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Abstract. In this work, mathematical model of the joint transverse vibrations of a linear elastic characteristic beam and
hysteresis type elastic dissipative characteristic dynamic absorber are determined analytically depending on the
parameters and variables of the system. In this case the dynamic absorber is moving on the beam with constant velocity.
The amplitude-frequency characteristics and transfer functions were determined analytically and conclusions were drawn
based on numerical analysis. In particular, the change in the ratio which shows natural frequency of the dynamic absorber
to natural frequency of the beam with the change in the ratio which shows natural frequency of the system to natural fre-
quency of the beam is shown based on numerical calculations. In addition, the ratio of the dynamic absorber amplitude to
the beam amplitudes is analyzed analytically and numerically. It is found that this ratio is a decreasing function.

INTRODUCTION

Nowadays special attention is paid to damping harmful vibrations caused by external influences in the most ad-
vanced devices widely used in mechanics, automation, aerospace and other fields, increasing their efficiency and
ensuring long-term reliable operation. In this regard, one of the urgent tasks is to conduct scientific research on the
existing problems associated with vibrations of advanced devices, develop mathematical models, evaluate their
dynamics, select optimal parameters and provide necessary recommendations.

Nowadays, a lot of research has been conducted and continues on the issues of mathematical modeling, damping
of harmful vibrations, the use of various types of dynamic absorbers and determining their optimal parameters, and
vibration control.

The work [1] is related to the design of control forces at nodal points to prevent displacement and deflection of
selected points in vibrating structural elements under harmonic excitations. It is shown that the dominant vibrations
at the desired points can be eliminated using reflection forces. A simple and accurate closed-form expression for the
control force is obtained using the dynamic Green’s function. It is shown that under certain conditions this control
force can be created using passive elements such as springs and shock absorbers. The effectiveness of this method is
demonstrated using numerical examples in various cases.

The article [2] considers the issue of damping the vibrations of a distributed parameter system using a dynamic
absorber with elastic dissipative properties of the hysteresis type. First, an equation is formed that represents the
amplitude-frequency characteristic of the system. Then, two frequency domains with multiple solutions are identi-
fied in the system and the amplitude-frequency characteristic is analyzed at different system parameters. The behav-
ior of the system under various external influences is studied.

This article [3] studies the motion of two identical non-parallel plates under the influence of a continuously mov-
ing dynamic absorber. Fourth-order differential equations with partial derivatives are formulated and solved using an
analytical method. First, the resulting second-order ordinary differential equations are solved asymptotically. The
differential transformation method is a semi-analytical method, and its application to second-order ordinary differen-
tial equations to obtain a non-oscillating series solution is shown. The vibration equations obtained using the La-
place transform and approximation methods are solved in the MAPLE program. The effects of the load speed and



the elasticity of the elastic layer on the vibrations of double-plate systems are graphically shown. At the same time,
it was observed that the transverse deflection of each plate increased with increasing values of different velocities
over time for the moving load.

In this article [4], the vibration of a beam with a moving mass is studied. The mass moves from one end to the
other with a velocity having constant and slowing time intervals. The vibration of the midpoint of the beam after the
mass stops moving is analyzed. In this case, a mathematical model of the system is obtained using the finite element
method. The relationship between the natural frequency of the system and the velocity of the moving mass is deter-
mined and its effect on vibration is evaluated. It is found that by choosing the right velocity, the vibration reduction
is close to 70% during movement and 80% after stopping.

The work [5] studies the issue of using dynamic absorbers to control vibrations of systems under earthquakes
and other external dynamic forces. Analytical expressions of the natural frequency are determined. The use of pas-
sive, active and hybrid dynamic absorbers in dynamic vibration damping is analyzed. Recommendations are given
for improving dynamic absorbers.

This work [6] is concerned with the vibrations of beams equipped with dynamic absorbers subjected to random
excitations. Generalized function theory is used to determine the changes in parameters in different states of a dy-
namic absorber. In this case, the characteristic equation is obtained from the determinant of a 4x4 matrix and the
eigenfunctions are determined from it. The corresponding orthogonality conditions for the eigenfunctions are ob-
tained, and the stochastic vibrations under the influence of white noise are evaluated. Several boundary value prob-
lems are solved under the influence of random moving loads.

The article [7] studies the use of dynamic absorbers to optimize the vibrations of a clamped rod. The effect of
changing the parameters of the dynamic absorber on the rod vibrations is evaluated. Initially, the equations of mo-
tion are obtained and the Den Hartog optimization method is used to optimize the parameters. Experiments are con-
ducted to verify the correctness of the theoretical foundations obtained and deviations from the theoretical results are
discussed.

In the work [8], dynamic absorbers are evaluated as promising technologies among the devices and methods for
damping vibrations of structural elements, including struts, due to their mechanical simplicity and reliable operation.
Analytical reviews of the damping of structural vibrations using dynamic absorbers are presented.

The work [9] is aimed at optimizing the parameters of a dynamic absorber using the method of determining in-
variant points and maximizing Hoo. The optimal values of the parameters of a single-mass and tuned-mass dynamic
absorber are determined to minimize the resonance amplitude of the system. The invariant points are determined and
the tuning frequency is minimized. As a result, the optimal parameters of the dynamic absorber are determined and
the effect of each parameter on the system is evaluated. The decrease in the vibration amplitude around the resonant
frequency of the system is analyzed. It is shown that the change in the single-mass leads to better efficiency in the
resonant vibration range and also expands the effective frequency range of the dynamic absorber vibration.

The work [10] notes that dynamic absorbers have long been used as passive control devices to reduce harmful
vibrations, and the most widely used of this type of devices are tuned-mass dynamic absorbers. In addition, the op-
timal parameters of three-element tuned mass dynamic absorbers for the main structures due to ground acceleration
were studied. Unlike conventional tuned mass dynamic absorbers, three-element tuned mass dynamic absorbers
include two spring elements, one of which is connected in series with a damping element. The optimal parameters
were obtained using a simulated algorithm. Numerical results showed that three-element tuned mass dynamic ab-
sorbers are effective in reducing the vibrations of structures.

The work [11] presented that tuned mass dynamic absorbers are mechanisms that serve to reduce the response of
vibrations under seismic loads and improve the performance of the system. Using the developed algorithm, the pa-
rameters of the dynamic absorber were optimized. The mathematical model of the dynamic absorber was obtained
based on the model of the spring and the mass load attached to it. Using these differential equations, it was possible
to estimate the vibrations under the influence of seismic loads. An algorithm was used to find the optimal parameters
corresponding to the minimum vibrations. The simulation results showed that the obtained algorithm can find the
optimal values of parameters such as mass, stiffness and damping coefficients that reduce the vibrations in the sys-
tem. According to the analysis, the best combination of algorithm parameters and the probability of intersection
were determined to determine the optimal matching values of the parameters. The maximum amplitude value of the
system without dynamic absorbers was reduced from 0.24259 m to 0.034385 m with the use of dynamic absorbers.

The work [12] shows that in practical engineering, nonlinear characteristics of a dynamic absorber arise due to
the installation of devices that limit the movement in the system, and it is found that ignoring such nonlinearity neg-
atively affects the efficiency of the dynamic absorber. In order to increase the efficiency of the dynamic absorber,
the parameters of a nonlinear tuned mass dynamic absorber are analyzed, taking into account linear and cubic non-
linearities. A model of a nonlinear tuned mass dynamic absorber, that is, a system with one degree of freedom, is



developed, and the complex variable averaging method is used to obtain the vibration expression of the system un-
der resonance conditions.

In the works [13-16], an analytical approach to obtain a frequency-dependent expression of vibrations of a sys-
tem equipped with dynamic absorbers with one degree of freedom is developed, and several modes are introduced
for precise tuning of the dynamic absorber. The damping element of the dynamic absorber installed on the body
increases the stiffness of its elastic element. These elements achieved an 87.1% reduction in the amplitude of the
experimentally tuned frequency-dependent vibration function of the cutting tool with dynamic absorbers. Recom-
mendations for determining the optimal values of the parameters are developed.

In the works [17-20], the combined nonlinear vibrations of hysteresis-type dissipative rods, beams and fluid-
coupled dynamic absorbers under the influence of kinematic, random, and random parametric excitations were
structurally modeled and their dynamics evaluated.

One of the important tasks is scientific research on mathematical modeling and dynamics assessment of the
complex joint motion of distributed parameter and concentrated mass systems, that is, determining the optimal pa-
rameters depending on the structural parameters using the transfer function, and improving the methods of mathe-
matical modeling and dynamics assessment.

MATERIALS AND METHODS

The differential equations of joint transverse vibrations of a linear elastic characteristic beam with hysteresis type
elastic dissipative characteristic dynamic absorber, which is moving on the beam are determined as following:
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the elastic dissipative properties of the dynamic absorber material and are determined from the hysteresis loop;
j?=-1; D, is a parameter determined from the hysteresis node; f({,.) is being the decrement of vibrations, {,, is a
function of the absolute value of the relative deformation; g;(t) is a function of time and represents the displacement
of the beam; u;(x) are considered orthogonal functions; p; and n, are the natural frequency of the beam and the
dynamic absorber; u;o=u;(xy); x,=vt is the point where the dynamic absorber is located; v is the velocity of the

dynamic absorber; t is time; § (x) is Dirac’s delta function; H (é) is Heaviside function; [ is The length of the beam;

¢, m are the stiffness and mass of the dynamic absorber, respectively; { is relative deformation of the dynamic
absorber; wy is displacement of the base.

The system of equations (1) represents the differential equations of vibrations for the combined transverse
vibrations of the beam with linear elastic characteristics and the moving dynamic absorber with a hysteresis-type
elastic dissipative characteristic.

Using the system of differential equations (1), it is possible to determine the transfer function to analyze the
dynamics of the beam that is protected from the considered vibrations. First, for this purpose, let’s transform the
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system of differential equations into an algebraic form using the differential operator S= e
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The obtained system of equations (3) allows us to determine and numerically analyze the amplitude-frequency

characteristics and transfer function of the vibrations of the beam with elastic dissipative characteristics in combina-
tion with a dynamic absorber with hysteresis-type elastic dissipative characteristics.

RESULTS AND DISCUSSION
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The expression for the absolute acceleration of the beam protected from the considered vibrations, W;= “ ¥ and

at?
the ratio of the desired acceleration expression to the base acceleration expression can be written as follows:
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The expression (4) represents the transfer function of the transverse vibrations of the beam with linear elastic
characteristics combined with the dynamic absorber of the hysteresis-type elastic dissipative characteristic. This
transfer function allows for evaluating the effectiveness of the hysteresis-type elastic dissipative dynamic absorber
in damping the vibrations of the elastic beam and determining the optimal parameters of the dynamic absorber.

Let's assume that the moving dynamic absorber moves along the length of the beam [=0.5 m and moves at a
constant velocity v=0.25m/s. In that case, the position of the point over time t=1s. The point will be at
Xo=0.25 m. This point is located at the midpoint of the beam's length.

Let’s consider the following case, namely 8,=0; 6,=6,,=const. In that case:
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In order to determine the relationship between the ratios % and %, we take the system parameters as follows
when plotting the graphs of these equations:
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FIGURE 1. Graph of the change in the function 3, defined by equation (5), depending on %.
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In Fig. 1, the equation (5) defines in functions variation graph of 3 is given depending on %. From these graphs,
L L

it can be concluded that, 0< % <0.18 when it is pﬁ the ratio takes values equal to one. In this range of the ratio %
i i i

and at the previously given parameter values p; and w the frequencies converge. As a result, an increase in ampli-
tudes is observed. 0.18 < 7;—0 when it is pﬂ the ratio does not take values equal to one. In this range of the ratio ? and
i i i

at the previously given parameter values, an increase in amplitudes is not observed. Thus, for this case the ratio %
i

should be [0.18;1.0] it is advisable to take the ratio within the given interval.
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FIGURE 2. The graph of the function defined by the equation (4) as a function of 5
%=0.5; 0.7; 1.0 (red; black; green)).

In Fig.2, variations of the function defined by the equation (4) depending on frequency ratio % =0.5;0.7; 1.0

(red; black; green) are shown. From these graphs it can be concluded that, % with a decrease in the ratio from one
L

ValueZ% the values of the ratio are also reduced by one value, and the zeros of the function are two multiplied by

13
one. So given that this function represents a denominator in the amplitude-frequency characteristic, the approxima-

tion of this function to the zero value induces resonance. Therefore, for the selected value of the parameters % =1.0
i

the value gives rise to one large value of the amplitude. % =0.5; 0.7 in those cases, however, two large values of the
15
amplitude arise.
Let’s analyze the ratio of the absolute displacement of the moving dynamic absorber to the absolute displace-
ment of the beam. For this purpose:
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Let’s plot the graph of the ratio (5).



FIGURE 3. Graph of the function ;—f‘

The change in this case is as follows: the first mode of vibration (red) and the second mode of vibration (black).

depends on the frequency.

a

The graphs in Fig 3 show the frequency-dependent variation of the amplitude ratio for the above parameter

values and p=0.1 for the first (red) and second (black) modes of vibration. From this it can be seen that with
increasing frequency, the ratio of the absolute displacement of the moving dynamic absorber to the absolute

displacement of the beam decreases faster in the first modes of vibration than in the second modes of vibration.

CONCLUSION

1. The vibrations of the beam with elastic dissipative characteristics together with a dynamic absorber with
hysteresis-type elastic dissipative characteristics were mathematically modeled in an analytical form depending on
the system parameters.

2. The amplitude-frequency characteristics of the vibrations of the beam with elastic dissipative characteris-
tics in combination with a dynamic absorber with hysteresis-type elastic dissipative characteristics were determined.

3. The analytical expression of the transfer function for the vibrations of a beam with linear elastic
characteristics, combined with a moving hysteresis-type elastic dissipative dynamic absorber, was determined and
analyzed depending on the system parameters and variables.

4. It was showed that with increasing frequency, the ratio of the absolute displacement of the moving dynamic
absorber to the absolute displacement of the beam decreases faster in the first modes of vibration than in the second
modes of vibration.

REFERENCES

1. B. A. Albassam, Vibration control of a flexible beam structure utilizing dynamic Green’s function. Journal
of King Saud University -  Engineering  Sciences 33  (2021), pp. 186-200.
https://doi.org/10.1016/j.jksues.2020.03.005

2. M. Q. Wang, E. L. Chen, P. F. Liu, Z. Qi, J. Wang, Y. J, Chang, Periodic response characteristics on a
piecewise hysteresis nonlinear system. Journal of low frequency noise, vibration and active control, Vol.
40(1), 104-119, (2021). DOI:10.1177/1461348419886426

3. J. A. Gbadeyan, O. M. Ogunmiloro, S. E. Fadugba, Dynamic response of an elastically connected double
non-mindlin plates with simply-supported end condition due to moving load. J. Math. 5, no. 1, pp. 40-59,
(2019). DOI: 10.22034/kjm.2018.73854

4. H. Karagiille, M. Akdag, Vibration control of a beam under a moving mass through adjusting trapezoidal
velocity profile. Int. J. Pure Appl. Sci., 9(1), pp. 115-126, (2023).



https://doi.org/10.1016/j.jksues.2020.03.005

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

F. Rahimi, R. Aghayari, B. Samali, Application of Tuned Mass Dampers for Structural Vibration Control:
A State-of-the-art Review. Civil Engineering Journal, Vol. 6, No. 8, Pp.1622-1651. (2020).
http://dx.doi.org/10.28991/cej-2020-03091571

I. Dunn, A. Di Matteo, G. Failla, A. Pirrotta, A. F. Russillo, Stochastic Response of Beams Equipped with
Tuned Mass Dampers Subjected to Poissonian Loads. 13th International Conference on Applications of
Statistics and Probability in Civil Engineering, ICASP13, Seoul, South Korea, May 26-30, (2019).

A. Verma, K. Panwar, K. Rawat, Control of beam vibrations using viscoelastically damped absorber sys-
tem. International Journal of Recent Technology and Engineering, Volume-8 Issue-2, pp. 349-354, (2019).
F. Yang, R. Sedaghati, E. Esmailzadeh, Vibration suppression of structures using tuned mass damper tech-
nology: A state-of-the-art review, Journal of Vibration and Control, Vol. 1(1), pp. 1-25, (2021). DOI:
10.1177/1077546320984305

O. A. Charef, S. Khalfallah, H-infinity optimization of dynamic vibration absorber with negative stiffness.
ACTA TECHNICA NAPOCENSIS Series: Applied Mathematics, Mechanics, and Engineering Vol. 64, Is-
sue III, September, pp.121-132, (2021)

0. Araz, Optimum Three-Element Tuned Mass Damper for Damped Main Structures under Ground Accel-
eration”, El-Cezeri Journal of Science and Engineering, vol. 8, no. 3, pp. 1264-1271, (2021). doi:
10.31202/ecjse.913901

D. Suryadia, A. Prasetyaa, N. Darathab, [. Agustianb, Optimum design of tuned mass damper parameters to
reduce seismic response on structure using genetic algorithm. ASEAN Engineering Journal, 13(1), 41-49,
(2023). https://doi.org/10.11113/aej.v13.17890

J. Yao, J. Liu, Y. Hu, Q. Zhang, Optimal Design and Analysis of Nonlinear Tuned Mass Damper System.
Appl. Sci. 13(14), 8046; (2023), https://doi.org/10.3390/app13148046

Y. Yang, H. Gao, W. Ma, Q. Liu, Design of a turning cutting tool with large length—diameter ratio based on
three-element type vibration absorber. Proc. IMechE Part B: J. Engineering Manufacture, 234, 1-12,
(2020). DOI: 10.1177/0954405419900433

O. Nishihara, Exact optimization of a three-element dynamic vibration absorber: minimization of the max-
imum amplitude magnification factor. J. Vib. Acoust., 141, 1-7, (2019).

DOI: 10.1115/1.4040575

H. Huang, W. S. Chang, Re-tuning an off-tuned tuned mass damper by adjusting temperature of shape
memory alloy: Exposed to wind action, Structures, 25, 180-189, (2020). DOI: 10.1016/j.istruc.2020.02.025
O. Araz, Effect of detuning conditions on the performance of non-traditional tuned mass dampers under ex-
ternal excitation. Arch. Appl. Mech., 90, 523-532, (2020). DOI: 10.1007/s00419-019-01623-z

M. M. Mirsaidov, O. M. Dusmatov, M. U. Khodjabekov, Evaluation of the dynamics of elastic plate and
liquid section dynamic absorber. PNRPU Mechanics Bulletin, no. 3, pp. 51-59, (2022).
https://doi.org/10.15593/perm.mech/2022.3.06

M. M. Mirsaidov, O. M. Dusmatov, M. U. Khodjabekov, Mode Shapes of Hysteresis Type Elastic Dissipa-
tive Characteristic Plate Protected from Vibrations. Lecture Notes in Civil Engineering 282, pp. 127-140,
(2023). https://doi.org/10.1007/978-3-031-10853-2_12

M. M. Mirsaidov, O. M. Dusmatov, M. U. Khodjabekov, Dynamics of the rod protected from vibration
under kinematic excitations. International Scientific Conference “Construction Mechanics, Hydraulics &
Water Resources Engineering”, CONMECHYDRO 2021 AS, 7-9 September 2021, Tashkent, Uzbekistan.
AIP Conference Proceedings 2612, 030005 (2023) https://doi.org/10.1063/5.0113225

M. M. Mirsaidov, O. M. Dusmatov, M. U. Khodjabekov, Mathematical modeling of hysteresis type elastic
dissipative characteristic plate protected from vibration. International Conference on Actual Problems of
Applied ~ Mechanics -  APAM-2021,  AIP  Conf. Proc. 2637, 060009-1-060009-7;
https://doi.org/10.1063/5.0118289



http://dx.doi.org/10.28991/cej-2020-03091571
https://doi.org/10.11113/aej.v13.17890
https://doi.org/10.3390/app13148046
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/10.15593/perm.mech/2022.3.06
https://doi.org/10.1007/978-3-031-10853-2_12
https://doi.org/10.1063/5.0113225
https://doi.org/10.1063/5.0118289

