

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

On the Forced Vibrations of a Two-particle System

AIPCP25-CF-AMSMT2025-00054 | Article

PDF auto-generated using **ReView**

On the Forced Vibrations of a Two-particle System

Nikola Poljak^{1, a)} and Mirjana Bijelić^{1, b)}

¹*Physics department, Faculty of Science University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia*

^{a)} Corresponding author: npoljak.phy@pmf.hr
^{b)} mali.phy@pmf.hr

Abstract. We present a detailed analysis of forced vibrations in a simple mechanical system composed of two masses coupled by springs, where an external harmonic force acts only on the first mass. Such systems are common in practice — for example, in structural dynamics, molecular vibrations, coupled resonant circuits, but their complete analytical treatment is rarely presented in standard university textbooks, despite its significant practical importance (e.g., [1], [2]). The system in question lends itself to rigorous mathematical analysis. Using symmetry, we decouple the equations of motion of the masses, yielding two independent damped harmonic oscillators with distinct natural frequencies. Having obtained the modes of motion, we reproduce the overall response of each mass as a superposition of these modes, where both amplitudes and phases are functions of the external excitation frequency. The analysis reveals typical resonance phenomena, with dominant contributions from different modes near each natural frequency. However, at certain frequencies, destructive interference leads to minima in oscillation amplitudes, governed by the interaction between the modes. The phase relations exhibit nontrivial behavior, with multiple phase shifts as the driving frequency varies, reflecting complex energy exchange between the two masses. These results highlight the subtle interplay of coupling, damping, and external forcing in multi-degree-of-freedom systems. The analysis can be extended to more than two bodies, revealing similar phenomena. We believe these are essential for accurate modelling of practical devices but are often overlooked in elementary treatments. Also, we present possible means of measuring the obtained results in simple mechanical or electrical systems.

INTRODUCTION

Standard University textbooks present simple mechanical systems in which a single mass m (which we will call a particle) is connected to an unmovable wall by an ideal elastic spring of elastic constant k and is acted upon by a periodic external force $F_0 \cos(\omega t)$. It is assumed that while the particle is moving, a drag force proportional to its speed is present, which results in the well-known steady state oscillatory motion with the frequency of the external periodic force ω . The analytical solution describing the forced oscillation is given by

$$u(t) = A \cos(\omega t - \phi) \quad (1)$$

with A being the amplitude of oscillation and ϕ the phase angle (lag) of the oscillator with respect to the periodic force. Both parameters are easily obtained by inserting the solution in the equation of motion, giving

$$A = \frac{F_0}{m \sqrt{(\omega_0^2 - \omega^2)^2 + (2\gamma\omega)^2}} \quad (2)$$

$$\tan \phi = \frac{2\gamma\omega}{\omega_0^2 - \omega^2} \quad (3)$$

with $\omega_0^2 = k/m$ and γ being the damping constant, defined by $2\gamma = b/m$, where b is the constant of proportionality between the drag force and the speed of the oscillator. The dependence of the amplitude and the phase angle on the frequency of the periodic force exhibit a well-known resonance phenomenon. When the frequency of the periodic force ω equals the natural frequency of the oscillator ω_0 , the phase angle is equal to $\pi/2$ and the amplitude of the steady state solution of motion is large. Strictly speaking, the frequency at which the amplitude of motion is the largest possible is slightly smaller than ω_0 and depends on the amount of damping in the system. Here we will only analyze a weakly damped oscillator, for which $2\gamma \ll \omega_0$ and the amplitude becomes

maximal when $\omega \approx \omega_0$. The amplitude of motion and the phase angle are given in Fig. 1. for the case in which $2\gamma = \sqrt{0.05}\omega_0$.

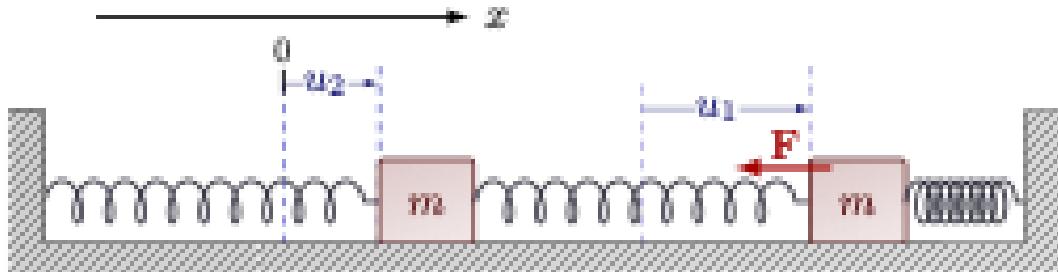


FIGURE 1. (a) The dependence of the oscillator amplitude on the frequency of the external periodic force. (b) The dependence of the oscillator phase on the frequency of the external periodic force.

This system only exhibits one resonance, as described earlier. A natural question to pose is whether this is also the case in a system with multiple bodies upon which we are free to act with external periodic forces.

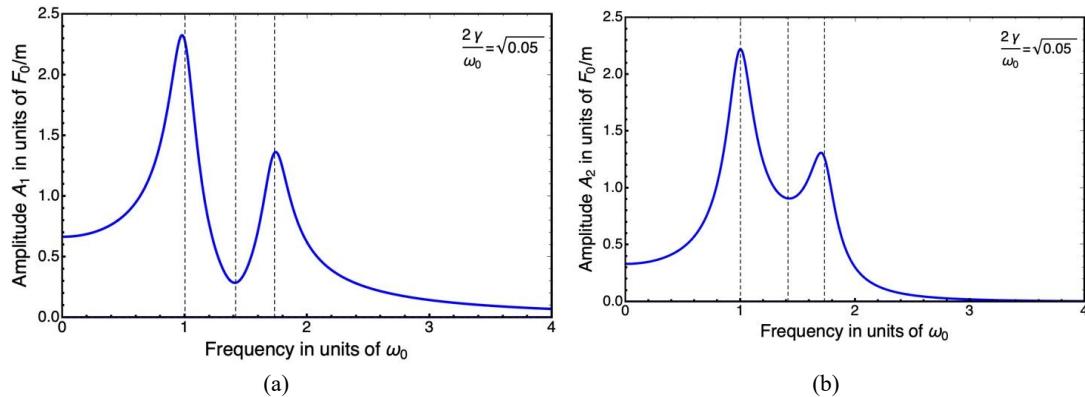
TWO-MASS SYSTEM

A simple extension of the case we just discussed is given in Fig. 2.

FIGURE 2. An external periodic force acting on one of the masses in a symmetrical two-body system.

In this system, two equal masses are connected by equal springs to immovable walls. An external periodic force of the same character as already discussed acts on one of the masses, again called a particle. The equations of motion of this system are given by

$$\ddot{u}_1 = -\frac{k}{m}[u_1 + (u_1 - u_2)] - 2\gamma v_1 + \frac{F_0}{m} \cos(\omega t), \quad (4)$$


$$\ddot{u}_2 = -\frac{k}{m}[u_2 + (u_2 - u_1)] - 2\gamma v_2. \quad (5)$$

This set of differential equations can be solved by various means. For example, one can add and subtract them and obtain two independent differential equations, each one in a single variable. After solving them, it is possible to revert to the displacements of the particles u_1 and u_2 . The steady-state part of each of the displacements can be expressed as $u_i = A_i \cos(\omega t - \phi_i)$, with the solutions for the amplitudes of motion satisfying

$$A_1^2 = \left(\frac{F_0}{2m}\right)^2 \frac{[(\omega^{(1)})^2 + (\omega^{(2)})^2 - \omega^2]^2 + 4(2\gamma\omega)^2}{\left([(\omega^{(1)})^2 - \omega^2]^2 + (2\gamma\omega)^2\right) \left([(\omega^{(2)})^2 - \omega^2]^2 + (2\gamma\omega)^2\right)}, \quad (6)$$

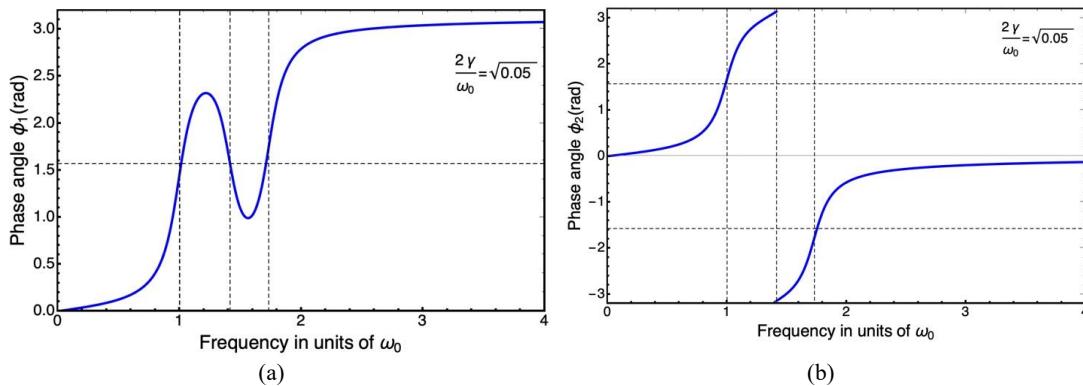
$$A_2^2 = \left(\frac{F_0}{2m}\right)^2 \frac{[(\omega^{(1)})^2 - (\omega^{(2)})^2]^2}{\left([(\omega^{(1)})^2 - \omega^2]^2 + (2\gamma\omega)^2\right) \left([(\omega^{(2)})^2 - \omega^2]^2 + (2\gamma\omega)^2\right)}. \quad (7)$$

Here, $(\omega^{(1)})^2=k/m$ and $(\omega^{(2)})^2=3k/m$ correspond to the oscillations of modes of motion of the free system without damping. The behavior of the amplitudes of motion is given in Fig. 3.

FIGURE 3. (a) The dependence of the amplitude of the particle being acted upon on the frequency of the external periodic force.
 (b) The dependence of the amplitude of the particle not being acted upon on the frequency of the external periodic force.

Discussion of resulting motion

We can clearly see that both the particles exhibit resonance phenomena near the frequencies of oscillations of free modes. What is interesting is that this happens for the particle upon which no external force acts. We can explain this in a relatively straightforward way: if we consider only the particle upon which the external force acts, we could expect a resonant behavior near the frequency $(\omega^{(1)})^2=k/m$. If this particle achieves a steady-state motion, it will transfer energy to the second particle, since it provides an external force on it via the elastic spring. Naturally, this should disrupt the motion of the first particle, but apparently not in a drastic way. We can see that this is true by observing the amplitudes of motion of the particle being acted upon in the case when it is connected to the wall by a single spring and the case when two springs are attached to it. In the first case, the amplitude of the motion reaches approx. 4.2 (in units F_0/m), whereas in the latter case it only achieves an amplitude of approx. 2.3 (in units F_0/m). However, in this case the second particle achieves a comparable amplitude, as shown in Fig. 3(b). Notice that this has nothing to do with law of conservation of energy since dissipative forces are present in the system.


It is more difficult to explain the emergence of a second resonance in the system by a simple extension of the previously analyzed system. We must recall that a system which consists of two bodies has two natural degrees of freedom, each with its own frequency of motion, so it is natural to assume a second resonance will emerge near the frequency $(\omega^{(2)})^2=3k/m$. This is indeed the case, as can be easily seen from Fig. 3. In the second normal mode of motion the particles are in anti-phase and the frequency of oscillation of motion is increased due to the additional elastic spring between the particles which is being stretched and compressed during motion. The resonance amplitudes of motion in this case are somewhat smaller, which we can attribute to the fact that the particles moving in anti-phase have, on average, larger speeds than the particles moving in phase. Thus, the average power of the damping force increases, and the resulting amplitudes of motion must decrease.

To provide more insight into the character of motion, we can also look at the phase angles of the particles with respect to the external force. These are given by

$$\tan \phi_1 = \frac{(2\gamma\omega)[((\omega^{(1)})^2 - \omega^2)^2 + ((\omega^{(2)})^2 - \omega^2)^2 + 2(2\gamma\omega)^2]}{[(\omega^{(1)})^2 - \omega^2][((\omega^{(2)})^2 - \omega^2) + 2\gamma\omega][((\omega^{(1)})^2 + (\omega^{(2)})^2 - 2\omega^2)]}, \quad (8)$$

$$\tan \phi_2 = \left(\frac{F_0}{2m}\right)^2 \frac{(2\gamma\omega)[((\omega^{(2)})^2 - \omega^2)^2 - ((\omega^{(1)})^2 - \omega^2)^2]}{[(\omega^{(1)})^2 - \omega^2][((\omega^{(2)})^2 - \omega^2) - 2\gamma\omega][((\omega^{(2)})^2 - (\omega^{(1)})^2)]}. \quad (9)$$

The dependence of these phase angles with respect to frequency of the external force is given in Fig. 4.

FIGURE 4. (a) The dependence of the phase angle ϕ_1 on the frequency of the external periodic force. (b) The dependence of the phase angle ϕ_2 on the frequency of the external periodic force.

By comparing Fig. 4(a) with Fig. 1(b) we can notice novel behavior which is related to the emergence of a second resonance. When analyzing this phase behavior, we should consider all the forces acting on the first particle. Comparing the forces to the case where only a single particle is present in the system, we can see that the total force in this case increases by ku_2 , indicating that the phase delay of the first particle in relation to the external force is not as simple as in the case of an independent particle, since it depends on the displacement of the second particle. The phase angle in this case equals $\pi/2$ three times with increasing frequency. This might hint at the existence of three resonances, but in fact, only two resonances occur. The frequencies at which the $\phi_1=\pi/2$ are equal to $\omega^{(1)}=\sqrt{k/m}$, then an intermediate frequency $\sqrt{2k/m}$, and finally at $\omega^{(2)}=\sqrt{3k/m}$.

When the frequency of the external force is much smaller than the frequency of the first free mode, the particle oscillates almost in phase with the external force, just as in the case when a force acts on a system with only one particle. Note that for small forcing frequencies the particles are approximately in phase with each other, so the behavior of the phase ϕ_1 is like that of the phase of a system with only one particle. As the forcing frequency approaches the frequency of the first free mode, the phase lag increases towards $\pi/2$. Near the frequency of the first free mode, the displacement of the particle lags the force by $\pi/2$, so the velocity of the particle is in phase with the external force. As a result, the average power of the external force is maximized along with the amplitude of oscillations of the first particle. After the frequency of the external force becomes greater than $\omega^{(1)}$, the behavior of the two-particle system begins to differ significantly from that of the single-particle system. The motion of the first particle can be described as the sum of the motions of the particle in two modes, both of which are acted upon by an external force, i.e. as

$$u_1(t) = \frac{1}{2} [u^{(1)}(t) + u^{(2)}(t)]. \quad (10)$$

When the frequency of the external force is close to the frequency $\omega^{(1)}$, the contribution $u^{(1)}$ is maximized, while the contribution $u^{(2)}$ is small. By increasing the frequency, the relative value of the contributions $u^{(2)}$ and $u^{(1)}$ increases. At a certain frequency between $\omega^{(1)}$ and $\omega^{(2)}$, the relative ratio of the amplitudes of these contributions becomes equal to one. This frequency can be easily determined and is equal to $\sqrt{2k/m}$. At this frequency, the phase angle of one particle's delay relative to the other particle (not to the external force) is equal to $\pi/2$, as we will see shortly. The spring that connects the first and second particle exerts a force that starts to reduce the phase delay of the first particle in relation to the external force, until it becomes $\pi/2$ again. We see that the fact that the amplitude of the particle at that frequency is not maximal, but locally minimal, is a complex consequence of the action of the external force and reaction force of the second particle on the first particle.

By further increasing the frequency of external force, the relative value of the contributions $u^{(2)}$ and $u^{(1)}$ is additionally increased. The phase lag of the first particle at first decreases, and then increases again towards $\pi/2$ as now the contribution $u^{(2)}$ is maximized and the contribution $u^{(1)}$ decreases. As a result, the amplitude of the oscillation of the first particle increases until the power of the external force on the first particle again becomes maximal. Finally, for frequencies much larger than $\omega^{(2)}$ the system behaves similarly to a system with only one particle, and the response of the particle lags by π with respect to the external force.

The second particle is not directly acted upon by the external force, but only by the spring connecting the first and second particle. Just as for the first particle, when the frequency of the external force is much lower than the frequency of the first normal mode, it vibrates almost in phase with the external force. When the frequency approaches the frequency of the first normal mode, the phase lag increases to $\pi/2$ and the amplitude of the oscillations of the second particle is maximized. As the frequency increases further, the phase lag continues to increase. When the contributions of both normal modes are equal, the second particle vibrates with a minimum amplitude. At first glance, it might seem that its oscillation amplitude is then zero, because we can write

$$u_1(t) = \frac{1}{2} [u^{(1)}(t) - u^{(2)}(t)], \quad (11)$$

but we should keep in mind that only the amplitudes of the modes are equal, while their phases are different. Therefore, the second particle vibrates with a minimum amplitude, and its phase delay is such that it also minimizes the oscillation amplitude of the first particle. Since the first particle lags behind the external force by $\pi/2$, the second particle lags behind the force by a phase of π (which is equivalent to the value $-\pi$). As the frequency increases further, the phase lag increases further, so that near the frequency of the second free mode its module again becomes $\pi/2$ and the oscillation amplitude of the second particle is again maximized. Finally, when the force frequency is large, the first and second particles oscillate in a zig-zag configuration. Since the delay of the first particle in relation to the external force is equal to π , we conclude that the delay of the second particle is equal to 2π , which is mathematically equivalent to the phase value of zero, so we can say that in that case the second particle oscillates in phase with external force.

CONCLUSION

We can conclude that the occurrence of resonances in a two-particle system is not a simple extension of resonances in simpler systems. The phase of the particle acted upon by an external force passes through $\pi/2$ three times, giving two amplitude maxima and one minimum. This is caused by an additional force provided by the spring connecting the particles. The spring effectively acts as a damper, despite not being of frictional nature. The particle that the external force is not acting on directly acts as an energy dissipator. These facts can be used in real systems to provide damping to specific parts of a vibrating system without the need to introduce new damping forces. Even though the phases described in the text are difficult to measure in mechanical systems, we can use simple designs of electrical systems which provide novel signal filtering methods by fine-tuning the parameters of the system.

REFERENCES

1. L. Meirovitch, *Elements of Vibration Analysis*, McGraw-Hill (1986).
2. W. T. Thomson, M. D. Dahleh, *Theory of Vibration with Applications*, 5th ed., Prentice Hall (1997).

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 Walt Whitman Road, Suite 300, Melville, NY 11747-4300 USA; Phone 516-576-2268; Email: rights@aip.org.

Article Title ("Work"):

On the Forced Vibrations of a Two-particle System

(Please indicate the final title of the Work. Any substantive changes made to the title after acceptance of the Work may require the completion of a new agreement.)

All Author(s):

Nikola Poljak, Mirjana Bijelić

(Please list **all** the authors' names in order as they will appear in the Work. All listed authors must be fully deserving of authorship and no such authors should be omitted. For large groups of authors, attach a separate list to this form.)

Title of Conference: Advanced Mechanics: Structure, Materials, Tribology

Name(s) of Editor(s) _____

All Copyright Owner(s), if not Author(s):

(Please list **all** copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(es) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approval of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #3 below):

Nikola Poljak

1.10.2025.

Author(s) Signature

Print Name

Date

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner

Authorized Signature and Title

Date

3. If an Author is a U.S. Government employee, such Author must please sign below. The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature

Print Name

Date

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract #(s) _____ [1.16.1]

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University, <http://arxiv.org/>.

Commercial and noncommercial scholarly use: *Noncommercial* scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. *Commercial* uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrdclist/>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is *not* considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.