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Abstract: This work deals with the problem of investigating the dynamics of nonlinear random parametric transverse 

vibrations of a vibration-protected beam. The nonlinear single-valued function representing the dissipative property of the 

elastic damping element material of the beam was taken into account in the form of a linear function using the statistical 

linearization method. In numerical calculations, the linearization coefficients were determined based on the Pisarenko-

Boginich’s hypothesis. Using the Ito method, an analytical expression of the mean square values of the vibration-protected 

beam was determined, and conclusions were drawn based on numerical calculations. 
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INTRODUCTION 

In engineering and technology, the problems of mathematical modeling of vibrations of various types of devices, 

taking into account the nonlinear elastic dissipative characteristics of their materials, determining their dynamic 

characteristics in various processes, and ultimately selecting their structural parameters to ensure long-term effective 

operation and durability are relevant. A large number of scientific studies are being conducted to study the vibrations 

of various mechanical systems with lumped and distributed masses with nonlinear characteristics, evaluate their 

dynamics, and verify their stability. 

In the article [1], nonlinear parametric vibrations of a beam with a dynamic absorber under the influence of external 

excitations are studied taking into account the elasticity and damping properties of materials. The linearization method 

is used to solve nonlinear differential equations of motion of the system. The non-stationary and stationary values of 

the amplitude and phase of vibrations are determined analytically. The stability conditions of stationary motion are 

obtained based on the Rous-Hurwitz criterion. The effect of changing the parameter values on the amplitude-frequency 

characteristic constructed based on the calculation results is shown. 

The article [2] deals with the study of nonlinear parametric vibrations of a beam combined with an element with 

friction properties under the influence of random excitations. The nonlinearity is taken in the form of a cubic degree 

polynomial of the Winkler type. The differential equation describing the vibrations of the beam is determined, it is 

shown that it does not have an exact analytical solution, and an approximate solution is proposed based on the 

linearization method . The proposed solution is compared with the proposed solution using a numerical approach using 

Monte Carlo, and the results are shown to be in good agreement. 

The work [3] shows that the nonlinearity of the hysteresis type with elastic dissipative characteristic is widespread 

in engineering fields and many mathematical models have been developed to describe it. Theoretically, it is shown 

that the restoring forces of the hysteresis type are usually divided into equivalent stiffness and equivalent damping. It 

is proved that due to the complexity of the hysteresis type nonlinearity, it is difficult to obtain analytical expressions 

for these equivalent components. A method for studying the oscillations of systems with hysteresis type elastic 
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dissipative characteristic with a high number of parametrically excited degrees of freedom is proposed. Expressions 

for the equivalent stiffness and equivalent damping coefficients are obtained using the Bouc-Wen model. The mean 

square values are determined and numerically analyzed using the stochastic averaging method. 

In the article [4], bridges reinforcement for usable geometric linear not been cable bending angle and bridge 

vibration the secret of the effect into account received without random movement sunder the influence parametric 

vibrations studied. Random in motion cable soft characteristic maybe as maybe and bridge plate joint movement 

differential equations system. This system of differential equations is transformed into Ito differential equations and 

the Milstein-Platen method is used for numerical analysis. In order to avoid the influence of the parametric diffusion 

coefficient in Ito differential equations, an iterative method for solving random differential vibrations of the beam is 

proposed. The amplitude, spectral density and density function changes are analyzed and the results obtained by this 

method are compared with those obtained by the Gaussian method. 

This paper [5] discusses the different transitions from periodicity to quasi-periodicity, intermittency and chaos in 

systems with hysteresis. Three types of hysteresis are considered: the Bouc-Wen law of hysteresis, the Masing law 

and the pseudoelastic constitutive law typical of shape memory alloys. The first two rate-independent models do not 

account for heat transfers, while in the third case the thermodynamic transformations are taken into account. It is 

shown that these systems share similar trends for the loss of stability of the fundamental response to highly nonlinear 

responses of various kinds. 

In this work [6], contribution to propose a metaheuristic-based parametric identification process for the design of 

the Bouc–Wen–Baber–Noori hysteresis model and evaluate the results by using some established experimental 

investigation methods. To fulfill this aim, the Fuzzy Adaptive Charged System Search is proposed for optimization in 

which a fuzzy-logic-based parameter tuning process is utilized to achieve better performance in comparison with the 

standard Charged System Search algorithm. For nonlinear dynamic analysis, an Iterative Hysteretic Analysis process 

is also intbeamuced for conducting the precise analysis of the structure with exact solutions. Comparing the 

metaheuristic-based results to the experimental findings demonstrates that the proposed algorithm is capable of 

providing very competitive results. Besides, the proposed adaptive method is capable of pbeamucing very competitive 

results in comparison with different optimization algorithms. 

The steady-state dynamic response of a structure isolated by a nonlinear wire rope spring operating in the direction 

of gravity is experimentally studied in [7]. The isolated structure consists of two cantilever beams with a lumped mass 

at the tip. The force-displacement cycles provided by the isolator show a hysteretic behavior due to inter-wire friction 

and geometric nonlinearities. The restoring force is nonsymmetric exhibiting softening under compression and 

hardening under tension. The device rheological response is identified using experimental data and a suitable 

mechanical model. The frequency response curves for increasing levels of the vertical base excitation are obtained for 

the standalone device, the isolated and non-isolated structure. The expected softening trend of the isolation system 

and the increase of the displacement amplitude at low frequencies are ascertained both theoretically and 

experimentally. 

This paper [8] deals with the investigation of the random vibration of a Bouc-Wen hysteretic system under Poisson 

white noise excitations. The solution of the generalized Fokker-Planck-Kolmogorov equation is expressed in the form 

of a radial basis and a neural network with Gaussian activation functions. As an example to illustrate the process, a 

steel fiber reinforced concrete column loaded with Poisson white noise is studied. The effects of several important 

parameters of the system and excitation on the stochastic response are evaluated and the obtained results are compared 

with those obtained by Monte Carlo simulation. Numerical results show that the radial basis and neural network 

method can accurately analyze the stationary response with significantly higher computational efficiency.  

The work [9] presents methods for using stochastic methods in solving problems of protecting various mechanical 

systems from harmful vibrations in random processes, and develops recommendations. 

The work [10] studies the stability of parametric vibrations of a plate under the influence of external pulsed wind. 

In engineering practice, it is shown that the air flow outside a car or aircraft always exhibits a pulsating characteristic, 

which turns elastic structural components and the external air flow into a parametric excitation system. The parametric 

vibration equation of a plate under the influence of a pulsating external air flow is obtained using Hamilton's principle. 

The linear potential flow theory is used to calculate the aerodynamic force. The stability of solutions is analyzed using 

Floquet theory, and the correctness of the results is shown using numerical simulations. The influence of plate 

parameters on the stability of vibrations is studied, and some practical conclusions are proposed from simulations and 

analyses for the optimal design of a plate in an aerodynamic environment. 

The work [11] considered the vibrations of a distributed linear mechanical system under the influence of positional 

forces. Using the decomposition method, the conditions under which the problem of analyzing the stability of solutions 

of second-order differential equations can be solved were obtained. The direct Lyapunov method was used for the 

decomposition. In this case, special forms of the Lyapunov-Krasovsky functionals were proposed. The stability 
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conditions obtained in the analytical form were numerically analyzed and the correctness of the results was shown by 

comparisons. 

The work [12] checks the stability of solutions of Ito differential equations obtained by several numerical methods 

in dimensional Wiener processes. Positive operators on positive cones from the Krein-Perron-Frobenius theory are 

used for the boundary of the obtained solutions of Ito differential equations. In addition, the problem of determining 

the exact intervals of the asymptotic mean square for systems affected by state-dependent noisy excitations and the 

asymptotic probability quantities for systems affected by state-independent noisy excitations is also solved. The 

advantages and disadvantages of the methods for checking asymptotic stability are analyzed. Recommendations for 

their application are given. 

In the works [13], the Euler-Bernoulli beam with viscoelastic characteristics and solves problems aimed at 

improving the performance of beam during their movement. In addition, the influence of the inertia factor on the 

stability limits of the beam is determined. In this case, the beam is taken as a system with linear or exponentially 

distributed parameters along the length. The results show that a decrease in the density gradient parameter and an 

increase in the elastic modulus gradient parameter increase the eigenfrequencies and expand the stability limit of the 

beam. It is found that the density and elastic modulus gradients are inversely proportional in the oscillatory motion of 

the beam. 

In the works [14], the vibrations of a rectangular plate mounted on elastic springs at its edges were investigated 

using approximating series. The expression for the eigen frequency was determined depending on the system 

parameters and numerically analyzed. The analytical expression for the eigen modes of vibration satisfying the 

boundary conditions was proposed in a new form, that is, in the form of adding additional polynomials to the Fourier 

series. 

The work [15] investigated the transverse vibrations of a plate passing between rollers rotating around two fixed 

axes using asymptotic methods. The dynamic model of nonlinear forces was obtained using the Duffing equation. The 

damping and stiffness coefficients of the rollers were analyzed, and their optimal values for damping plate vibrations 

were determined. 

The work [16] systematically describes the basic principles of the theory of random functions used in various 

practical areas. Much attention is paid to the correlation theory of random processes and the determination of 

probabilistic properties of dynamical systems. Along with systems described by ordinary differential equations, 

systems described by partial differential equations (systems with distributed parameters) are also studied. The problem 

of determining the transfer function of a linear system that minimizes the error variance for given characteristics of 

the useful signal and noise is highlighted. 

In the works [17-23], the influence of material characteristics on the vibrations of mechanical systems was studied. 

Motions of mechanical systems are modeled taking into account dissipative characteristics. Based on the obtained 

model, the behavior of the mechanical system under various external influences was studied and conclusions were 

drawn. 

One of the current problems is the investigation of the dynamics and stability of nonlinear vibrations of a beam 

with hysteresis-type elastic dissipative characteristics under the influence of random parametric excitations. 

MATERIAL AND METHODS 

Let’s consider the problem of investigating the dynamics of nonlinear transverse random parametric vibrations of 

a beam with elastic dissipative characteristics of the hysteresis type. 

The differential equation of motion for random parametric transverse vibrations of a beam with elastic dissipative 

characteristics of the hysteresis type is as follows: 

 𝐸𝐼
𝜕4𝑤

𝜕𝑥4 +
24

ℎ3 𝐸𝐼𝜈
𝜕2

𝜕𝑥2 (
𝜕2𝑤

𝜕𝑥2 ∫ 𝜑(𝑎)𝑧2𝑑𝑧
ℎ

2
0

) + 𝑚
𝜕2𝑤

𝜕𝑡2 = −𝑚𝜔01
2 𝜉0(𝑡)𝑞𝑖 ,           (1) 

where 𝑚 is the mass per unit length of the beam; 𝑤  is the deflection of the beam;  𝐸 is Young’s module; 𝐼 is the 

moment of inertia; 𝜉0(𝑡) is a variable representing a stationary normal random process; 𝜔01 is the natural frequency 

of the baem; ℎ is beam height; 𝜔 is frequency of vibrations; 𝜈1, 𝜈2 are linearization coefficients representing the 

dissipative properties of the beam material [17];  𝑥 is the coordinate;  𝜑(𝑎) is function representing energy dissipation; 

𝑧 is axis perpendicular to the beam; 𝑞𝑖 = 𝑞𝑖(𝑡) is time-dependent function; 𝑖2 = −1; 
Let’s look for the solution to equation (1) as follows: 

 𝑤𝑖(𝑥, 𝑡) = ∑ 𝑢𝑖(𝑥)𝑞𝑖(𝑡)∞
𝑖=1 .    (2) 

where, the mode shapes of the beam 𝑢𝑖(𝑥) satisfies the following equation: 

 𝐸𝐼
𝜕4𝑢𝑖

𝜕𝑥4 − 𝑚𝜔01
2 𝑢𝑖 = 0 .   (3) 
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If  the function 𝑞𝑖(𝑡) is taken in the form 𝑞𝑖 = 𝑞𝑖𝑎𝑐𝑜𝑠𝜃, it is possible to write the expression for the relative energy 

distribution (𝑞𝑖𝑎 is amplitude of 𝑞𝑖 and 𝜃 is phase). 

 𝜑(𝑎) = ∑ 𝐶𝑗1
𝑞𝑎

𝑗1 |𝑧
𝜕2𝑢𝑖

𝜕𝑥2 |
𝑗1

,
𝑆1
𝑗1=0  (4) 

where 𝐶𝑗1
 are parameters determined from the hysteresis loop. 

Substituting expression (4) into differential equation (1) and applying the Bubnov-Galerkin method, it is possible 

to obtain the following equation for determining the variable 𝑞𝑖(𝑡): 

 𝑞̈𝑖 + 𝜔01
2 (1 + 𝜈𝑅)𝑞𝑖 = −𝜔01

2 𝜉0(𝑡)𝑞𝑖(𝑡), (5) 

where 

 𝑅 = С0 +
3𝐸𝐼

𝜔0
2𝑚𝑑1

∑ 𝐶𝑗1
𝑞𝑎

𝑗1 ℎ𝑗1

2𝑗1(𝑗1+3)
𝐺𝑗1

;
𝑠1
𝑗1=1   (6) 

 𝐺𝑗1
= ∫ 𝑢𝑖(𝑥)

𝜕2

𝜕𝑥2
(𝑢𝑖

′′(𝑥)|𝑢𝑖
′′(𝑥)|𝑗1)𝑑𝑥;  𝑢𝑖

′′(𝑥) =
𝑙

0

𝜕2𝑢𝑖(𝑥)

𝜕𝑥2 ;  𝑑1 = ∫ 𝑢𝑖
2(𝑥)𝑑𝑥

𝑙

0
.  

Let’s look for the solution of differential equation (5) as following: 

 𝑞𝑖(𝑡) = 𝐴(𝑡)𝑒𝑖𝜔𝑡 + 𝐵(𝑡)𝑒−𝑖𝜔𝑡 ,   (7) 

where 𝐴(𝑡), 𝐵(𝑡) are slowly variable functions and they their amplitude value satisfies the condition 〈𝑞𝑖𝑎〉  =

2√〈𝐴(𝑡)〉〈𝐵(𝑡)〉. 
According to differential equation (5) and it’s solution (7), it is possible to get following first orderly differential 

equations: 

𝐴̇ =
1

2𝑖𝜔
(𝜔2 − 𝜔01

2 (1 + (−𝜈1 + 𝑖𝜈2)𝑅))(𝐴 + 𝐵𝑒−2𝑖𝜔𝑡) −
1

2𝑖𝜔
(𝜔01

2 𝜉0(𝑡))(𝐴 + 𝐵𝑒−2𝑖𝜔𝑡); 

  (8) 

 𝐵̇ = −
1

2𝑖𝜔
(𝜔2 − 𝜔01

2 (1 + (−𝜈1 − 𝑖𝜈2)𝑅))(𝐴𝑒2𝑖𝜔𝑡 + 𝐵) +
1

2𝑖𝜔
(𝜔01

2 𝜉0(𝑡))(𝐴𝑒2𝑖𝜔𝑡 + 𝐵). 

In order to reduce the system of differential equations (8) to the system of Ito equations by using stochastic 

averaging method. In this case, the system of differential equations (8) is expressed as follows: 

 𝑋̇𝑠(𝑡) = 𝑓𝑠(𝑋, 𝑡) + ∑ 𝐺𝑠𝑟(𝑋, 𝑡)𝜉0𝑟(𝑡)2
𝑟=1 , (𝑠 = 1,2)  (9) 

where 

 𝑋1̇ = 𝐴̇;  𝑋2̇ = 𝐵̇;   

 𝑋̇1 = 𝑓1 + 𝐺11𝜉0(𝑡);   𝑋̇2 = 𝑓2 + 𝐺22𝜉0(𝑡); 

 𝑓1(𝑋, 𝑡) =
1

2𝑖𝜔
(𝜔2 − 𝜔01

2 (1 + (−𝜈1 + 𝑖𝜈2)𝑅))𝐴 +
1

2𝑖𝜔
(𝜔2 − 𝜔01

2 (1 + (−𝜈1 − 𝑖𝜈2)𝑅))𝐵𝑒−2𝑖𝜔𝑡;  

 𝑓2(𝑋, 𝑡) = −
1

2𝑖𝜔
(𝜔2 − 𝜔01

2 (1 + (−𝜈1 − 𝑖𝜈2)𝑅))𝐵 −
1

2𝑖𝜔
(𝜔2 − 𝜔01

2 (1 + (−𝜈1 + 𝑖𝜈2)𝑅))𝐴𝑒2𝑖𝜔𝑡;  

 𝐺11 = −
𝜔01

2

2𝑖𝜔
(𝐴 + 𝐵𝑒−2𝑖𝜔𝑡);   𝐺22 =

𝜔01
2

2𝑖𝜔
(𝐴𝑒2𝑖𝜔𝑡 + 𝐵).  

 As a result, the system of differential equations.  

 𝑑𝑋𝑠(𝑡) = 𝑌𝑠(𝑋)𝑑𝑡 + ∑ 𝐻𝑠𝑟(𝑋)𝑑𝜉0𝑟(𝑡)2
𝑟=1 , (𝑠 = 1,2)  (10 

where 

 𝑌𝑠 = 𝑀𝑡 {𝑓𝑠(𝑋, 𝑡) + ∑ ∑ ∫ 𝐺𝑙𝑚(𝑋, 𝑡 + 𝜏)
𝜕𝐺𝑠𝑛(𝑋,𝑡)

𝜕𝑋𝑙
𝐸[𝜉0𝑛(𝑡)𝜉0𝑚(𝑡 + +𝜏)]𝑑𝜏

0

−∞
2
𝑚,𝑛=1

2
𝑙=1 } ;  (11) 

 [𝐻𝐻𝑇]𝑠𝑟 = 𝑀𝑡{∑ ∫ 𝐺𝑠𝑛(𝑋, 𝑡)𝐺𝑟𝑚(𝑋, 𝑡 + 𝜏)𝐸[𝜉0𝑛(𝑡)𝜉0𝑚(𝑡 + 𝜏)]𝑑𝜏
∞

−∞
2
𝑚,𝑛=1 };  (12) 

𝑀𝑡{∙} = lim
𝑛→∞

1

𝑇
∫ {∙}𝑑𝑡

𝑇

0
 is time averaging operator; 𝐸[∙] is mathematical expectation; 𝜏 is correlation time. 

If 𝜉0𝑟(𝑡) = 𝜉0(𝑡) is stationary normal random process, 〈𝑑𝜉0𝑟(𝑡)〉= 𝑑〈𝜉0𝑟(𝑡)〉 = 𝑑〈𝜉0(𝑡)〉 = 0 then the differential 

equations (10) will be expressed by following: 

 
𝑑〈𝑋𝑠(𝑡)〉

𝑑𝑡
= 𝑌𝑠(〈𝑋〉).      (𝑠 = 1,2) (13) 

or 

 
𝑑〈𝐴〉

𝑑𝑡
= (𝑝1 +

𝜋

2
𝑝3

2(𝑆(0) − 𝜓(2𝜔))) 〈𝐴〉;  

  (14) 

 
𝑑〈𝐵〉

𝑑𝑡
= (𝑝2 −

𝜋

2
𝑝3

2(𝑆(2𝜔) − 𝑆(0))) 〈𝐵〉,  

where 

 𝑝1 =
1

2𝑖𝜔
(𝜔2 − 𝜔01

2 (1 + (−𝜈1 + 𝑖𝜈2)𝑅));  

 𝑝2 =
1

2𝑖𝜔
(𝜔2 − 𝜔01

2 (1 + (−𝜈1 − 𝑖𝜈2)𝑅));  
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 𝑝3 =
𝜔01

2

2𝑖𝜔
.  

The spectral densities 𝑆(0), 𝑆(2𝜔), 𝜓(2𝜔) of a stationary normal random process 𝜉0(𝑡) are defined as follows 

[16]: 

 𝑆(2𝜔) =
1

𝜋
∫ 𝑅(𝜏)𝑐𝑜𝑠𝜔𝜏𝑑𝜏

0

−∞
;   𝜓(2𝜔) =

1

𝜋
∫ 𝑅(𝜏)𝑠𝑖𝑛𝜔𝜏𝑑𝜏

0

−∞
,  

where 𝑅(𝜏) = 𝐸[𝜉0𝑛(𝑡)𝜉0𝑚(𝑡 + 𝜏)] = 〈𝜉0𝑛(𝑡)𝜉0𝑚(𝑡 + 𝜏)〉 is correlation function. 

Let’s look for the solution to the system of differential equations (14) as follows: 

 𝐴 = 𝐴0(𝑡)𝑒−𝜆𝑡;   

  (15) 

 𝐵 = 𝐵0(𝑡)𝑒−𝜆𝑡 ,  

where 𝐴0, 𝐵0  are amplitude values of random parametric excitations of the beam; 𝜆 is characteristic number. 

Based on the given formulas, we analyze the random parametric vibrations of the beam. 

RESULT AND DISCUSSION 

According to solutions of the differential equations (15) and the differential equations it is possible to write 

characteristic equation of the system. The roots of the characteristic equation are as follows: 

 𝜆1 = −
𝜔01

2

2𝜔
(𝜈2𝑅 +

𝜋𝜔01
2

4𝜔
(𝑆(0) − 𝜓(2𝜔))) + 𝑖 (

𝜔01
2

2𝜔
(1 − 𝜈1𝑅) −

𝜔

2
) ;  

  (16) 

 𝜆2 =
𝜔01

2

2𝜔
(𝜈2𝑅 +

𝜋𝜔01
2

4𝜔
(𝑆(2𝜔) − 𝑆(0))) + 𝑖 (

𝜔01
2

2𝜔
(1 − 𝜈1𝑅) −

𝜔

2
).  

Determined roots of the characteristic give the opportunity to investigate mean square value and to check stability 

of the solution of the considered system. 

According to the stability theory, motion is asymptotic stable when the real parts of roots of characteristic equation 

are negative. As a result, the borders between stable and unstable vibrations are followings: 

 𝜈2𝑅 +
𝜋𝜔01

2

4𝜔
(𝑆(0) − 𝜓(2𝜔)) = 0;  

  (17) 

 𝜈2𝑅 +
𝜋𝜔01

2

4𝜔
(𝑆(2𝜔) − 𝑆(0)) = 0.  

According to expression (6), it is possible to write following when 𝑠1 = 2 [17]: 

 𝜈2𝑅 = 𝜈2 (𝐶0 +
3𝐸𝐼ℎ

8𝜔01
2 𝑚𝑑1

𝐶1𝜎𝑖𝑎 +
3𝐸𝐼ℎ2

20𝜔01
2 𝑚𝑑1

𝐶2𝜎𝑖𝑎
2 ).  (18) 

It is possible to get the expression which gives chance to investigate mean square values of the considered system 

from equalities (17) and expression (18). 

 𝐶0 +
3𝐸𝐼ℎ

8𝜔01
2 𝑚𝑑1

𝐶1𝜎𝑖𝑎 +
3𝐸𝐼ℎ2

20𝜔01
2 𝑚𝑑1

𝐶2𝜎𝑖𝑎
2 +

𝜋𝜔01
2

8𝜔𝜈2
(𝑆(2𝜔) − 𝜓(2𝜔)) = 0.  (19) 

Let’s take the expression for the spectral density 𝑆(𝜔) in the following form [16]: 

 𝑆(𝜔) =
𝜎𝜉

2

𝜋
∙

𝑣

𝜔2 +𝑣2.  (20) 

where 𝜎𝜉  is the mean square value of the base excitation; 𝑣 is a dominant frequency. 

Let’s define the correlation function based on the spectral density expression (20). For this, we use the following 

relationship [16]: 

 𝑅(𝜏) = 2 ∫ 𝑆(𝜔)𝑐𝑜𝑠𝜔𝜏𝑑𝜔.  
∞

0
 (21) 

When calculating the correlation function (21), we take into account that it is a trigonometric function 𝑐𝑜𝑠𝜔𝜏 =
(𝑒𝑖𝜔𝜏 + 𝑒−𝑖𝜔𝜏)/2. Then, if substitute the spectral density expression (20) into the correlation function. 

 𝑅(𝜏) = 2 ∫
𝜎𝜉

2

𝜋
∙

𝑣

𝜔2 +𝑣2

𝑒𝑖𝜔𝜏+𝑒−𝑖𝜔𝜏

2
𝑑𝜔

∞

0
.  (22) 

The expression 
𝑣

𝜔2 +𝑣2 can be replaced by the expression with the following approximate: 

    
𝑞

𝜔2 +𝑣2 ≈
1

𝑣
𝑒

−
𝜔2

𝑣2 .   (23) 

The approximate replacement has sufficient accuracy. It can be seen in Fig.1. 
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FIGURE 1. The graph of the functions 
𝑞

𝜔2 +𝑣2
 and 

1

𝑣
𝑒−

𝜔2

𝑣2 , 1, 2 respectively, (v=1). 

 

Considering the substitution (23), 

 𝑅(𝜏) =
𝜎𝜉

2

𝜋𝑣
∫ (𝑒

𝑖𝜔 𝜏−
𝜔2

𝑣2 + 𝑒
−𝑖𝜔 𝜏−

𝜔2

𝑣2 )𝑑𝜔
∞

0
= 𝜎𝜉

2𝑒−𝑣|𝜏|. (24) 

Determined (24) correlation function according to 𝜓(2𝜔 ) spectral density expression as follows will be [16]: 

 𝜓(2𝜔 ) =
1

2𝜋
∫ 𝑅(𝜏)𝑠𝑖𝑛𝜔 𝜏𝑑𝜏

∞

−∞
=

𝜎𝜉
2

2𝜋
∫ 𝑒−𝑞|𝜏|𝑠𝑖𝑛𝜔 𝜏𝑑𝜏

∞

−∞
.  (25) 

This spectral density expression in calculation according to trigonometric function 𝑠𝑖𝑛𝜔 𝜏 = (𝑒𝑖𝜔 𝜏 −
𝑒−𝑖𝜔 𝜏)/2𝑖 is as following: 

 𝜓(2𝜔 ) =
𝜎𝜉

2

2𝜋
∫ 𝑒−𝑣|𝜏| ∙

𝑒𝑖𝜔 𝜏−𝑒−𝑖𝜔 𝜏

2𝑖
𝑑𝜏

∞

−∞
= 0. (26) 

It is possible to write the expression (19) as follows according to the determined spectral density expressions: 

 
3𝐸𝐼

𝑚𝑑1
(

ℎ

2
𝐶1𝜎𝑖𝑎 +

ℎ2

5
𝐶2𝜎𝑖𝑎

2 ) +
Ω1

2𝜎𝜉
2

𝑣2Ω2(4Ω2
2+1)

= 0,  (27) 

where Ω1 =
𝜔01

2

𝑣
; Ω2 =

𝜔

𝑣
. 

The resulting expression (27) is an expression for determining the mean square values of the displacements. Using 

this expression, it is possible to determine, verify the stability, and numerically analyze the mean square values of the 

displacements of a beam with hysteresis-type elastic dissipative characteristics under the influence of random 

parametric excitations. 

CONCLUSIONS 

The mean square values of the displacements in random parametric transverse vibrations of a beam with elastic 

dissipative characteristics of the hysteresis type were determined analytically depending on the system parameters. 

The expression of the mean square values of these displacements allows us to evaluate the dynamics of the beam 

during its random parametric transverse vibrations. It can be seen that the root mean square values of the displacements 

depend on the dissipative properties of the beam material, its modulus of elasticity, its dimensions, mass, specific 

vibration modes and frequencies. In addition, the expression of the mean square values of the determined 

displacements allows us to verify and numerically analyze the stability of random parametric transverse vibrations of 

a beam with elastic dissipative characteristics of the hysteresis type. 
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