

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Researchers Develop Novel Self-Discharging Solar Collectors Using Confuser-Diffuser Technology

AIPCP25-CF-AMSMT2025-00051 | Article

PDF auto-generated using **ReView**

Researchers Develop Novel Self-Discharging Solar Collectors Using Confuser-Diffuser Technology

Zafar Fayziev^{1, a)}, Shohida Yuzbayeva^{2, b)} and Sherzod Yakhshiboyev^{3, c)}

^{1, 2, 3)} Samarkand state architecture-construction university, 70 Lolazor street, Samarkand, Uzbekistan

^{a)} Corresponding author: fayziev.zafar@samdaqu.edu.uz

^{b)} yuzbayeva.shohida@samdaqu.edu.uz

^{c)} yaxshiboyev.shaerzod@samdaqu.edu.uz

Abstract. The climate of Uzbekistan is characterized by cold winters with negative temperatures of atmospheric air and hot summer periods of the year, when the air temperature reaches more than 40-45 °C. Therefore, when designing water solar installations for hot water supply and heating of buildings in the climatic conditions of the republic, it is necessary to ensure reliable protection of the Solar Collector from freezing of water in it in winter and from its boiling in summer. The phase transition of water in winter from a liquid to a solid state (ice) or in summer when water boils into a gaseous state (water vapor) is accompanied by a significant increase in its volume, which leads to mechanical damage to the heat exchange channels of the Solar Collector, as well as the distribution network of solar circuit pipelines. The Self-draining heliosystems currently used in practice are constantly being improved. Their energy efficiency and reliability are increased due to the improvement of the hydraulic configuration. For example, self-regulating hydrodynamic processes and self-regulating devices (SU) based on them can be used for this purpose [3], which are active elements in hydraulic pipelines. There are various hydraulic configurations of Self-draining systems [5], but only two of them will be considered within the framework of this dissertation from the point of view of improving the configuration of the thermal-hydraulic scheme of a self-draining solar plant with an active element in the form of a confuser-diffuser transition.

Keywords: Self-draining, solar collectors, active element, hydraulics, confuser-diffuser.

INTRODUCTION

Experience shows that the operation of standard drainback-type Self-draining heliosystems with two series-connected pumps [1] has energy costs for coolant circulation that are three or more times higher than the energy costs of an installation with one circulation pump running on antifreeze. If a circulation pump running on antifreeze has a power of only 85 W, then the total power of two series-connected pumps of the same size in a drainback-type Self-draining heliosystem is 260 W or more.

In order to eliminate these shortcomings of the known hydraulic configurations of the Self-draining heliosystem, self-draining solar circuits were developed under the supervision of prof. Yu.K.Rashidov based on the use of an active element in the form of a narrowing device – a Venturi pipe [3].

RESULT AND METHODS

Energy efficiency of Self-draining systems with Active Element in the form of a confuser-diffuser transition and with a thermo-hydraulic distributor it is possible to estimate the energy consumption of the circulation pump in comparison with a conventional SDG pump, in which the circulation of the coolant occurs with a flow break [3]

$$\Delta \bar{E}_{CD} = \frac{E_0 - E_{CD}}{E_0} = 1 - \frac{G \Delta p_{pump}^{CD} n}{\rho \eta_{pump}} / \frac{G \Delta p_{pump}^0 n}{\rho \eta_{pump}} = 1 - \frac{\Delta p_{pump}^{CD}}{\Delta p_{pump}^0} \quad (1)$$

where E_o, E_{kd} – the energy costs for driving the circulation pump in a conventional Self-draining systems and in a Self-draining systems with a confuser-diffuser type Active Element and with a thermo-hydraulic distributor, W·h/year; $\Delta P_{pump}^0, \Delta P_{pump}^{CD}$ – pressure differences created by a pump in a conventional Self-draining systems and in a solar circuit with a confuser-diffuser type Active Element, Pa; n is the number of hours the pumps operate per year; η_{pump} is the efficiency of the pumping unit.

To establish the relationship between the pressure differences created by the pump and other parameters of the Self-draining systems, we will compile the D. Bernoulli equation for sections II and 2 (Fig.-1), written taking into account the operation of the circulation pump included in it ΔP_{pump} and the action of natural circulation. ΔP_{nat}

$$P_a + \rho g h_1 + \alpha_1 \frac{\rho W_1^2}{2} + \Delta P_{pump} + \Delta P_{nat} = P_a + \rho g h_2 + \alpha_2 \frac{\rho W_2^2}{2} + \rho g \Delta h_w. \quad (2)$$

From this equality we find the formula for calculating the required pressure drop developed by the pump ΔP_{pump} in a self-draining solar circuit

$$\Delta P_{pump} = \rho g H + \frac{\rho}{2} (\alpha_2 W_2^2 - \alpha_1 W_1^2) + \rho g \Delta h_w - \Delta P_{nat}, \quad (3)$$

Here $H = h_2 - h_1, \Delta P_{nat} = \Delta \rho g h_3$,

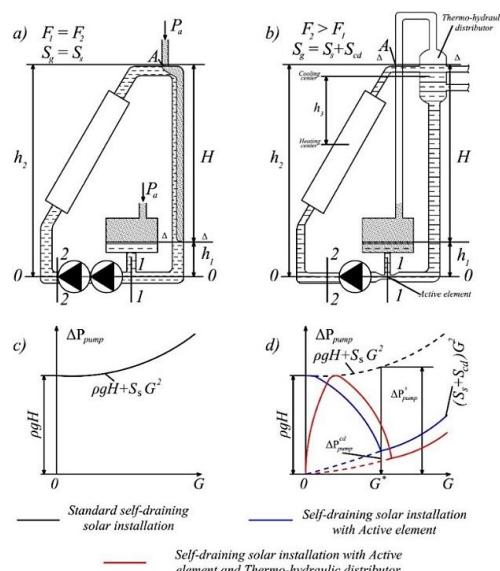
h_3 – vertical distance between the heating center (CH - the middle of the Solar Collector) and the cooling center (CO - the middle of the thermo-hydraulic distributor).

Expressing in equation (3) the pressure losses due to friction and local resistance in the solar circuit $\rho g \Delta h_w$ through its resistance characteristic S_g

$$\rho g \Delta h_w = S_g G^2 \quad (4)$$

where

$$S_g = S_s + S_{CD} = A_c \left(\frac{\lambda}{D} l + \sum \zeta_s \right) + A_{CD} \zeta_{CD} = A_s \zeta_{pr} + A_{CD} \zeta_{CD}; \quad (5)$$


$$A_s = \frac{16}{2\rho \pi^2 D^4} (2.6) \quad A_{CD} = \frac{16}{2\rho \pi^2 d^4}, \quad (6)$$

and also using the relations: Δ

$$G = \rho F_2 W_2 (2.8) \quad W_1 = \frac{F_2}{F_1} W_2 \quad (7)$$

we get the following equation

$$\Delta P_{pump} = \rho g H - \left(\frac{\alpha_1}{F_1^2} - \frac{\alpha_2}{F_2^2} \right) \frac{G^2}{2\rho} + S_g G^2 - \Delta \rho g h_3. \quad (8)$$

FIGURE 1. Calculation scheme and characteristics of the Self-draining heliosystem network: a, b – conventional; c, d – with Active Element of the confuser-diffuser type and with a thermo-hydraulic distributor

For a normal Self-draining systems without a restriction device $F_1 = F_2$, $S_g = S_s$ and $\Delta\rho = 0$, therefore equation (9) takes the form

$$\Delta P_{pump}^0 = \rho g H + S_s G^2. \quad (9)$$

The characteristics of the Self-draining heliosystems network are shown in Figure 1, c. Note that due to the flow break at the upper point A, located behind the solar collector, the pump ensures circulation in the solar circuit, raising the coolant to a height of H .

For a Self-draining systems in which the drainage tank is connected to a narrow section of the Active Element in the form of a confuser-diffuser transition, and after the SC there is a thermohydraulic distributor, equation (8) takes the form

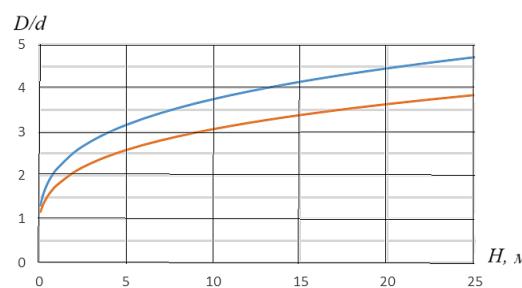
$$\Delta P_{pump}^0 = \begin{cases} \rho g H - \left(\frac{\alpha_1}{F_1^2} - \frac{\alpha_2}{F_2^2}\right) \frac{G^2}{2\rho} + (S_s + S_{CD})G^2 - \Delta\rho g h_3 & G \leq G^* \\ (S_s + S_{CD})G^2 & G \geq G^* \end{cases} \quad (10)$$

The characteristics of the solar circuit network with an Active Element, which is a converging-diffuser transition, are shown in Figure 1, g. At the initial stage, when the coolant flow through the Active Element (converging-diffuser transition) G is less than the calculated value G^* , i.e. at $G < G^*$, the coolant circulation by the pump in the solar circuit occurs with a break in the stream at point A (see Fig. 1, a). However, unlike a conventional Self-draining systems, due to the increase in the dynamic pressure in the Active Element throat, the filling level of the return pipeline $\Delta-\Delta$ continuously increases with increasing flow. In this case, the gain in hydrostatic pressure exceeds the increase in hydraulic losses caused by the inclusion of a narrowing device in the circuit, which leads to a decrease in the characteristic curve.

When the coolant flow rate through the Active Element, which is a confuser-diffuser transition, reaches the calculated value $G = G^*$, at which the ratio of diameters D/d of the wide and narrow sections of the Active Element is established, the solar circuit is completely closed. In this case, a further increase in flow rate does not lead to an increase in hydrostatic pressure. From this moment on, the characteristic curve begins to rise, since hydraulic losses in the circuit increase proportionally to the flow rate.

The calculated ratio of the diameters of the Active Element, presented in the form of a confuser-diffuser transition, in its wide and narrow sections is established in order to minimize the loss of hydrostatic pressure in the Self-draining systems.

$$\rho g H - \left(\frac{\alpha_1}{F_1^2} - \frac{\alpha_2}{F_2^2}\right) \frac{G^2}{2\rho} + S_2 G^{*2} - \Delta\rho g h_3 = 0 \quad (11)$$


Substituting into equation (2.13) the value of the calculated flow rate G^* from formulas (7), after simple transformations, we find

$$\frac{D}{d} = \sqrt[4]{\frac{\alpha_2}{\alpha_1} \left(1 + \frac{2g(H - \frac{\Delta\rho}{\rho} h_3)}{\alpha_2 W_2^{*2}} \right)}. \quad (12)$$

The non-uniformity of the flow velocity distribution over the Active Element cross-section in the form of a confuser-diffuser transition is usually low, so we can assume that $\alpha_1 = \alpha_2 = 1$, from which we finally find

$$\frac{D}{d} = \sqrt[4]{1 + \frac{2g(H - \frac{\Delta\rho}{\rho} h_3)}{W_2^{*2}}} \quad (13)$$

Figure 2. shows a graph of the dependence of the calculated degree of narrowing of the coolant flow in the Active Element in the form of a confuser-diffuser transition D/d on the total height of the Self-draining systems H , constructed using formula (13).

FIGURE 2. Graph of the dependence of the calculated degree of narrowing of the coolant flow in the Active Element in the form of a confuser-diffuser transition D/d from the total height of the Self-draining solar system H .

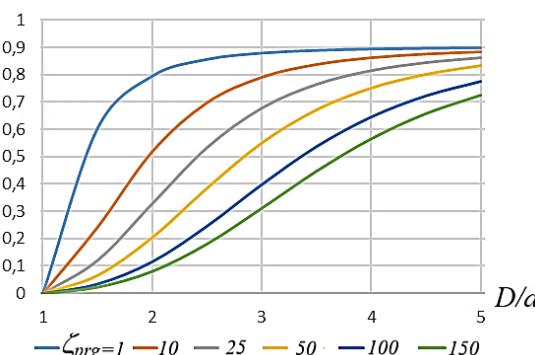
When creating a graph of the speed of movement of the coolant in a wide section of the Active Element in the form of a confuser-diffuser transition W^* , it is accepted according to the permissible speeds of movement of the coolant in the pipelines of heat supply systems, i.e. equal to $W^* = 1; 1.5 \text{ m/s}$ [2].

Substituting into formula (1) the values established for $\Delta p_{pump}^0, \Delta p_{pump}^{CD}$ dependencies (10) and (11), taking into account relations (2.5) \div (2.9), we obtain a formula for calculating the share of relative energy savings expended by the pump in an Self-draining systems with an Active Element of the confuser-diffuser type

$$\Delta \bar{E}_{CD} = \frac{\left(\frac{D}{d}\right)^4 \left(\frac{\alpha_1}{\alpha_2} - \frac{1}{\alpha_2} \zeta_{pump}\right) - 1}{\frac{\alpha_1}{\alpha_2} \left(\frac{D}{d}\right)^4 + \frac{1}{\alpha_2} \zeta_{pump}} \quad (14)$$

further ignoring the unevenness of the flow velocity across the cross-section of the tapering element $\alpha_1 = \alpha_2 = 1$ and determining its resistance coefficient using an approximate relationship

$$\zeta_{CD} = (0,15 \div 0,20) \left[1 - \left(\frac{d}{D} \right)^4 \right], \quad (15)$$


we find

$$\bar{E}_{CD} = \frac{\left(\frac{D}{d}\right)^4 \left[1 - a + a \left(\frac{D}{d} \right)^4 \right] - 1}{\left(\frac{D}{d} \right)^4 + \zeta_{pump}} \quad (16)$$

where $a = 0.15 \div 0.20$.

It should be noted that hydraulic losses in the Active Element can be further reduced by providing the smallest internal flowing surface of rotation of the converging device of the confuser-diffuser type, which will reduce the total pressure losses due to friction and vortex formation to 5-10% compared to an active element with normal geometry. Taking this circumstance into account, Figure-3 shows a graph of the dependence of the relative savings in energy resources for the circulation of the coolant in the Self-draining systems on the degree of narrowing of the flow in the confuser-diffuser transition, constructed according to formula (16) for $a = 0.10$.

It is evident that with an increase in the ratio D/d , the value \bar{E}_{CD} first increases sharply and the more significant, the smaller the reduced resistance coefficient of the solar circuit ζ_{pump} , and then stabilizes, asymptotically approaching the maximum value $\Delta \bar{E}_{CD}^{max} = 1 - a$.

FIGURE 3. Graph of the dependence of the relative energy savings for the circulation of the coolant in the Self-draining solar system on the degree of narrowing of the flow in the Active Element in the form of a confuser-diffuser transition

In the general case described by dependence (15), the asymptote that determines the maximum share of electrical energy savings during pump operation will be equal to

$$\Delta \bar{E}_{CD}^{max} = 1 - \frac{1}{\alpha_1} \zeta_{CD}. \quad (17)$$

or considering that $\alpha_1 \approx 1$ we find

$$\Delta \bar{E}_{CD}^{max} = 1 - \zeta_{CD} \quad (18)$$

DISCUSSIONS

In the quest for more efficient and sustainable energy solutions, the configuration of the thermal-hydraulic circuit in self-draining solar power plants has seen significant advancements. A notable improvement involves the integration of an active element (Active Element) in the form of a confuser-diffuser transition, coupled with a thermo-hydraulic distributor. This innovative design not only optimizes the flow dynamics but also alleviates the need for the pump to generate a substantial initial hydrostatic pressure to elevate water to the upper point of the solar circuit (Solar Collector) [4]. One of the standout features of this enhanced configuration is its ability to leverage thermosiphon natural circulation. By strategically positioning the thermo-hydraulic distributor above the Solar Collector, the system can effectively utilize the natural buoyancy of heated water, promoting efficient circulation without the constant need for mechanical assistance [9]. This passive mechanism not only reduces energy consumption but also contributes to the overall reliability of the solar power plant.

The placement of the confuser-diffuser type Active Element in the pump suction zone emerges as a particularly economical choice. By optimizing this location, the system can achieve a lower hydrodynamic pressure in the transition throat, which translates to a reduced initial pressure requirement for closing the solar circuit. This configuration minimizes the energy expenditure associated with pumping, allowing for a more cost-effective operation while maintaining optimal performance [7].

CONCLUSION

In summary, the improved configuration of the thermal-hydraulic circuit in self-draining solar power plants, featuring a confuser-diffuser transition and a thermo-hydraulic distributor, represents a significant step forward in solar energy technology. By harnessing the benefits of natural circulation and optimizing pump dynamics, this innovative design not only enhances efficiency but also promotes sustainability in renewable energy systems. As we continue to refine these technologies, the potential for more effective and economically viable solar power solutions becomes increasingly attainable.

REFERENCES

1. J. Daffi, U. Bekman, Fundamentals of solar thermal energy. Per. from English - Long pond: Publishing House "Intellect." (2013). 888 p.
2. Z. Kh. Fayziev, *Pressure losses in Venturi pipes, their rational forms and coefficients of local resistance.* 2762. Scopus. (2022) <https://doi.org/10.1063/5.0128505>
3. Y. K. Rashidov, *Increase in Dependability and Efficiency of Self-Draining Water Systems of Solar Heat Supply.* 2612. Scopus. (2023). <https://doi.org/10.1063/5.0113036>
4. R. Botpaev, Y. Luovet, B. Peters, S. Furbo, K. Vajen, Drainback solar thermal systems: A review, *Solar Energy*, vol. **128**, pp. 41-60, (2016).
5. D. R. Muktasipov, E. U. Safiullina, Device for preventing the formation of liquid plugs in a gas collection system or in a non-straight gas well, *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, Vol. **335**, Nr. 10, pp.. 111-119, (2024). doi: 10.18799/24131830/2024/10/4474
6. J. Van 't Westende, A. Ajani, M. Kelkar, The use of surfactants for gas well deliquification: a comparison of research projects and developed models, Paper presented at the 18th International Conference on Multiphase Production Technology. – Cannes, France, pp. 161–182 (2017).
7. Z. Abdulkhaev, Sh. Abdujalilova, M. Usmonov, Kh. Askarov and R. Nazirova, Determination of the useful working coefficient (UWC) of the heating system, *BIO Web Conf.*, **84** (2024) 05040 DOI: <https://doi.org/10.1051/bioconf/20248405040>
8. X. Shi, D. Li, A. Zhang, and J. Zhang, "Study on vibration characteristics of ship mining system under composite load," *Journal of Vibroengineering*, Vol. **24**, No. 7, pp. 1354–1363, (2022). <https://doi.org/10.21595/jve.2022.22689>
9. M. Shoev, T. Safarov, S. Abdukhamidov and Z. Omonov, Numerical solution of the heat transfer equation using different schemes, *E3S Web of Conf.*, **452** (2023) 04011 DOI: <https://doi.org/10.1051/e3sconf/202345204011>

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 Walt Whitman Road, Suite 300, Melville, NY 11747-4300 USA; Phone 516-576-2268; Email: rights@aip.org.

Article Title ("Work"): Researchers Develop Novel Self-Discharging Solar Collectors Using Confuser-Diffuser Technology

(Please indicate the final title of the Work. Any substantive changes made to the title after acceptance of the Work may require the completion of a new agreement.)

All Author(s): Z.Kh.Fayziev, Sh.Z.Yuzbayeva and Sh.R.Yakhshiboyev

(Please list all the authors' names in order as they will appear in the Work. All listed authors must be fully deserving of authorship and no such authors should be omitted. For large groups of authors, attach a separate list to this form.)

Title of Conference: 3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Name(s) of Editor(s) Valentin Popov

All Copyright Owner(s), if not Author(s):

(Please list all copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(ies) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript file.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approved of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #3 below):

Z.Kh.Fayziev

Author(s) Signature

11.24.2025

Print Name

Date

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner

Authorized Signature and Title

Date

3. If an Author is a U.S. Government employee, such Author must please sign below. The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature

Print Name

Date

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract #s: _____ [1.16.1]

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University, <http://arxiv.org/>.

Commercial and noncommercial scholarly use: *Noncommercial* scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. *Commercial* uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrdclist/>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is *not* considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.