
3rd International Conference
Advanced Mechanics: Structure,
Materials, Tribology

Stability of Random Vibrations of an Imperfectly Elastic Circular
Plate

AIPCP25-CF-AMSMT2025-00062 | Article

PDF auto-generated using ReView
from



Stability of Random Vibrations of an Imperfectly Elastic 

Circular Plate 

Olimjon Dusmatov 1, a), Muradjon Khodjabekov 2, b), Jakhongir Khasanov3, c) 

1,3 Samarkand State University, Samarkand, Uzbekistan 
2 Samarkand State Architectural and Civil Engineering University, Samarkand, Uzbekistan 

 
a) dusmatov62@bk.ru;  

b) uzedu@inbox.ru;  
c) Corresponding author:xasanovjaxongir089@gmail.com 

Abstract: This work is devoted to the problem of checking the stability of transverse vibrations of a circular plate with 

elastic dissipative characteristics of the hysteresis type under the influence of random excitations. The expression of the 

mean square values of the plate was determined and the stability was checked using the vertical tangents method. The 

stability conditions were determined analytically depending on the structural parameters of the system and analyzed as a 

result of numerical calculations. 
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INTRODUCTION 

Circular plate-type devices are widely used in all areas of technology. The issues of checking the stability of the 

dynamics of vibrations of circular plates in various processes, determining the dynamic characteristics of the plate 

materials under various boundary conditions, taking into account the nonlinear dissipative properties, are of great 

relevance. A lot of scientific research is being conducted on the dynamics of plates and stability issues. 

The work [1] presented the equivalent linearization of nonlinearity in mechanical systems under random 

excitations, a mathematical model of nonlinear dissipative forces and hysteresis-type elastic dissipative characteristics, 

and the application of the averaging method for systems with hysteresis-type elastic dissipative characteristics. The 

concept of the hysteresis operator is introduced into the mathematical model of the hysteresis-type elastic dissipative 

characteristic, and its definition, properties, and classes are analyzed. 

The work [2] investigated the transverse vibrations of a plate using finite difference methods and the transverse 

vibrations of a plate resting on an elastic base under the influence of kinematic excitations in combination with several 

dynamic dampers. The natural frequencies and natural vibration modes of plates of various shapes were investigated 

using the finite difference method for different boundary conditions. The experimental results were compared with 

analytical solutions and the reliability of the results was demonstrated. 

In the work [3], the nonlinear vibration of a circular plate with clamped edges, which is widely used in marine 

structures, under the influence of an external hydrostatic force, was studied. The Helmholtz-Duffing system of 

equations was obtained by reducing the static and dynamic deflections and applying the Galerkin method. The effect 

of the static force on the dynamics, i.e., hardening, asymmetry and softening, was studied by numerically solving the 

system of differential equations of motion. An analytical solution of the vibration near resonance was obtained for the 

first form of vibration. The analytical solution allowed a theoretical assessment of the effect of the static force on the 

dynamics. The numerical and analytical results were compared at small values of the static deflection and the 

correctness of the results was shown. The proposed analysis method for the vibration of a circular plate is based on 

the fact that it can be applied to forms formed by rods, membranes and their combinations. 
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In the work [4], analyzed the free vibrations of composite annular circular plates. The equations of equilibrium, 

differential equations related to displacements and properties were obtained. The generalized eigenvalue problem for 

the frequency parameter and the associated eigenvector of the coefficient properties in the equations was numerically 

solved. The effect of the parameters on the frequency itself was investigated and suggestions were made to check the 

frequencies or to recommend them. By checking the reliability of the obtained results, recommendations were 

developed.  

In the works [5-7], free vibrations of circular plates made of porous material were studied. The circular plates were 

assumed to be thin and their longitudinal deformations were ignored. The properties of the porous material were 

assumed to vary depending on the thickness of the plates according to the given functions. Differential equations of 

motion were obtained using Hamilton's variational principle and classical plate theory. Free and fixed supports were 

considered as boundary conditions for the boundary problem. The effects of some parameters, such as the distribution 

of pores and the compression of pores, on the natural frequency and stress were depicted in graphs, and conclusions 

were given.  

In the works [8-9], solutions for the free vibration characteristics of thin circular plates supported on a Winkler-

type elastic foundation were considered based on classical plate theory. Parameter-dependent analyses were performed 

to evaluate the effect of the displacement and stiffness of the elastic foundation on the natural frequencies of circular 

plates. It was found that the boundary conditions and the presence of an elastic foundation affect the characteristics of 

free transverse vibrations of a circular plate. The natural frequencies of vibrations for varying values of the stiffness 

parameter of the Winkler-type foundation were determined based on numerical calculations. Twelve vibration modes 

are presented in tabular and graphical form for ease of use of the obtained results in the design process.  

In the works [10-11], nonlinear vibrations of rigid bodies and composite circular plates were studied in the articles. 

The nonlinear differential equations of motion were obtained using the generalized Hamiltonian principle and the von 

Karman plate theory. The solutions were determined by the finite element method and their correctness was checked. 

The inclusion of weight forces introduces additional linear and quadratic nonlinear terms into the dynamic model. As 

a result, the inclusion of weights leads to an increase in the natural frequency. It is shown that the vibrations of circular 

plates are asymmetric when the effect of weights is taken into account. 

In the works [12-13], frequencies of circular plates reinforced with rigid concentric rings are determined in the 

articles. The natural frequencies of such circular plates are calculated for various boundary conditions and different 

values of the radius of the inner ring support. Various forms of plate vibrations are determined and presented in tabular 

form for use in the design process. The influence of boundary conditions and the radius of the concentric ring support 

on the natural frequencies of the plate is studied. It is shown that the determined frequency values serve to assess the 

accuracy of other numerical methods used, and recommendations are given.  

In the work [14], analyzes the vibrations of a circular plate under various mixed boundary conditions. The methods 

for studying the vibrations of a circular plate are discussed and possible applications are highlighted. The methods for 

studying the problems of bending of a circular plate are analyzed.  

In the works [15-16], the oscillations of the plate layer and the stability issues under the influence of various forces 

were considered. In the considered problems, cases were considered where several plate layers are connected by a 

linear elastic characteristic. The eigenfrequencies and critical forces in longitudinal bending were expressed 

analytically. The expression of the eigenfrequencies depending on the number of plate layers was obtained. The 

eigenfrequencies were found using the Galerkin method. The minimum of the unstable areas was determined 

depending on the system parameters. Variational methods were used to analyze the equations of motion, and 

conclusions were drawn. 

Mathematical modeling of nonlinear mechanical systems, study of dynamics and exploring of stability of 

vibrations and instructions for selection of parameters corresponding to stable vibrations, in particular materials of 

mechanical systems, are given in the works [17-21]. Expressions of modal mass and modal stiffness are expressed 

analytically. By means of these expressions, the issues of choosing and modeling system materials were also solved. 

In this work, we consider the issues of determining the root mean square values of nonlinear vibrations of an 

imperfectly elastic circular plate under the influence of random excitations and verifying their stability. 

MATERIALS AND METHODS 

The expression for the root mean square values of the nonlinear vibrations of a circular plate with imperfect elastic 

characteristics under the influence of random excitations is as follows: 
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𝜎𝑇
2 = ∫ |𝐴(𝜔)|2𝑆𝑊0

(𝜔)

+∞

−∞

𝑑𝜔,                                                                 (1) 

where  𝐴(𝜔) is the amplitude-frequency characteristic; 𝑆𝑊0
(𝜔) is the spectral density of the base acceleration; 𝜔 is 

the vibration frequency. 

The expression for the amplitude-frequency characteristic for nonlinear transverse vibrations of a circular plate 

with hysteresis-type elastic dissipative characteristics is obtained as follows [22]: 

𝐴(𝜔) =
𝑑∗

(1 − 𝜂1𝑡𝑅1𝑡 − 𝜈1𝑡𝑅2𝑡)𝜔01
2 − 𝜔2 + (𝜂2𝑡𝑅1𝑡 + 𝜈2𝑡𝑅2𝑡)𝜔01

2 𝑗
,                     (2) 

where 𝜔01 is the natural frequency of the plate; 𝜂1𝑡, 𝜂2𝑡, 𝜈1𝑡, 𝜈2𝑡 are constant coefficients determined from the 

hysteresis surface of the plate material [23]; 

𝑅1𝑡 =
3𝐷

𝜔01
2 𝜌ℎ𝑑1

∑ 𝐶𝑖1

𝑘1

𝑖1=0

ℎ𝑖1

2𝑖1(𝑖1 + 3)
|𝜎𝑇|𝑖𝐺𝑖1

; 𝐺𝑖1
= ∬ 𝑃𝑄 [

𝜕2

𝜕𝑟2
(𝛽1|𝛽1|𝑎

𝑖1) + (
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2
) 𝛽2|𝛽2|𝑎

𝑖1] 𝑑𝑠;

𝑠

 

𝑅2𝑡 =
6𝐷(1 − 𝜇)

𝜔01
2 𝜌ℎ𝑑1

∑ 𝐾𝑖2

𝑘2

𝑖2=0

ℎ𝑖2

2𝑖2(𝑖2 + 3)
|𝜎𝑇|𝑖𝐻𝑖2

; 𝐻𝑖2
= ∬ 𝑃𝑄(

1

𝑟
𝑆

𝜕2

𝜕𝑟𝜕𝜃
−

1

𝑟2

𝜕

𝜕𝜃
)(𝛽3|𝛽3|𝑎

𝑖2)𝑑𝑠; 

𝛽1 = 𝑄
𝜕2𝑃

𝜕𝑟2
+ 𝜇 (

1

𝑟
𝑄

𝜕𝑃

𝜕𝑟
+

1

𝑟2
𝑃

𝜕2𝑄

𝜕𝜃2
) ; 𝛽2 =

1

𝑟
𝑄

𝜕𝑃

𝜕𝑟
+

1

𝑟2
𝑃

𝜕2𝑄

𝜕𝜃2
+ 𝜇𝑄

𝜕2𝑃

𝜕𝑟2
; 

𝛽3 =
1

𝑟

𝜕𝑃

𝜕𝑟

𝜕𝑄

𝜕𝜃
−

1

𝑟2
𝑃

𝜕𝑄

𝜕𝜃
; 𝑑∗ =

𝑑2

𝑑1

;  𝑑1 = ∫ 𝑄2

2𝜋

0

𝑑𝜃 ∫ 𝑃2

𝑅0 

𝑟0

𝑑𝑟; 𝑑2 = ∫ 𝑄𝑑𝜃

2𝜋

0

∫ 𝑃

𝑅0 

𝑟0

𝑑𝑟; 

𝐶𝑖1
(𝑖1 = 0, … , 𝑘1), 𝐾𝑖2

(𝑖2 = 0, … , 𝑘2) - 𝛼1𝑖, 𝛼2𝑖, 𝛼3𝑖 and 𝑧𝑖 are hysteresis parameters determined from 

experimentally selected lines 𝛼1 = 𝑓𝑟(𝑧), 𝛼2 = 𝑓𝜃(𝑧), 𝛼3 = 𝑔(𝑧) at points corresponding to the coordinates of the 

cyclic deformations of the material [24]; 𝑃 and 𝑄 are functions of radius 𝑟 and angle 𝜃, respectively; 𝑅0 is the radius 

of the circular plate; 𝑟0 is the radius of the inner sphere given the boundary conditions; 𝐷 =
𝐸ℎ3

12(1−𝜇2)
  is cylindrical 

rigidity of the plate; 𝐸  is Young's modulus; ℎ is  plate thickness; 𝜇 is Poisson's ratio; 𝜌 is density of the plate material; 

𝑗 = √−1. 

Considering the amplitude-frequency characteristic expression (2), the expression for the mean square values (1) 

for nonlinear transverse random vibrations of a circular plate with hysteresis-type elastic dissipative characteristic is 

as follows:  

𝜎𝑇
2 = ∫

𝑑∗
2𝑆𝑊0

(𝜔)

[(1 − 𝜂1𝑡𝑅1𝑡 − 𝜈1𝑡𝑅2𝑡)𝜔01
2 − 𝜔2]2 + [(𝜂2𝑡𝑅1𝑡 + 𝜈2𝑡𝑅2𝑡)𝜔01

2 ]2
𝑑𝜔.                      (3)

+∞

−∞

 

We can express the spectral density of the fundamental accelerations in the following form [23]: 

𝑆𝑊0
(𝜔) =

𝐷𝑊0
𝛼𝜔𝑐

3

𝜋(𝜔𝑐
2 − 𝜔2 + 𝑗𝛼𝜔𝑐𝜔)(𝜔𝑐

2 − 𝜔2 − 𝑗𝛼𝜔𝑐𝜔)
,                                            (4) 

where 𝐷𝑊0
 is the dispersion of the base acceleration; 𝛼 is a parameter characterizing the width of the vibration 

spectrum; 𝜔𝑐 is the frequency in the vibration spectrum at which the probability of vibration is high. 

We substitute the expression for the spectral density of the base acceleration (4) into the expression for the mean 

square value (3) 

𝜎𝑇
2 =

1

𝜋
∫

𝑑∗
2𝐷𝑊0

𝛼𝜔𝑐
3

([(1 − 𝜂1𝑡𝑅1𝑡 − 𝜈1𝑡𝑅2𝑡)𝜔01
2 − 𝜔2]2 + [(𝜂2𝑡𝑅1𝑡 + 𝜈2𝑡𝑅2𝑡)𝜔01

2 ]2)([𝜔𝑐
2 − 𝜔2]2 + [𝛼𝜔𝑐𝜔]2)

𝑑𝜔     (5)

+∞

−∞

 

We calculate the resulting integral expression using the method presented in [1]. To do this, we write it as follows: 

𝜎𝑇
2 =

𝑑∗
2𝐷𝑊0

𝛼𝜔𝑐
3

𝜋
∫

𝑍4(𝜔)

𝑋4(𝑖𝜔)𝑋4(−𝑖𝜔)

+∞

−∞

𝑑𝜔,                                                       (6) 

where 

𝑍4(𝜔) = 𝑏3𝜔6 + 𝑏2𝜔4 + 𝑏1𝜔2 + 𝑏0; 
𝑋4(𝑖𝜔) = 𝑎4(𝑖𝜔)4 + 𝑎3(𝑖𝜔)3 + 𝑎2(𝑖𝜔)2 + 𝑎1(𝑖𝜔)1 + 𝑎0; 

𝑎4 = 1; 𝑎3 = −𝛼𝜔𝑐 − 𝑝1𝜔01;  𝑝1 = (2(𝑝2 − (1 − 𝜂1𝑡𝑅1𝑡 − 𝜈1𝑡𝑅2𝑡)))
1
2; 
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𝑝2 = ((1 − 𝜂1𝑡𝑅1𝑡 − 𝜈1𝑡𝑅2𝑡)2 + (𝜂2𝑡𝑅1𝑡 + 𝜈2𝑡𝑅2𝑡)2)
1
2; 

𝑎2 = 𝛼𝑝1𝜔𝑐𝜔01 + 𝑝2𝜔01
2 + 𝜔𝑐

2;  𝑎1 = −𝛼𝑝2𝜔𝑐𝜔01
2 − 𝑝1𝜔01𝜔𝑐

2;  𝑎0 = 𝑝2𝜔𝑐
2𝜔01

2 ; 
𝑏5 = 𝑏4 = 𝑏3 = 𝑏2 = 𝑏1 = 0; 𝑏0 = 1.  

We express the expression for the mean square values (5) using the integral (6) in the following form: 

𝜎𝑇
2 =

𝑑∗
2𝐷𝑊0

(−𝑝1𝛼2𝜔01𝜔𝑐
2 − 𝛼(𝑝1

2𝜔𝑐𝜔01
2 + 𝜔𝑐

3) − 𝑝1𝑝2𝜔01
3 )

𝛼𝑝1𝑝2𝜔01
3 (𝑝2

2𝜔01
4 + 𝛼𝑝1𝑝2𝜔𝑐𝜔01

3 + (𝛼2𝑝2 − 2𝑝2 + 𝑝1
2)𝜔01

2 𝜔𝑐
2 + 𝛼𝑝1𝜔01𝜔𝑐

3 + 𝜔𝑐
4)

,           (7) 

We will check the stability of random vibrations of a circular plate with elastic dissipative characteristics of the 

hysteresis type. For this, we will use the method of vertical stresses. (7) The condition for the existence of a vertical 

stress transferred to the graph of the mean square value is as follows: 

𝑑𝜎𝑇

𝑑𝜔𝑐

=

𝜕𝑓
𝜕𝜔𝑐

1 −
𝜕𝑓

𝜕𝜎𝑇

= ∞,                                                                      (8) 

where 

𝑓 = [
𝑑∗

2𝐷𝑊0
(−𝑝1𝛼2𝜔01𝜔𝑐

2 − 𝛼(𝑝1
2𝜔𝑐𝜔01

2 + 𝜔𝑐
3) − 𝑝1𝑝2𝜔01

3 )

𝛼𝑝1𝑝2𝜔01
3 (𝑝2

2𝜔01
4 + 𝛼𝑝1𝑝2𝜔𝑐𝜔01

3 + (𝛼2𝑝2 − 2𝑝2 + 𝑝1
2)𝜔01

2 𝜔𝑐
2 + 𝛼𝑝1𝜔01𝜔𝑐

3 + 𝜔𝑐
4)

]
1
2. 

Assuming that 
𝜕𝑓

𝜕𝜔𝑐
≠ 0, we derive the following equation from the condition for the existence of vertical tangents 

(8): 

1 −
1

2𝑓1

𝜕𝑓1

𝜕𝜎𝑇

+
1

2𝑓2

𝜕𝑓2

𝜕𝜎𝑇

= 0,                                                                (9) 

where 

𝑓1 = 𝑑∗
2𝐷𝑊0

(−𝑝1𝛼2𝜔01𝜔𝑐
2 − 𝛼(𝑝1

2𝜔𝑐𝜔01
2 + 𝜔𝑐

3) − 𝑝1𝑝2𝜔01
3 ); 

𝑓2 = (𝑝2
2𝜔01

4 + 𝛼𝑝1𝑝2𝜔𝑐𝜔01
3 + (𝛼2𝑝2 − 2𝑝2 + 𝑝1

2)𝜔01
2 𝜔𝑐

2 + 𝛼𝑝1𝜔01𝜔𝑐
3 + 𝜔𝑐

4)𝛼𝑝1𝑝2𝜔01
3 . 

 

If equality (9) is valid for any of the values of the parameters, the nonlinear stationary vibrations of the considered 

circular plate with elastic dissipative characteristics of the hysteresis type under the influence of random excitations 

will be unstable. Otherwise, stationary motion will stability.  

RESULTS AND DISCUSSION 

We numerically analyze the random nonlinear stationary vibrations of the circular plate under consideration. 

For the circular plate material, we obtain 40X steel and its dimensions as follows [25]: 

𝐸 = 2.08 ∙ 1011
𝑁

𝑚2
;  ρ = 7810 

𝑘𝑔

𝑚3
;  𝜇 = 0.3;  𝑟 = 0.12 𝑚;  𝑅 = 0.135 𝑚;   ℎ = 0.12 ∙ 10−2𝑚;   

𝐷 =
𝐸ℎ3

12(1 − 𝜇2)
= 32.91428571𝑁𝑚; 

𝐶0 = 0;  𝐶1 = 10.18332;  𝐶2 = 43264;  𝐶3 = −88943591; 𝐾0 = 0; 𝐾1 = 11.963;  

𝐾2 = −8959.997;  𝐾3 = 4426666; 𝜂1 = 𝜈1 =
3

4
;  𝜂2 = 𝜈2 =

1

𝜋
;  𝜔01 = 1329.312616 𝑠−1; 

 𝑃(𝑟) = 𝐽0(𝜆∗𝑟) −
𝐽0(𝜆∗𝑎)

𝐼0(𝜆∗𝑎)
𝐼0(𝜆∗𝑟) = 𝐽0(26.633𝑟) + 0.05570816212𝐼0(26.633𝑟);   𝑄(𝜃) = 1; 

𝑑1 = ∫ 𝑄2

2𝜋

0

𝑑𝜃 ∫ 𝑃2

𝑅

𝑟0

𝑑𝑟 = 0.000017239031𝜋; 

𝑑2 = ∫ 𝑄𝑑𝜃

2𝜋

0

∫ 𝑃

𝑅

𝑟0

𝑑𝑟 = 0.0005327511318𝜋;  𝑑∗ =
𝑑2

𝑑1

= 30.9037748. 
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FIGURE 1. Graph of the root mean square expression (7) 

 

In Fig. 1 the graphs of the expression of the mean square values (7) are presented for the values of the parameter 

characterizing the width of the vibration spectrum 𝛼 = 0.01; 0.015; 0.02 (red, green, blue). From these graphs, it can 

be concluded that a change in the parameter characterizing the width of the vibration spectrum does not lead to a 

change in the mean square value around the resonant frequency. However, increasing this parameter leads to an 

increase in the mean square values due to the broadening of the vibration spectrum at frequencies not around the 

resonant frequency. 

The graphs of the expression of the stability condition (9) for different values of the parameter α are depicted in 

Fig. 2. 

 
FIGURE 2. Graph of the expression for the stability condition (9) 

 

In Fig. 2, the change in the stabiliity boundaries and areas determined by the stability condition (9) is analyzed by 

changing the parameter characterizing the spectrum width 𝛼 = 0.1 ; 0.2; 0.25 (𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒, 𝑏𝑙𝑎𝑐𝑘). From these 

graphs, we can see that when 𝛼 = 0.1, the unstable areas in the given intervals 𝜔𝑐 ∈ [800; 4500] and 𝜎𝑇 ∈
[0.001; 0.01] are larger than in the remaining cases 𝛼 = 0.2 and 𝛼 = 0.25. The largest stability area in the given 

intervals is formed when 𝛼 = 0.25. 
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CONCLUSION 

Analytical expressions for the root mean square values of the displacements in transverse vibrations of a circular 

plate under the influence of random excitations were obtained. Expressions for the mean square values were 

determined for the complex representation of the spectral density of the fundamental acceleration. The mean square 

values and analytical expressions for the stability spheres determined depending on the structural parameters of the 

system allow us to evaluate the dynamics of transverse vibrations of the imperfectly elastic circular plate under random 

excitations and to verify the stability. A change in the parameter characterizing the width of the vibration spectrum 

does not lead to a change in the mean square value around the resonant frequency. However, an increase in this 

parameter leads to an increase in the mean square value due to the expansion of the vibration spectrum at frequencies 

not around the resonant frequency. As a result, the disappearance of stability movements can be observed. 

The presented methodology allows us to check the stability of the base accelerations in random processes in terms 

of their parameters, taking into account the nonlinear dissipative characteristics of the plate in different forms of 

spectral density. 

REFERENCES 

1. J. B. Roberts, P. D. Spanos, Random vibrations and statistical linearization. (Dover publications press, New 

York, 2003), p.476. 

2. Z. Antonio, I. Giovanni, P. Francesco, Sh. Tetyana, Vibrations of plates with complex shape: experimental 

modal analysis, finite element method, and R-functions method. Shock and Vibration, Volume 2020, Article 

ID 8882867, pp. 1-23. https://doi.org/10.1155/2020/8882867 

3. P. Xu, P. Wellens, Effects of static loads on the nonlinear vibration of circular plates. Journal of Sound and 

Vibration 504 (2021) 116111. https://doi.org/10.1016/j.jsv.2021.116111 

4. S. Javed, F. H. H. Al Mukahal, Free vibration of annular circular plates based on higher-order shear 

deformation theory: a spline approximation technique. International Journal of Aerospace Engineering. 

Volume 2021, Article ID 5440376, 12 pages https://doi.org/10.1155/2021/5440376 

5. J. Han, X. Gong, Ch. Lian, H. Jing, B. Huang, Y. Zhang, J. Wang, An Analysis of Nonlinear Axisymmetric 

Structural Vibrations of Circular Plates with the Extended Rayleigh–Ritz Method. Mathematics, 13(8), pp. 

1340-1356, (2025); https://doi.org/10.3390/math13081356 

6. J. Wang The extended Rayleigh-Ritz method for an analysis of nonlinear vibrations. Mech. Adv. Mater. 

Struct. 29, 3281–3284, (2022). 

7. Y. Li, Y. Gao, Axisymmetric free vibration of functionally graded piezoelectric circular plates. Journal 

crystals, 14, 1103, (2024). https: doi.org/10.3390/cryst14121103 

8. L. B. Rao, C. K. Rao, Vibrations of circular plates resting on elastic foundation with elastically restrained 

edge against translation. The Journal of Engineering Research (TJER), Vol. 15, No. 1 (2018) 14-25. 

https://doi: 10.24200/tjer.vol15iss1pp14-25  

9. L B. Rao, C. K. Rao, Vibrations of a circular plate supported on a rigid concentric ring with translational 

restraint boundary. Engineering Transactions·January 64(3) pp. 259–269, (2016). https://www. 

researchgate.net/publication/307902036 

10. G. Yao, F.-M. Li, Stability and vibration properties of a composite laminated plate subjected to subsonic 

compressible airflow. Journal of Meccanica, Volume 51, p. 2277–2287, (2016). 

11. Y. Meng, X. Mao, H. Ding, L. Chen, Nonlinear vibrations of a composite circular plate with a rigid body, 

Applied mathematics and mechanics, 44(6), pp. 857–876 (2023).  

https://doi.org/10.1007/s10483-023-3005-8 

12. H. Zhang, Zh. Wu, Y. Xi, Exponential stability of stochastic systems with hysteresis switching, Journal of 

Automatica. Volume 50, pp.599-606, (2014). 

13. J. Wang; R. Wu, The extended Galerkin method for approximate solutions of nonlinear vibration equations. 

Appl. Sci., 12, 2979, (2022). 

14. Y. Sompornjaroensuk, P. Chantarawichit, Vibration of Circular plates with Mixed Edge Conditions. Part I: 

Review of Research, Vol.14, №.2, pp. 136-157 (2020). 

15. Z. Khudoyberdiyev, J. Khasanov, Z. Suyunova, A. Begjanov, The longitudinal and transverse vibrations of 

a three-layered plate. AIP Conf. Proc.3177, 050012 (2025). https://doi.org/10.1063/5.0294898  

16. Y. Wang, H. Wu, F. Yang, Q.Wang, An efficient method for vibration and stability analysis of rectangular 

plates axially moving in fluid. Applied Mathematics and Mechanics, Volume 42, pp. 291–308, (2021). 

Auto-generated PDF by ReView 3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

062Dusmatov.docxMainDocument AIPP Review Copy Only 7



17. M. M. Mirsаidov, O. M. Dusmаtov, M. U. Khodjаbekov, Stability of Nonlinear Vibrations of Elastic Plate 

and Dynamic Absorber in Random Excitations E3s Web Conferences, 410, 03014, (2023). 

https://doi.org/10.1051/e3sconf/202341003014   

18. M. M. Mirsаidov, O. M. Dusmаtov, M. U. Khodjаbekov, Mode Shapes of Hysteresis Type Elastic Dissipative 

Characteristic Plate Protected from Vibrations Lecture Notes in Civil Engineering, 282, pp. 127-140, (2023). 

doi:10.1007/978-3-031-10853-2_12 

19. O. Dusmatov, M. Khodjabekov, B. Toshov, Determination of Modal Mass and Stiffness in Longitudinal 

Vibrations of the Rod. Aip Conference Proceedings, 3244(1), 060023, (2024). DOI:10.1063/5.0241687  

20. M. M. Mirsaidov, O. M. Dusmatov, M. U. Khodjabekov, Mathematical modeling of hysteresis type elastic 

dissipative characteristic plate protected from vibration. International Conference on Actual Problems of 

Applied Mechanics - APAM-2021, AIP Conf. Proc. 2637, 060009-1–060009-7; 

https://doi.org/10.1063/5.0118289 

21. O. Dusmatov, J. Khasanov, Vibrations of hystesis type dissipative characteristic circular plate. AIP Conf. 

Proc.3177, 080003 (2025). https://doi.org/10.1063/5.0295351 

22. O. Dusmatov, J. Khasanov, Transverse vibrations of a circular plate taking into account the imperfect 

elasticity of the material. Samarkand university scientific bulletin, №1, pp. 91-95 (2025). 

23. M. A. Pavlovsky, L. M. Ryzhkov, V. B. Yakovenko, O. M. Dusmatov, Nonlinear problems of vibration 

protection system dynamics. (Kyiv: Technique, 1997) 204 p. 

24. G. S. Pisarenko, O. E. Boginich Vibrations of kinematically excited mechanical systems taking into account 

energy dissipation. (Kiev, Dumka, 1981), 219 p. 

25. G. S. Pisarenko, A. P. Yakovlev, V. V. Matveev, Vibration-absorbing properties of structural materials 

reference book. (K.: Science Thought 1971). 210 p. 

Auto-generated PDF by ReView 3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

062Dusmatov.docxMainDocument AIPP Review Copy Only 8



Auto-generated PDF by ReView 3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

062TCADusmatovAMSMT2025.pdfMainDocument AIPP Review Copy Only 9



Auto-generated PDF by ReView 3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

062TCADusmatovAMSMT2025.pdfMainDocument AIPP Review Copy Only 10


