

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Dynamics of a system of two rigid beams on an elastic single-layer foundation with mechanical characteristics varying with depth

AIPCP25-CF-AMSMT2025-00056 | Article

PDF auto-generated using **ReView**

Dynamics of a System of Two Rigid Beams on an Elastic Single-Layer Foundation With Mechanical Characteristics Varying With Depth

Kamola Khaydarova^{1, a)}, Batirjan Mardonov^{2, b)}, Dilshod Kholikov^{1, 3, c)},
Rustambek Usmonov^{1, d)}, Ibrokhim Madatov^{1, e)}

¹ Samarkand State University

² Samarkand, Uzbekistan Institute of Mechanics and Seismic Stability of Structures named after M.T. Urazbayev,
Tashkent, Uzbekistan

³ Samarkand campus of Zarmed University

a) Corresponding author: xaydarovakamolaxakimovna@gmail.com
b) batsam@list.ru
c) dilshodxoliqov2586@mail.ru
d) rustambekusmonov@gmail.com
e) ibrokhimmadatov@gmail.com

Abstract: To assess the change in the resistance of soil foundations during their deformation, calculation models are used that schematize the relationship between the load on the soil mass and its settlement. Soil foundation models are theoretical generalizations of experimental data on the patterns of deformation of foundations under load.

Keywords: Approximation, reactive resistance of the soil, two-dimensional elastic layer, seismogram, seismic load, variational principle.

INTRODUCTION

The soil massifs of construction sites are composed of different types of soil and differ significantly in their distribution properties. Based on the consideration of these properties, a distinction is made between the general deformation model (an example is the linearly deformed half-space model) and various local deformation models proposed in the works [1], among which the most widespread is the Winkler model for the front and rear faces of structures and the base.[2-4]. In contrast to this model, in work [5], based on the general variational principle, a technical theory for calculating a structure on an elastic foundation is proposed, which is more accurate and at the same time simpler than the theory of an elastic half-space.[8].

This theory is very flexible and allows solving not only the basic problems of calculating beams and slabs on an elastic foundation, but also a number of more complex issues related to the calculation of shells taking into account lateral loading and the underlying layer, the dynamics and stability of structures on an elastic foundation. In this case, the heterogeneous base is considered as a single-layer or multi-layer model, the properties of which are described by two or more characteristics.[9].

Let us consider a flat deformed state of a single-layer elastic foundation with a variable propagation velocity of a longitudinal wave along the depth of the layer at a constant Poisson's ratio.[10].

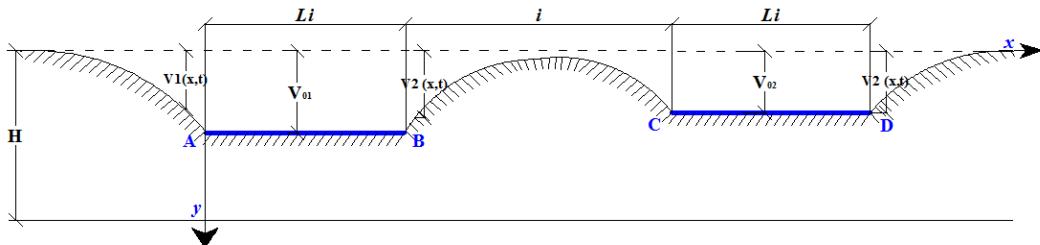


FIGURE 1. Scheme of deformation of the layer in contact with rigid beams

We assume that the upper boundary of the layer contacts two rigid beams AB and CD, and the lower boundary of the layer is fixed. We establish the origin of coordinates in the initial section of the beam AB and direct the axis 0x along the horizontal direction, and the axis 0y perpendicular to it from top to bottom (Fig. 1).

FORMULATION OF THE PROBLEM

The lengths of each beam are denoted by L_1 and L_2 the distance between the beams by 1 is denoted by $u(x, y, t)$, $v(x, y, t)$ the displacements of particles along the axes 0x and 0y, respectively. In what follows, we assume $u(x, y, t) = 0$. Using the variational principle of V.Z. Vlasov [5], we reduce the motion of the medium to one-dimensional, according to which we represent the displacement $v(x, y, t)$ through the generalized displacement $V(x, t)$ and the transverse distribution function $\psi(y)$ using the formula;

$$v(x, y, t) = V(x, t)\psi(y)$$

where the function $\psi(y)$ is determined by the physical content of the problem and approximates the deformed state of the layer in the transverse direction. Let us consider the case when beams AB and CD perform movements according to the laws $V_{01}(t)$ and $V_{02}(t)$ under the action of vertical forces[11].

$P_{01}(t)$ and $P_{02}(t)$.

In this case, we choose the function $v(x, t)$ in the following form

$$v(x, y, t) = V_1(x, t)\psi(y) \quad \text{at } -\infty < x < 0 \quad (1)$$

$$v(x, y, t) = V_{01}(t)\psi(y) \quad \text{at } 0 < x < L_1 \quad (2)$$

$$v(x, y, t) = V_2(x, t)\psi(y) \quad \text{at } L_1 < x < L_1 + l \quad (3)$$

$$v(x, y, t) = V_{02}(t)\psi(y) \quad \text{at } L_1 + l < x < L_1 + l + L_2 \quad (4)$$

$$v(x, y, t) = V_3(x, t)\psi(y) \quad \text{at } L_1 + l + L_2 < x < \infty \quad (5)$$

Stresses σ_x , σ_y and $\tau_{yx} = \tau_{xy}$ are calculated using the formulas

$$\begin{aligned} \sigma_x &= \frac{E_0(y)\nu_0 \frac{\partial v}{\partial y}}{1-\nu_0^2} \\ \sigma_y &= \frac{E_0(y) \frac{\partial v}{\partial y}}{1-\nu_0^2} \\ \tau_{yx} &= \frac{E_0(y) \frac{\partial v}{\partial x}}{2(1+\nu_0)} \end{aligned} \quad (6)$$

In the case of plane deformation, the quantities $E_0(y)$ and ν_0 are determined through the modulus of elasticity $E_{rp}(y)$ and the Poisson's ratio ν_{rp} of the soil according to the formulas[12].

$$E_0 = \frac{E_{rp}(y)}{1-\nu_{rp}^2}, \nu_0 = \frac{\nu_{rp}}{1-\nu_{rp}}$$

Assuming $\psi(0) = 1$ and following the work [1], we compose an expression for the work of all forces of the selected element on the possible displacement $v(x, y, t)$

$$\delta \int_0^H \frac{\partial \tau_{yx}}{\partial x} \psi(y) dy - \delta \int_0^H \sigma_y \psi'(y) dy - \delta \int_0^H \rho(y) \frac{\partial^2 v}{\partial t^2} \psi(y) dy + q(x, t) = 0 \quad (7)$$

Where δ is the thickness of the selected element, $q(x, t)$ is the contact force between the beam and the foundation. Taking into account the dependencies $E_{rp} = \rho_{rp}(y)c_{rp}^2(y)$, where $\rho_{rp}(y)$ and $c_{rp}(y)$ are, respectively, the density and propagation velocity of the longitudinal wave in the soil layer, taking into account formulas (1)-(5), from equality (7) we obtain [13].

$$2s \frac{\partial^2 V_1}{\partial x^2} - kV_1 - m_0 \frac{\partial^2 V_1}{\partial t^2} = 0 \quad -\infty < x < 0 \quad (8)$$

$$-kV_{01} - m_0 \frac{\partial^2 V_{01}}{\partial t^2} + q_1 = 0 \quad 0 < x < L_1 \quad (9)$$

$$2s \frac{\partial^2 V_2}{\partial x^2} - kV_2 - m_0 \frac{\partial^2 V_2}{\partial t^2} = 0 \quad L_1 < x < L_1 + l \quad (10)$$

$$-kV_{02} - m_0 \frac{\partial^2 V_{02}}{\partial t^2} + q_2 = 0 \quad L_1 + l < x < L_1 + l + L_2 \quad (11)$$

$$2s \frac{\partial^2 V_1}{\partial x^2} - kV_3 - m_0 \frac{\partial^2 V_3}{\partial t^2} = 0 \quad L_1 + l + L_2 < x < \infty \quad (12)$$

where

$$s = \frac{\delta \rho_{cp} c_{cp}^2}{4(1+\nu_0)} \int_0^H \bar{E}_0(y) \psi^2(y) dy,$$

$$k = \frac{\delta \rho_{cp} c_{cp}^2}{1-\nu_0^2} \int_0^H \bar{E}_0(y) \psi'^2(y) dy,$$

$$m_0 = \delta \rho_{cp} \int_0^H \bar{\rho} \psi^2(y) dy, \quad m_{01} = \delta \rho_{cp} \int_0^H \bar{\rho} (\psi - \psi^2) dy$$

$$\bar{E}_0(y) = E_0(y) / \rho_{cp} c_{cp}^2, \quad \bar{\rho} = \rho / \rho_{cp}$$

ρ_{cp} and c_{cp} -average density and propagation speed of longitudinal wave in soil environment

SOLUTION METHOD

Further we assume that $\psi(0) = 1$.

The displacements $V_{01}(t)$ and $V_{02}(t)$ satisfy the equations of motion

$$m_1 \ddot{V}_{01} = -q_1 L_1 + 2s[V_1'(0, t) - V_2'(L_1, t)] + P_{01}(t) \quad (13)$$

$$m_2 \ddot{V}_{02} = -q_2 L_2 + 2s[V_2'(L_1 + l, t) - V_3'(L_1 + l + L_2, t)] + P_{02}(t) \quad (14)$$

Having determined the expressions q_1 and q_2 from (9) and (11), we reduce equations (3) and (14) to the form

$$(m_1 + m_0 L_1) \ddot{V}_{01} + kV_{01} - 2sV_1'(0, t) + 2sV_2'(L_1, t) = 0 \quad (15)$$

$$(m_1 + m_0 L_2) \ddot{V}_{02} + kV_{02} - 2sV_2'(L_1 + l, t) + 2sV_3'(L_1 + l + L_2, t) = 0 \quad (16)$$

Equations (8), (10) and (12) are wave equations satisfying the zero initial and following boundary conditions

$$V_1(x, t) \rightarrow 0 \text{ at } x \rightarrow -\infty, \quad V_1(0, t) = V_{01}, \quad (17)$$

$$V_2(L_1, t) = V_{01}, \quad V_2(L_1 + l, t) = V_{02} \quad (18)$$

$$V_3(L_1 + l + L_2, t) = V_{02}, \quad V_2(x, t) \rightarrow 0 \text{ at } x \rightarrow \infty \quad (19)$$

Solutions of equations (8), (10) and (12), satisfying conditions (17)-(19) are presented in the form [6]

$$V_1 = V_{01} \left(t + \frac{x}{a} \right) + cx \int_0^{t+x/a} V_{01}(\tau) \frac{J_1(c \sqrt{a^2(t-\tau)^2 - x^2})}{\sqrt{a^2(t-\tau)^2 - x^2}} d\tau \quad t > 0 \quad -\infty < x < 0$$

$$V_2 = \varphi \left(t - \frac{x-L_1}{a} \right) - c(x - L_1) a \int_0^{t+\frac{x-L_1}{a}} \varphi(\tau) \frac{J_1(c \sqrt{a^2(t-\tau)^2 - (x-L_1)^2})}{\sqrt{a^2(t-\tau)^2 - (x-L_1)^2}} d\tau +$$

$$+ \psi \left(t - \frac{L_1+l-x}{a} \right) + c(x - L_1 - l) a \int_0^{t+(x-L_1-l)/a} \psi(\tau) \frac{J_1(c \sqrt{a^2(t-\tau)^2 - (x-L_1-l)^2})}{\sqrt{a^2(t-\tau)^2 - (x-L_1-l)^2}} d\tau \quad L_1 < x < L_1 + l,$$

$$V_3 = V_{02} \left(t - \frac{x-L_1-l-L_2}{a} \right) + c(x - L_1 - l - L_2) a \int_0^{t+(x-L_1-l-L_2)/a} V_{02}(\tau) \frac{J_1(c \sqrt{a^2(t-\tau)^2 - x^2})}{\sqrt{a^2(t-\tau)^2 - x^2}} d\tau \quad t > 0 \quad L_1 + l < x < \infty$$

Where

$$\varphi = (\psi_1 - \varphi_1)/2, \quad \varphi = \frac{(\varphi_1 + \psi_1)}{2}, \quad a = \sqrt{2s/m_0}, \quad c = \sqrt{k/2s}$$

The functions φ_1 and ψ_1 are solutions of integral equations [14]

$$\varphi_1(t) = V_{01}(t) + V_{02}(t) - \varphi_1 \left(t - \frac{l}{a} \right) - cl \int_0^{t-\frac{l}{a}} \varphi_1(\tau) \frac{J_1(c \sqrt{a^2(t-\tau)^2 - l^2})}{\sqrt{a^2(t-\tau)^2 - l^2}} d\tau$$

$$\psi_1(t) = V_{01}(t) - V_{02}(t) + \psi_1 \left(t - \frac{l}{a} \right) + cl \int_0^{t-\frac{l}{a}} \psi_1(\tau) \frac{J_1(c \sqrt{a^2(t-\tau)^2 - l^2})}{\sqrt{a^2(t-\tau)^2 - l^2}} d\tau$$

Substituting the expressions V_1, V_2 and V_3 into equations (15) and (16), we obtain

$$(m_1 + m_0 L_1) \ddot{V}_{01} + kV_{01} + \frac{2s}{a} \dot{V}_{01} + 2sc \int_0^t V_{01}(\tau) \frac{J_1(c a(t-\tau))}{(t-\tau)} d\tau - \frac{2s}{a} \dot{V}_{02} - 2sc \int_0^t V_{02}(\tau) \frac{J_1(c a(t-\tau))}{(t-\tau)} d\tau$$

$$(m_2 + m_0 L_2) \ddot{V}_{02} + kV_{02} + \frac{2s}{a} \dot{V}_{02} + 2sc \int_0^t V_{02}(\tau) \frac{J_1(c a(t-\tau))}{(t-\tau)} d\tau - \frac{2s}{a} \dot{V}_{01} - 2sc \int_0^t V_{01}(\tau) \frac{J_1(c a(t-\tau))}{(t-\tau)} d\tau$$

REFERENCES

1. К. Джонсон Механика контактного взаимодействия. М., Мир 189.510 с.
2. Л. А. Галин, О гипотезе Циммермана _Винклера для балок. Прикладная математика и механика. Т.7. вып.4.(1943).
3. Б. Н. Жемочкин, А. П. Синицын, Практические методы расчета фундаментов балок и плит на упругом основании (без гипотез Винклера). Стройиздат, М.,(1947).
4. Г. И. Глушков, Расчет сооружений заглубленных в грунт. М.Стройиздат. (1977). 295.с.
5. Т.Р.Б. Рашидов, С. В. Кузнецов, Б. М. Мардонов, И. Мирзаев, Прикладные задачи сейсмодинамики сооружений.Ташкент. (2019). 268 с.
6. В. З. Власов, Н. Н. Леонтьев, Балки, плиты и оболочки на упругом основании.М. Изд. Физмат.лит. (1960). 490 с.
7. Б. М. Будак, А. А. Самарский, А.Н. Тихонов, Сборник задач по математической физике. М.Физмат. лит (1956). 682 с.
8. D. Kholiqov, J. Abdurazzoqov, R. Usmonov, K. Xaydarova, Free torsional vibration of an elastic thin-walled cylindrical shell with variable cross sectio// AIP 2024/11/27 060029-1. <https://doi.org/10.1063/5.0241748>
9. B. Mardonov, K. X. Xaydarova, D.M. Ismatova, Горизонтально- вращательные колебания сооружений с фундаментом, взаимодействующим с основанием по билинейному закону при сейсмических воздействиях, Problems of architecture and construction **2** (3), 824-827
10. X.K. Xakimovna, I.D. Maxmudovna, Prospects for the application of brick walls in modern housing construction under construction in uzbekistan. Indonesian journal of law and economics review **19** (1), 10.21070/ijler. v19i1
11. K. Xaydarova, Bir qatlamlı elastik asosda joylashgan to'sinning seysmik kuchlar ta'siridagi tebranishining V.Z. Vlasov usuli asosida analitik tadqiqi, Yashil iqtisodiyot va taraqqiyot, № 5-son, 148-152 b. (2025)
12. B. Mardonov K. Xaydarova, I. Turayev, E. Yadigarov, Dynamics of a rigid beam on an elastic single-layer foundation with mechanical characteristics varying with depth, Innovative: International Multi-disciplinary Journal of Applied Technology (ISSN 2995-486X) VOLUME ISSUE 4 (2025).
13. R. Khalmurodov, Kh. Ismoilov, Frequency Analysis of Axisymmetric Vibrations of a Conical Shell in a Deformable Medium, AIP Conference Proceedings 3244, 060032 (2024). <https://doi.org/10.1063/5.0241498>. (Q4 Scopus).
14. Kh. Khudoynazarov, K. Mamasoliyev, E. Ismoilov, Non-stationary influence of a transverse-isotropic cylindrical shell with a viscous compressed fluid, AIP Conf. Proc. 3177, 050005 (2025) <https://doi.org/10.1063/5.0294882>

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 Wall Whitman Road, Suite 300, Melville, NY 11747-4300 USA; Phone 516-576-2268; Email: rights@aip.org.

Article Title ("Work"):

Dynamics of a System of Two Rigid Beams on an Elastic Single-Layer Foundation with Mechanical Characteristics Varying with Depth

All Author(s):

Kamola Khaydarova, Batirjan Mardonov

Dilshod Kholikov, Rustambek Usmonov

Ibrokhim Madatov

Title of Conference: AMSMT2025

Name(s) of Editor(s) Valentin L. Popov

All Copyright Owner(s), if not Author(s):

(Please list all copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(ies) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript file.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approval of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #3 below):

Kamola Khaydarova

24.11.2025

Author(s) Signature Print Name Date

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner Authorized Signature and Title Date

3. If an Author is a U.S. Government employee, such Author must please sign below. The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature Print Name Date

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract # (s) _____ [1.16.1]

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University, <http://arxiv.org/>.

Commercial and noncommercial scholarly use: Noncommercial scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. Commercial uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrdclist/>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is not considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.