

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Influence of Long-Term Loading and Central Asian Climate on Wooden Spatial Structures

AIPCP25-CF-AMSMT2025-00050 | Article

PDF auto-generated using **ReView**

Influence of Long-Term Loading and Central Asian Climate on Wooden Spatial Structures

Boltayev To'qmurod¹, Qosimov To'raboy¹, Maxammatov Muzaffar Safarovich¹,
Bakhriev Nuritdin Fakhritdinovich^{2,a)}

¹*Samarkand State University of Architecture and construction named after Mirzo Ulugbek. Samarkand, Uzbekistan.*

²*Samarkand State University named after Sharof Rashidov, Samarkand, Uzbekistan.*

^{a)}Corresponding author: bakhriev.nf@mail.ru

Abstract: Modern construction, carried out in conditions of dry hot climate, is one of the most material-intensive industries. The article suggests the need to use available, comprehensive reserves to reduce material intensity, reduce labor and energy costs for the manufacture and construction of spatial wooden structures. In this regard, a solution to the problem with a wider use of lightweight materials, in particular wood, is proposed. Attempts are made to develop methods for calculating and designing spatial wooden systems. Issues related to the theory of deformation and resistances of wood under long-term impacts are considered. Data on the effect of humidity and temperature effects on wood in modern conditions of dry and hot climate are provided. The possibility of reducing material costs for the structure is attracted taking into account the long-term action of loads from 10 to 25%, a qualitative picture of the peculiarity of long-term deformation of wooden structures is explained.

Keywords: reduction of material consumption, deformation and resistance of wood, fibrous structure, elasticity, plasticity, amorphous viscous filler, anisotropically inhomogeneous material, humidity, temperature

INTRODUCTION

Increasing the efficiency of using wooden structures is closely related to such concepts as reliability and durability. However, these two indicators are not always ensured when using wooden structures under constant load and the action of the dry hot climate of Central Asia. Despite the widespread use of wooden structures, they do not always meet the strength and durability requirements under the above conditions due to the formation of damage in the form of parallel-fiber cracks and delamination during operation. The geometric parameters of such damage, depending on the type of structure, the action of long-term load and operating conditions, vary widely, both in the depth of the section and the length of the structure. This is evidenced by the results of a literature review of a number of works by authors in which the problem of long-term loads and dry hot climate has not been studied sufficiently [1, 2, 3 and 4].

The specificity of wooden structures determines their unique scope of application, often where other materials do not meet the requirements, namely, the lightness of the material, the feasibility of using for large-span roofs, the need for which is increasingly increasing in modern conditions. This is especially relevant for regions with aggressive and harsh climates, when exposed to long-term loads. Resistance to aggressive environments, when exposed to long-term loads as large-span elements [3, 4].

It is known that wooden structures do not shrink evenly among all three sides (cross-section, radial and tangential sections, directions x, y and z). Whatever the type of wood, it shrinks the least along its grain z, i.e. per meter (0.1-0.4%), and the most along its cross-section (6-12%). Thermal conductivity of most wood materials under the influence of temperature (T) in a dry state is relatively insignificant. The thermal conductivity coefficient of wood through the cross-section is 0.17 W/m•°C, and along the radial and tangential grains - 0.34 W/m•°C. An increase in wood moisture content (W) increases its thermal conductivity. The ability of wooden structures to absorb moisture

in space has a qualitatively negative effect on their strength and deformation. Therefore, it is important to determine the deformation and design resistance of wood over time under the influence of humidity and external temperature [5, 6, 7 and 8].

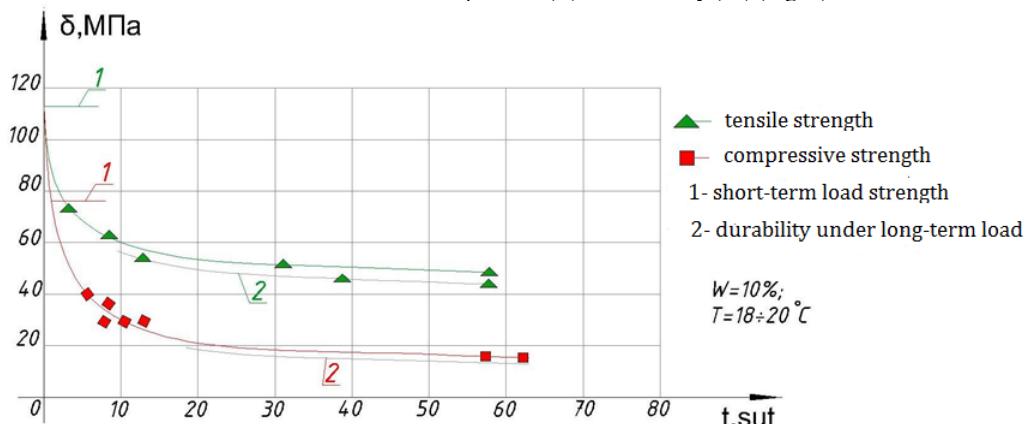
Since the resistance and deformation of wooden structures are affected by long-term constant loads, they have their own order of impacts, so that their natural structure cannot be changed. When exposed to humidity (W) and temperature (T), and then periodic long-term load, it is important to study the deformation of derivative structures and determine their design resistance, which is the main goal of the presented studies.

Normative and design resistance of wooden structures is closed in that ix resistance to the impact of periodic continuous external loads is removed to a certain extent with an increase in humidity.

As a result of increased air humidity on cold winter days, wooden structures tend to absorb moisture from the air. In some cases, due to excessive moisture absorption by wooden structures, their frame may freeze.

METHODOLOGY OF THE RESEARCH

Wood samples were taken from different species that are exposed to long-term constant load. The samples were chips of lumber of spatial structures. Species of samples are presented in Table 1. Standard samples were made from the chips to determine the moisture content, density and strength of wood. Wood moisture content was determined according to the method of GOST 16483.7-82, density – GOST 16483.1-84 and strength – GOST 16483.10-73, GOST 16483.23-73.


The determination of the ultimate strength for any given duration of load action was carried out using the formula [9]:

$$\sigma_t = \sigma_{ct} + \alpha(\log \tau_{ct} - \log \tau) \quad (1)$$

Where σ_t is the ultimate strength at a given load duration, MPa; σ_{ct} is the ultimate strength during standard tests, MPa; τ_{ct} is the time required for the specimen to fail during standard tests, c; α is the correction number, MPa; The values of σ_{ct} and α for different types of rock and force action are given in the Guidelines for Technical Materials (GTM) [15].

RESEARCH RESULTS AND THEIR DISCUSSION

As a result of the absorption of unbound excess moisture in space, the mass of wooden structures mechanically increases, their volumetric and linear dimensions increase. In addition, a decrease in the elastic modulus (E) of the wood material is observed under the influence of temperature (T) and humidity (W) (Fig. 1).

FIGURE 1. Tensile and compression strength limits of experimental wood samples under cyclic continuous loading in the direction of the fibers for a period of time (t)

As a result of the above-described monotonous process, repeated over many years, wooden structures become unusable before they reach their service life. Based on the results of the research, a decision was made to determine

the standard and design resistance of structures made of wooden materials to tension and compression under the action of a centrally applied periodic continuous load.

Local damage (bending, cracking) occurs in the body of a wooden specimen under a relatively long-term continuous load along the direction of the fibers and in transverse sections. This phenomenon, in turn, has been found to occur over a short period of time.

The stages of strength of structures made of wood in central compression and tension over a period of time are given in table 1.

TABLE 1. Compressive and tensile strength limits along the fibers of samples taken from various types of wood

Type of wood materials	Type of test	Tensile strength, (R*) MPa	Correction factors, α
pine (сосна)	compression	33,2	0,44
	stretching	56,4	0,52
beech (бук)	compression	31	0,47
	stretching	86,3	0,44
oak (дуб)	compression	43	0,6
	stretching	55,5	0,46
Native blue poplar	compression	36,52	0,42
	stretching	62,04	0,54
Local gio poplar	compression	31,5	0,40
	stretching	53,6	0,50
Native California Poplar	compression	30,0	0,42
	stretching	51,4	0,52

Since wood is considered an elastic material, the mechanical properties of the samples made from it, such as elongation or compression under a central continuous long-term load, bending under a transverse load, and bending under a shear force, were determined and various valuable results were obtained. Since most wooden elements are anisotropic (multidimensional) materials, they change from an elastic state to a plastic state under the action of a force applied to them. Therefore, the transition boundary from an elastic state to a plastic state was studied. In addition, the elastic module of wooden structures also changes during the studies, for example:

- modulus of elasticity along the longitudinal fibers of wood, E_a ;
- in the direction transverse to the longitudinal fibers of wood (tangential modulus of elasticity) E_t ;
- in the direction radial to the longitudinal fibers of wood (radial modulus of elasticity) - E_r ;
- bending modulus of elasticity of wooden structures - E_{bend} ;

In the following tables (2), (3) we present all the data on the modulus of elasticity according to the types of wood materials used in the studies.

TABLE 2. Modulus of elasticity according to types of wood materials

Type of wood materials	Long-term compressed element, MPa			Long-term stretch element, MPa			Statically bending element, E_{bend} , MPa
	E_a	E_t	E_r	E_a	E_t	E_r	
pine (сосна)	12100	570	690	12100	500	580	12600
beech (бук)	14500	430	660	14600	490	690	11000
oak (дуб)	14300	9770	1340	14300	890	1160	15400
birch (тус)	16100	520	670	18300	490	670	15400

TABLE 3. Deformation coefficients according to the types of wood used in the research, μ

Type of wood materials	deformation coefficients, μ					
pine (сосна)	0,49	0,41	0,03	0,79	0,037	0,038
birch (тус)	0,58	0,45	0,043	0,81	0,04	0,49
oak (дуб)	0,43	0,41	0,07	0,83	0,09	0,34
Spruce (ель)	0,44	0,411	0,017	0,48	0,031	0,025

As is known, wooden products (structures) have not been fully studied to date in terms of mechanical strength and long-term constant load.

According to the research results, it can be noted that: - as a result of increasing deformations of wooden structures under the action of constant loads at a moisture content of the internal structure of wood of more than $W > 12\%$, the phenomenon of slippage or creep of cell membranes under the action of water pressure in the fiber capillaries may occur. In this case, the thin walls of the wood capillaries undergo elastic deformation, and the skeleton of the fibers in the system is deformed. Based on this property of wood, an assumption was made about the presence of elastic-plastic or elastic-sliding deformation in wood [9, 10, 11, 12, 13 and 14].

According to the basic theory, the following function can be expressed as a function of the dependence of tension, deformation and time:

$$\varepsilon(t) = \varphi[\delta(t): t \leq \tau] \quad (2)$$

here $\varepsilon(t) - t$ is the total relative deformation produced in the time interval $t\delta(t)$ is the stress at any instant of time; t is time; τ is the calculated time coordinate.

DISCUSSIONS

Based on the creep theory, the following concepts and hypotheses were formulated regarding wood deformations under constant long-term load:

- despite the fact that wood is an anisotropic material by its nature, in calculations we assume it to be a homogeneous rigid material;
- we assume that wood is a heterogeneous anisotropic material with non-uniform fibers, sometimes directed in different directions, with uniform deformation indices depending on the action of forces perpendicular to the trunk or at an angle;
- the following relationship exists between the total deformation of wood (elastic deformation and creep deformation) and stress:
 - there is a linear relationship between stress and creep deformation;
 - there is a negligible relationship between stress and creep deformation;
 - it is assumed that the absolute value of deformation depends on the sign of (inelastic) stress;
- it is assumed that creep deformation, as well as elastic deformation occurring at the given moment, is determined by the law of loading. Studies of deformation of wooden structures under long-term action of loads have shown that wood is considered a linearly creeping material in cases where its strength does not exceed the tensile strength, and taking into account the above assumptions and suppositions, linear creep of wood is determined. - for the first time for long-term loaded wood, the relationships between stress intensity factors and tangential stresses, as well as rapid crack propagation under combined action on tension or tearing, are determined.

The possibility of reducing the cost of materials for the structure taking into account the long-term action of loads from 10 to 25% has been established, and a qualitative picture of the peculiarity of long-term deformation of wooden structures has been explained.

REFERENCES:

1. K. P. Pyatikrestovskiy, Sustained force deforming of structured materials, Structural Mechanics of Engineering Constructions, (2017). - journals.rudn.ru.
2. S. I. Roshchina, A. Y. Naichuk, The effect of eccentricity on the strength characteristics of glued rods made of steel cable reinforcement in solid wood, IOP conference series ..., (2020) - iopscience.iop.org.
3. A.D. Platonov, T.K. Kuryanova, Increasing the service life of sleepers made from birch wood, Series: Earth and ..., (2019) - iopscience.iop.org.
4. S. Svensson, S. Thelandersson and H. J. Larsen, Reliability of timber structures under long term loads //Materials and Structures/Matériaux et Constructions, Vol. 32, pp 755-760, (1999).
5. S. Kulman, L. Boiko, & J. Sedliačik, Long-term strength prediction of wood based composites using the kinetic equations. Scientific Horizons, 24(3), 9-18, (2021).
6. J. D. Barrett, and R. O. Foschi, , 'Duration of load and probability of failure in wood, part I and II', Canadian Journal of Civil Engineering 5 (4) 505-532, (1978).
7. Yu. N. Rabotnov, On the mechanism of long-term destruction. Strength Issues of Materials and Structures, 7, 5-7, (1959).

8. A. N. Oblivin, I. V. Sapozhnikov & M. V. Lopatnikov, Simulation of long-term strength of composite materials with wood filler. *Forestry Bulletin*, **1**, 6-11, (2015).
9. S. Kulman, & L. Boiko, Kinetic model of long durability of porous composite materials based on wood. *Modern Structures of Metal and Wood*, **19**, 79-85, (2015).
10. J. Winandy, Relating wood chemistry and strength: Part II. Fundamental relationships between changes in wood chemistry and strength of wood. *Wood and Fiber Science*, **49**(1), 2-11, (2017).
11. N. F. Bakhriev, N. R. Qurolova, Composite Wave Sheets from Basalt Fiber for Pitched. *Lecture Notes in Civil Engineering*, **369**, pp.3-17, 2024.
12. B. N. Fakhridinovich, Q. N. Ravshan kizi, Raw Mixture for Forming Flat and Wavy Sheet, Uz Fap 02222 Byul., No. **3**, (2023).
13. N. Bakhriev, Z. Fayzillaev, Modeling the optimal compositions of dry gypsum mixtures with bio-vegetable fillers, research of their adhesion properties, *AIP Conf. Proc.* 2657, 020029 (2022), <https://doi.org/10.1063/5.0106902>.
14. N. F. Bakhriev, N. R. Qurolova, Composite wave sheets from basalt fiber for pitched roofing, *Research and Developments in Engineering Research*, Page 15-32, <https://doi.org/10.9734/bpi/rader/v3/5399C>.
15. Wood. Indicators of physical and mechanical properties. RTM. - M.: Committee of Standards under the USSR Council of Ministers, 48 p. (1962).

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 Walt Whitman Road, Suite 300, Melville, NY 11747-4300 USA; Phone 516-576-2268; Email: rights@aip.org.

Article Title ("Work"):

Influence of Long-Term Loading and Central
Asian Climate on Wooden Spatial Structures

All Author(s):

Boltayev To'qmurod, Qosimov To'raboy

Maxammatov Muzaffar Safarovich,

Bakhriev Nuritdin Fakhritdinovich

Title of Conference: AMSMT2025

Name(s) of Editor(s) Valentin L. Popov

All Copyright Owner(s), if not Author(s):

(Please list all copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(es) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript file.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approval of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #3 below):

Bakhriev Nuritdin Fakhritdinovich 13.10.2025

Author(s) Signature Print Name Date

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner Authorized Signature and Title Date

3. If an Author is a U.S. Government employee, such Author must please sign below. The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature Print Name Date

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract #(s) _____ [1.16.1]

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University, <http://arxiv.org/>.

Commercial and noncommercial scholarly use: Noncommercial scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. Commercial uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrclist/>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is *not* considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.