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Abstract: To assess the change in the resistance of soil foundations during their deformation, calculation models are used 

that schematize the relationship between the load on the soil mass and its settlement. Soil foundation models are theoretical 

generalizations of experimental data on the patterns of deformation of foundations under load. 
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INTRODUCTION 

The soil massifs of construction sites are composed of different types of soil and differ significantly in their 

distribution properties. Based on the consideration of these properties, a distinction is made between the general 

deformation model (an example is the linearly deformed half-space model) and various local deformation models 

proposed in the works [1], among which the most widespread is the Winkler model for the front and rear faces of 

structures and the base.[2-4]. In contrast to this model, in work [5], based on the general variational principle, a 

technical theory for calculating a structure on an elastic foundation is proposed, which is more accurate and at the 

same time simpler than the theory of an elastic half-space.[8]. 

This theory is very flexible and allows solving not only the basic problems of calculating beams and slabs on an 

elastic foundation, but also a number of more complex issues related to the calculation of shells taking into account 

lateral loading and the underlying layer, the dynamics and stability of structures on an elastic foundation. In this case, 

the heterogeneous base is considered as a single-layer or multi-layer model, the properties of which are described by 

two or more characteristics.[9]. 

Let us consider a flat deformed state of a single-layer elastic foundation with a variable propagation velocity of a 

longitudinal wave along the depth of the layer at a constant Poisson's ratio.[10]. 

 



 

FIGURE 1. Scheme of deformation of the layer in contact with rigid beams 

 
We assume that the upper boundary of the layer contacts two rigid beams AB and CD, and the lower boundary of the layer is 

fixed. We establish the origin of coordinates in the initial section of the beam AB and direct the axis 0x along the horizontal 

direction, and the axis 0y perpendicular to it from top to bottom (Fig. 1). 

FORMULATION OF THE PROBLEM 

The lengths of each beam are denoted by 𝐿1and 𝐿2 the distance between the beams by l is denoted by 

𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡) the displacements of particles along the axes 0𝑥 and 0y, respectively. In what follows, we assume 

𝑢(𝑥, 𝑦, 𝑡) = 0. Using the variational principle of V.Z. Vlasov [5], we reduce the motion of the medium to one-

dimensional, according to which we represent the displacement 𝑣(𝑥, 𝑦, 𝑡)through the generalized displacement 

𝑉(𝑥, 𝑡) and the transverse distribution function 𝜓(𝑦)using the formula; 

 𝑣(𝑥, 𝑦, 𝑡) = 𝑉(𝑥, 𝑡)𝜓(𝑦)  

where the function 𝜓(𝑦) is determined by the physical content of the problem and approximates the deformed 

state of the layer in the transverse direction. Let us consider the case when beams AB and CD perform movements 

according to the laws 𝑉01(𝑡)  and 𝑉02(𝑡) under the action of vertical forces[11]. 

 𝑃01(𝑡) 𝑎𝑛𝑑 𝑃02(𝑡).  

In this case, we choose the function 𝑣(𝑥, 𝑡)in the following form 

 𝑣(𝑥, 𝑦, 𝑡) == 𝑉1(𝑥, 𝑡)𝜓(𝑦)    at −∞ < 𝑥 < 0           (1) 

 𝑣(𝑥, 𝑦, 𝑡) == 𝑉01(𝑡)𝜓(𝑦)       at 0< 𝑥 < 𝐿1   (2) 

 𝑣(𝑥, 𝑦, 𝑡) == 𝑉2(𝑥, 𝑡)𝜓(𝑦)    at 𝐿1   < 𝑥 < 𝐿1 + 𝑙   (3) 

 𝑣(𝑥, 𝑦, 𝑡) == 𝑉02(𝑡)𝜓(𝑦)       at 𝐿1 + 𝑙 < 𝑥 < 𝐿1 + 𝑙 + 𝐿2     (4) 

 𝑣(𝑥, 𝑦, 𝑡) == 𝑉3(𝑥, 𝑡)𝜓(𝑦)    at 𝐿1 + 𝑙 + 𝐿2   < 𝑥 < ∞      (5) 

Stresses 𝜎𝑥, 𝜎𝑦 and 𝜏𝑦𝑥 = 𝜏𝑥𝑦are calculated using the formulas 

 𝜎𝑥 =
𝐸0(𝑦)𝜈0
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2

𝜕𝑣

𝜕𝑦
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In the case of plane deformation, the quantities 𝐸0(𝑦)) and 𝜈0are determined through the modulus of elasticity 

Егр(𝑦)) and the Poisson's ratio 𝜈гр of the soil according to the formulas[12]. 

 𝐸0 =
Егр(𝑦)

1−𝜈гр
2 , 𝜈0 =

𝜈гр

1−𝜈гр
  

Assuming 𝜓(0) = 1  and following the work [1], we compose an expression for the work of all forces of the 

selected element on the possible displacement 𝑣(𝑥, 𝑦, 𝑡) 

 𝛿 ∫
𝜕𝜏𝑦𝑥

𝜕𝑥
𝜓(𝑦)𝑑𝑦 −

𝐻

0
𝛿 ∫ 𝜎𝑦𝜓ˊ(𝑦)𝑑𝑦 −

𝐻

0
 𝛿 ∫ 𝜌(𝑦)

𝜕2𝑣

𝜕𝑡2 𝜓(𝑦)𝑑𝑦 + 𝑞(𝑥, 𝑡) = 0
𝐻

0
   (7) 

Where 𝛿 is the thickness of the selected element, , 𝑞(𝑥, 𝑡)is the contact force between the beam and the foundation. 

Taking into account the dependencies Егр = 𝜌гр(𝑦)𝑐гр
2 (𝑦), where 𝜌гр(𝑦) and сгр(𝑦) are, respectively, the density and 

propagation velocity of the longitudinal wave in the soil layer, taking into account formulas (1)-(5), from equality (7) 

we obtain [13]. 

 2𝑠
𝜕2𝑉1

𝜕𝑥2 − 𝑘𝑉1 − 𝑚0
𝜕2𝑉1

𝜕𝑡2 = 0       −∞ < 𝑥 < 0  (8) 



 −𝑘𝑉01 − 𝑚0
𝜕2𝑉01
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𝜕2𝑉2
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where 
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 𝐸̅0(𝑦) = 𝐸0(𝑦)/𝜌𝑐рсср,
2 𝜌̅ = 𝜌/𝜌𝑐р  

𝜌𝑐р and сср-average density and propagation speed of longitudinal wave in soil environment 

SOLUTION METHOD 

Further we assume that 𝜓(0) = 1. 

The displacements 𝑉01(𝑡) and 𝑉02(𝑡) satisfy the equations of motion 

 𝑚1𝑉̈01 = −𝑞1𝐿1 + 2𝑠[𝑉1΄(0, 𝑡) − 𝑉2΄(𝐿1, 𝑡)] +𝑃01(𝑡)   (13) 

 𝑚2𝑉̈02 = −𝑞2𝐿2 + 2𝑠[𝑉2΄(𝐿1 + 𝑙, 𝑡) - 𝑉3΄(𝐿1 + 𝑙 + 𝐿2, 𝑡)] +𝑃02(𝑡)  (14) 

Having determined the expressions 𝑞1 and 𝑞2 from (9) and (11), we reduce equations (3) and (14) to the form 

 (𝑚1 + 𝑚0𝐿1)𝑉̈01 + 𝑘𝑉01 − 2𝑠𝑉1΄(0, 𝑡) + 2𝑠𝑉2΄(𝐿1, 𝑡) = 0    (15) 

 (𝑚1 + 𝑚0𝐿2)𝑉̈02 + 𝑘𝑉02 − 2𝑠𝑉2΄(𝐿1 + 𝑙, 𝑡) + 2𝑠𝑉3΄(𝐿1 + 𝑙 + 𝐿2, 𝑡) = 0   (16) 

Equations (8), (10) and (12) are wave equations satisfying the zero initial and following boundary conditions 

 𝑉1(𝑥, 𝑡) → 0 𝑎𝑡  𝑥 → −∞.  𝑉1(0, 𝑡) = 𝑉01,  (17)  

 𝑉2(𝐿1, 𝑡) = 𝑉01, 𝑉2(𝐿1 + 𝑙, 𝑡) = 𝑉02  (18)  

 𝑉3(𝐿1 + 𝑙 + 𝐿2, 𝑡) = 𝑉02, 𝑉2(𝑥, 𝑡) → 0 𝑎𝑡 𝑥 → ∞   (19) 

Solutions of equations (8), (10) and (12), satisfying conditions (17)-(19) are presented in the form [6] 

 𝑉1 = 𝑉01 (𝑡 +
𝑥

𝑎
) + 𝑐𝑥 ∫ 𝑉01(𝜏)
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Where  

 𝜑 = (𝜓1 − 𝜑1)/2 , 𝜑 =
(𝜑1+𝜓1)

2
,  𝑎 = √2𝑠/𝑚0 𝑐 = √𝑘/2𝑠  

The functions 𝜑1 and 𝜓1are solutions of integral equations [14] 

 𝜑1(𝑡) = 𝑉01(𝑡) + 𝑉02(𝑡) − 𝜑1 (𝑡 −
𝑙

𝑎
) − 𝑐𝑙 ∫ 𝜑1(𝜏)
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𝑙

𝑎
0
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 𝜓1(𝑡) = 𝑉01(𝑡) − 𝑉02(𝑡) + 𝜓1 (𝑡 −
𝑙

𝑎
) + 𝑐𝑙 ∫ 𝜑1(𝜏)

𝑡−
𝑙

𝑎
0

𝐽1(𝑐 √𝑎2(𝑡−𝜏)2−𝑙2 )

√𝑎2(𝑡−𝜏)2−𝑙2
d𝜏  

Substituting the expressions 𝑉1, 𝑉2 and 𝑉3into equations (15) and (16), we obtain 

(𝑚1 + 𝑚0𝐿1)𝑉̈01 + 𝑘𝑉01 +
2𝑠

𝑎
𝑉̇01 + 2𝑠𝑐 ∫ 𝑉01(𝜏)

𝐽1(𝑐 𝑎(𝑡 − 𝜏) )
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𝐽1(𝑐 𝑎(𝑡 − 𝜏) )

(𝑡 − 𝜏)
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