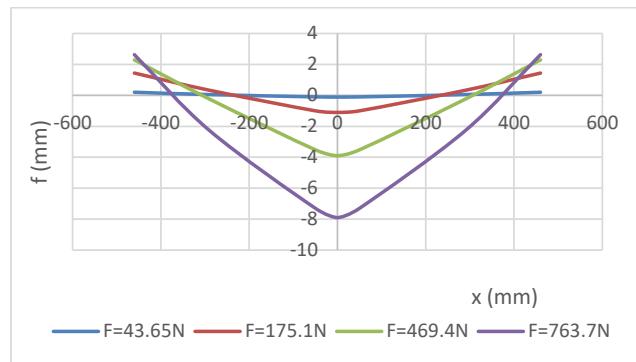


FIGURE3. Flexion of the beam

According to the results, the deflection of the beam increased steadily with increasing load. It is evident that at the initial load values (3.33–22.95 N), the deflection of the beam increases sharply, which indicates the stage of compaction of the upper layers of the soil. At subsequent loads (42.57–101.43 N), the deflection slows down relatively, which indicates the compaction of the soil layer. The average modulus of elasticity is $E_{0,rt} = 159.48 \times 10^9 \text{ N/m}^2$, which indicates a high degree of elasticity of the metal beams.

Also, based on the experimental results, it was found that the deformation of the beam is directly proportional to the load. The natural compressibility of the soil determines the rate of settlement of the beam. The experimental results show that at loads in the range of 600–700 N, the deformation resistance of the soil increases and the deflection of the beam stabilizes. This allows us to determine the limit of soil behavior.

FIGURE4. Static analysis sheets for a 1-meter-long beam with a base of sheben soil

CONCLUSION

Based on the experimental and computational results, the following conclusions were drawn:

1. The deflection of metal beams located on the Sheben soil increases linearly with increasing load, which reflects the degree of soil compaction.
2. At high load values, the deformation slows down, indicating that the soil layer has reached a stable state.
3. The average modulus of elasticity $E_{o,rt} = 159.48 \times 10^9 \text{ N/m}^2$, which confirms the high degree of elasticity of metal beams.
4. The results obtained are of practical importance in determining the performance of foundation structures and soil foundations. The results can be used as a key indicator in further analysis and modeling work.

REFERENCES

1. К. Джонсон, Механика контактного взаимодействия. М., Мир 189. 510 с.
2. Л. А. Галин, О гипотезе Циммермана _Винклера для балок. Прикладная математика и механика. Т.7. вып.4. (1943).
3. Б. Н. Жемочкин, А. П. Синицын, Практические методы расчета фундаментов балок и плит на упругом основании (без гипотез Винклера). Стройиздат, М., (1947).
4. Г. И. Глушков, Расчет сооружений заглубленных в грунт. М.Стройиздат. (1977). 295.с.
5. Т. Р. Б. Рашидов, С. В. Кузнецов, Б. М. Мардонов, И. Мирзаев, Прикладные задачи сейсмодинамики сооружений.Ташкент. (2019). 268 с.
6. В. З. Власов, Н. Н. Леонтьев, Балки, плиты и оболочки на упругом основании.М. Изд. Физмат.лит. (1960). 490 с.
7. Б. М. Будак, А. А. Самарский, А. Н. Тихонов, Сборник задач по математической физике. М.Физмат.лит (1956). 682 с.
8. D. Kholiqov, J. Abdurazzoqov, R. Usmonov, K. Xaydarova, Free torsional vibration of an elastic thin-walled cylindrical shell with variable cross sectio, AIP 2024/11/27 060029-1. <https://doi.org/10.1063/5.0241748>
9. B. Mardonov, K. X. Xaydarova, D. M. Ismatova, Горизонтально- вращательные колебания сооружений с фундаментом, взаимодействующим с основанием по билинейному закону при сейсмических воздействиях, Problems of architecture and construction 2 (3), 824-827
10. X.K. Xakimovna, I.D. Maxmudovna, Prospects for the application of brick walls in modern housing construction under construction in Uzbekistan. Indonesian journal of law and economics review 19 (1), 10.21070/ijler. v19i1
11. K. Xaydarova, Bir qatlamlı elastik asosda joylashgan to'sinning seysmik kuchlar ta'siridagi tebranishining V.Z. Vlasov usuli asosida analitik tadqiqi, Yashil iqtisodiyot va taraqqiyot, № 5-son, 148-152 b. (2025).
12. B. Mardonov, K. Xaydarova, I. Turayev, E. Yadigarov, Dynamics of a rigid beam on an elastic single-layer foundation with mechanical characteristics varying with depth, Innovative: International Multi-disciplinary Journal of Applied Technology (ISSN 2995-486X) V. 4 (2025).
13. D. Kholikov, Z. Shukurov, E. Ismoilov, K. Xaydarova, Experimental determination of the intensified deformed state of elastic thin-walled shell, AIP Conf. Proc. 3177, 050020 (2025)
<https://doi.org/10.1063/5.029593>

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University, <http://arxiv.org/>.

Commercial and noncommercial scholarly use: Noncommercial scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. Commercial uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrclist/>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is not considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.