

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Stability of Random Vibrations of an Imperfectly Elastic Circular Plate

AIPCP25-CF-AMSMT2025-00062 | Article

PDF auto-generated using **ReView**

Stability of Random Vibrations of an Imperfectly Elastic Circular Plate

Olimjon Dusmatov ^{1, a)}, Muradjon Khodjabekov ^{2, b)}, Jakhongir Khasanov^{3, c)}

^{1,3} Samarkand State University, Samarkand, Uzbekistan

² Samarkand State Architectural and Civil Engineering University, Samarkand, Uzbekistan

^{a)} dusmatov62@bk.ru;

^{b)} uzedu@inbox.ru;

^{c)} Corresponding author: xasanovjaxongir089@gmail.com

Abstract: This work is devoted to the problem of checking the stability of transverse vibrations of a circular plate with elastic dissipative characteristics of the hysteresis type under the influence of random excitations. The expression of the mean square values of the plate was determined and the stability was checked using the vertical tangents method. The stability conditions were determined analytically depending on the structural parameters of the system and analyzed as a result of numerical calculations.

Key words: circular plate, hysteresis, dissipative, vibration, mean square value, stability, random excitation.

INTRODUCTION

Circular plate-type devices are widely used in all areas of technology. The issues of checking the stability of the dynamics of vibrations of circular plates in various processes, determining the dynamic characteristics of the plate materials under various boundary conditions, taking into account the nonlinear dissipative properties, are of great relevance. A lot of scientific research is being conducted on the dynamics of plates and stability issues.

The work [1] presented the equivalent linearization of nonlinearity in mechanical systems under random excitations, a mathematical model of nonlinear dissipative forces and hysteresis-type elastic dissipative characteristics, and the application of the averaging method for systems with hysteresis-type elastic dissipative characteristics. The concept of the hysteresis operator is introduced into the mathematical model of the hysteresis-type elastic dissipative characteristic, and its definition, properties, and classes are analyzed.

The work [2] investigated the transverse vibrations of a plate using finite difference methods and the transverse vibrations of a plate resting on an elastic base under the influence of kinematic excitations in combination with several dynamic dampers. The natural frequencies and natural vibration modes of plates of various shapes were investigated using the finite difference method for different boundary conditions. The experimental results were compared with analytical solutions and the reliability of the results was demonstrated.

In the work [3], the nonlinear vibration of a circular plate with clamped edges, which is widely used in marine structures, under the influence of an external hydrostatic force, was studied. The Helmholtz-Duffing system of equations was obtained by reducing the static and dynamic deflections and applying the Galerkin method. The effect of the static force on the dynamics, i.e., hardening, asymmetry and softening, was studied by numerically solving the system of differential equations of motion. An analytical solution of the vibration near resonance was obtained for the first form of vibration. The analytical solution allowed a theoretical assessment of the effect of the static force on the dynamics. The numerical and analytical results were compared at small values of the static deflection and the correctness of the results was shown. The proposed analysis method for the vibration of a circular plate is based on the fact that it can be applied to forms formed by rods, membranes and their combinations.

In the work [4], analyzed the free vibrations of composite annular circular plates. The equations of equilibrium, differential equations related to displacements and properties were obtained. The generalized eigenvalue problem for the frequency parameter and the associated eigenvector of the coefficient properties in the equations was numerically solved. The effect of the parameters on the frequency itself was investigated and suggestions were made to check the frequencies or to recommend them. By checking the reliability of the obtained results, recommendations were developed.

In the works [5-7], free vibrations of circular plates made of porous material were studied. The circular plates were assumed to be thin and their longitudinal deformations were ignored. The properties of the porous material were assumed to vary depending on the thickness of the plates according to the given functions. Differential equations of motion were obtained using Hamilton's variational principle and classical plate theory. Free and fixed supports were considered as boundary conditions for the boundary problem. The effects of some parameters, such as the distribution of pores and the compression of pores, on the natural frequency and stress were depicted in graphs, and conclusions were given.

In the works [8-9], solutions for the free vibration characteristics of thin circular plates supported on a Winkler-type elastic foundation were considered based on classical plate theory. Parameter-dependent analyses were performed to evaluate the effect of the displacement and stiffness of the elastic foundation on the natural frequencies of circular plates. It was found that the boundary conditions and the presence of an elastic foundation affect the characteristics of free transverse vibrations of a circular plate. The natural frequencies of vibrations for varying values of the stiffness parameter of the Winkler-type foundation were determined based on numerical calculations. Twelve vibration modes are presented in tabular and graphical form for ease of use of the obtained results in the design process.

In the works [10-11], nonlinear vibrations of rigid bodies and composite circular plates were studied in the articles. The nonlinear differential equations of motion were obtained using the generalized Hamiltonian principle and the von Karman plate theory. The solutions were determined by the finite element method and their correctness was checked. The inclusion of weight forces introduces additional linear and quadratic nonlinear terms into the dynamic model. As a result, the inclusion of weights leads to an increase in the natural frequency. It is shown that the vibrations of circular plates are asymmetric when the effect of weights is taken into account.

In the works [12-13], frequencies of circular plates reinforced with rigid concentric rings are determined in the articles. The natural frequencies of such circular plates are calculated for various boundary conditions and different values of the radius of the inner ring support. Various forms of plate vibrations are determined and presented in tabular form for use in the design process. The influence of boundary conditions and the radius of the concentric ring support on the natural frequencies of the plate is studied. It is shown that the determined frequency values serve to assess the accuracy of other numerical methods used, and recommendations are given.

In the work [14], analyzes the vibrations of a circular plate under various mixed boundary conditions. The methods for studying the vibrations of a circular plate are discussed and possible applications are highlighted. The methods for studying the problems of bending of a circular plate are analyzed.

In the works [15-16], the oscillations of the plate layer and the stability issues under the influence of various forces were considered. In the considered problems, cases were considered where several plate layers are connected by a linear elastic characteristic. The eigenfrequencies and critical forces in longitudinal bending were expressed analytically. The expression of the eigenfrequencies depending on the number of plate layers was obtained. The eigenfrequencies were found using the Galerkin method. The minimum of the unstable areas was determined depending on the system parameters. Variational methods were used to analyze the equations of motion, and conclusions were drawn.

Mathematical modeling of nonlinear mechanical systems, study of dynamics and exploring of stability of vibrations and instructions for selection of parameters corresponding to stable vibrations, in particular materials of mechanical systems, are given in the works [17-21]. Expressions of modal mass and modal stiffness are expressed analytically. By means of these expressions, the issues of choosing and modeling system materials were also solved.

In this work, we consider the issues of determining the root mean square values of nonlinear vibrations of an imperfectly elastic circular plate under the influence of random excitations and verifying their stability.

MATERIALS AND METHODS

The expression for the root mean square values of the nonlinear vibrations of a circular plate with imperfect elastic characteristics under the influence of random excitations is as follows:

$$\sigma_T^2 = \int_{-\infty}^{+\infty} |A(\omega)|^2 S_{W_0}(\omega) d\omega, \quad (1)$$

where $A(\omega)$ is the amplitude-frequency characteristic; $S_{W_0}(\omega)$ is the spectral density of the base acceleration; ω is the vibration frequency.

The expression for the amplitude-frequency characteristic for nonlinear transverse vibrations of a circular plate with hysteresis-type elastic dissipative characteristics is obtained as follows [22]:

$$A(\omega) = \frac{d_*}{(1 - \eta_{1t}R_{1t} - \nu_{1t}R_{2t})\omega_{01}^2 - \omega^2 + (\eta_{2t}R_{1t} + \nu_{2t}R_{2t})\omega_{01}^2 j}, \quad (2)$$

where ω_{01} is the natural frequency of the plate; η_{1t} , η_{2t} , ν_{1t} , ν_{2t} are constant coefficients determined from the hysteresis surface of the plate material [23];

$$\begin{aligned} R_{1t} &= \frac{3D}{\omega_{01}^2 \rho h d_1} \sum_{i_1=0}^{k_1} C_{i_1} \frac{h^{i_1}}{2^{i_1}(i_1+3)} |\sigma_T|^i G_{i_1}; G_{i_1} = \iint_S PQ \left[\frac{\partial^2}{\partial r^2} (\beta_1 |\beta_1|_a^{i_1}) + \left(\frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right) \beta_2 |\beta_2|_a^{i_1} \right] ds; \\ R_{2t} &= \frac{6D(1-\mu)}{\omega_{01}^2 \rho h d_1} \sum_{i_2=0}^{k_2} K_{i_2} \frac{h^{i_2}}{2^{i_2}(i_2+3)} |\sigma_T|^i H_{i_2}; H_{i_2} = \iint_S PQ \left(\frac{1}{r} \frac{\partial^2}{\partial r \partial \theta} - \frac{1}{r^2} \frac{\partial}{\partial \theta} \right) (\beta_3 |\beta_3|_a^{i_2}) ds; \\ \beta_1 &= Q \frac{\partial^2 P}{\partial r^2} + \mu \left(\frac{1}{r} Q \frac{\partial P}{\partial r} + \frac{1}{r^2} P \frac{\partial^2 Q}{\partial \theta^2} \right); \quad \beta_2 = \frac{1}{r} Q \frac{\partial P}{\partial r} + \frac{1}{r^2} P \frac{\partial^2 Q}{\partial \theta^2} + \mu Q \frac{\partial^2 P}{\partial r^2}; \\ \beta_3 &= \frac{1}{r} \frac{\partial P}{\partial r} \frac{\partial Q}{\partial \theta} - \frac{1}{r^2} P \frac{\partial Q}{\partial \theta}; \quad d_* = \frac{d_2}{d_1}; \quad d_1 = \int_0^{2\pi} Q^2 d\theta \int_{r_0}^{R_0} P^2 dr; \quad d_2 = \int_0^{2\pi} Q d\theta \int_{r_0}^{R_0} P dr; \end{aligned}$$

C_{i_1} ($i_1 = 0, \dots, k_1$), K_{i_2} ($i_2 = 0, \dots, k_2$) - α_{1i} , α_{2i} , α_{3i} and z_i are hysteresis parameters determined from experimentally selected lines $\alpha_1 = f_r(z)$, $\alpha_2 = f_\theta(z)$, $\alpha_3 = g(z)$ at points corresponding to the coordinates of the cyclic deformations of the material [24]; P and Q are functions of radius r and angle θ , respectively; R_0 is the radius of the circular plate; r_0 is the radius of the inner sphere given the boundary conditions; $D = \frac{Eh^3}{12(1-\mu^2)}$ is cylindrical rigidity of the plate; E is Young's modulus; h is plate thickness; μ is Poisson's ratio; ρ is density of the plate material; $j = \sqrt{-1}$.

Considering the amplitude-frequency characteristic expression (2), the expression for the mean square values (1) for nonlinear transverse random vibrations of a circular plate with hysteresis-type elastic dissipative characteristic is as follows:

$$\sigma_T^2 = \int_{-\infty}^{+\infty} \frac{d_*^2 S_{W_0}(\omega)}{[(1 - \eta_{1t}R_{1t} - \nu_{1t}R_{2t})\omega_{01}^2 - \omega^2]^2 + [(\eta_{2t}R_{1t} + \nu_{2t}R_{2t})\omega_{01}^2]^2} d\omega. \quad (3)$$

We can express the spectral density of the fundamental accelerations in the following form [23]:

$$S_{W_0}(\omega) = \frac{D_{W_0} \alpha \omega_c^3}{\pi(\omega_c^2 - \omega^2 + j\alpha \omega_c \omega)(\omega_c^2 - \omega^2 - j\alpha \omega_c \omega)}, \quad (4)$$

where D_{W_0} is the dispersion of the base acceleration; α is a parameter characterizing the width of the vibration spectrum; ω_c is the frequency in the vibration spectrum at which the probability of vibration is high.

We substitute the expression for the spectral density of the base acceleration (4) into the expression for the mean square value (3)

$$\sigma_T^2 = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{d_*^2 D_{W_0} \alpha \omega_c^3}{[(1 - \eta_{1t}R_{1t} - \nu_{1t}R_{2t})\omega_{01}^2 - \omega^2]^2 + [(\eta_{2t}R_{1t} + \nu_{2t}R_{2t})\omega_{01}^2]^2} \frac{d\omega}{[(\omega_c^2 - \omega^2)^2 + [\alpha \omega_c \omega]^2} d\omega \quad (5)$$

We calculate the resulting integral expression using the method presented in [1]. To do this, we write it as follows:

$$\sigma_T^2 = \frac{d_*^2 D_{W_0} \alpha \omega_c^3}{\pi} \int_{-\infty}^{+\infty} \frac{Z_4(\omega)}{X_4(i\omega)X_4(-i\omega)} d\omega, \quad (6)$$

where

$$\begin{aligned} Z_4(\omega) &= b_3 \omega^6 + b_2 \omega^4 + b_1 \omega^2 + b_0; \\ X_4(i\omega) &= a_4(i\omega)^4 + a_3(i\omega)^3 + a_2(i\omega)^2 + a_1(i\omega)^1 + a_0; \\ a_4 &= 1; a_3 = -\alpha \omega_c - p_1 \omega_{01}; p_1 = (2(p_2 - (1 - \eta_{1t}R_{1t} - \nu_{1t}R_{2t})))^{\frac{1}{2}}; \end{aligned}$$

$$p_2 = ((1 - \eta_{1t}R_{1t} - v_{1t}R_{2t})^2 + (\eta_{2t}R_{1t} + v_{2t}R_{2t})^2)^{\frac{1}{2}};$$

$$a_2 = \alpha p_1 \omega_c \omega_{01} + p_2 \omega_{01}^2 + \omega_c^2; a_1 = -\alpha p_2 \omega_c \omega_{01}^2 - p_1 \omega_{01} \omega_c^2; a_0 = p_2 \omega_c^2 \omega_{01}^2;$$

$$b_5 = b_4 = b_3 = b_2 = b_1 = 0; b_0 = 1.$$

We express the expression for the mean square values (5) using the integral (6) in the following form:

$$\sigma_T^2 = \frac{d_*^2 D_{W_0} (-p_1 \alpha^2 \omega_{01} \omega_c^2 - \alpha (p_1^2 \omega_c \omega_{01}^2 + \omega_c^3) - p_1 p_2 \omega_{01}^3)}{\alpha p_1 p_2 \omega_{01}^3 (p_2^2 \omega_{01}^4 + \alpha p_1 p_2 \omega_c \omega_{01}^3 + (\alpha^2 p_2 - 2p_2 + p_1^2) \omega_{01}^2 \omega_c^2 + \alpha p_1 \omega_{01} \omega_c^3 + \omega_c^4)}, \quad (7)$$

We will check the stability of random vibrations of a circular plate with elastic dissipative characteristics of the hysteresis type. For this, we will use the method of vertical stresses. (7) The condition for the existence of a vertical stress transferred to the graph of the mean square value is as follows:

$$\frac{d\sigma_T}{d\omega_c} = \frac{\frac{\partial f}{\partial \omega_c}}{1 - \frac{\partial f}{\partial \sigma_T}} = \infty, \quad (8)$$

where

$$f = \left[\frac{d_*^2 D_{W_0} (-p_1 \alpha^2 \omega_{01} \omega_c^2 - \alpha (p_1^2 \omega_c \omega_{01}^2 + \omega_c^3) - p_1 p_2 \omega_{01}^3)}{\alpha p_1 p_2 \omega_{01}^3 (p_2^2 \omega_{01}^4 + \alpha p_1 p_2 \omega_c \omega_{01}^3 + (\alpha^2 p_2 - 2p_2 + p_1^2) \omega_{01}^2 \omega_c^2 + \alpha p_1 \omega_{01} \omega_c^3 + \omega_c^4)} \right]^{\frac{1}{2}}.$$

Assuming that $\frac{\partial f}{\partial \omega_c} \neq 0$, we derive the following equation from the condition for the existence of vertical tangents (8):

$$1 - \frac{1}{2f_1} \frac{\partial f_1}{\partial \sigma_T} + \frac{1}{2f_2} \frac{\partial f_2}{\partial \sigma_T} = 0, \quad (9)$$

where

$$f_1 = d_*^2 D_{W_0} (-p_1 \alpha^2 \omega_{01} \omega_c^2 - \alpha (p_1^2 \omega_c \omega_{01}^2 + \omega_c^3) - p_1 p_2 \omega_{01}^3);$$

$$f_2 = (p_2^2 \omega_{01}^4 + \alpha p_1 p_2 \omega_c \omega_{01}^3 + (\alpha^2 p_2 - 2p_2 + p_1^2) \omega_{01}^2 \omega_c^2 + \alpha p_1 \omega_{01} \omega_c^3 + \omega_c^4) \alpha p_1 p_2 \omega_{01}^3.$$

If equality (9) is valid for any of the values of the parameters, the nonlinear stationary vibrations of the considered circular plate with elastic dissipative characteristics of the hysteresis type under the influence of random excitations will be unstable. Otherwise, stationary motion will stability.

RESULTS AND DISCUSSION

We numerically analyze the random nonlinear stationary vibrations of the circular plate under consideration. For the circular plate material, we obtain 40X steel and its dimensions as follows [25]:

$$E = 2.08 \cdot 10^{11} \frac{N}{m^2}; \rho = 7810 \frac{kg}{m^3}; \mu = 0.3; r = 0.12 m; R = 0.135 m; h = 0.12 \cdot 10^{-2} m;$$

$$D = \frac{Eh^3}{12(1-\mu^2)} = 32.91428571 Nm;$$

$$C_0 = 0; C_1 = 10.18332; C_2 = 43264; C_3 = -88943591; K_0 = 0; K_1 = 11.963;$$

$$K_2 = -8959.997; K_3 = 4426666; \eta_1 = v_1 = \frac{3}{4}; \eta_2 = v_2 = \frac{1}{\pi}; \omega_{01} = 1329.312616 s^{-1};$$

$$P(r) = J_0(\lambda_* r) - \frac{J_0(\lambda_* a)}{I_0(\lambda_* a)} I_0(\lambda_* r) = J_0(26.633r) + 0.05570816212 I_0(26.633r); Q(\theta) = 1;$$

$$d_1 = \int_0^{2\pi} Q^2 d\theta \int_{r_0}^R P^2 dr = 0.000017239031\pi;$$

$$d_2 = \int_0^{2\pi} Q d\theta \int_{r_0}^R P dr = 0.0005327511318\pi; d_* = \frac{d_2}{d_1} = 30.9037748.$$

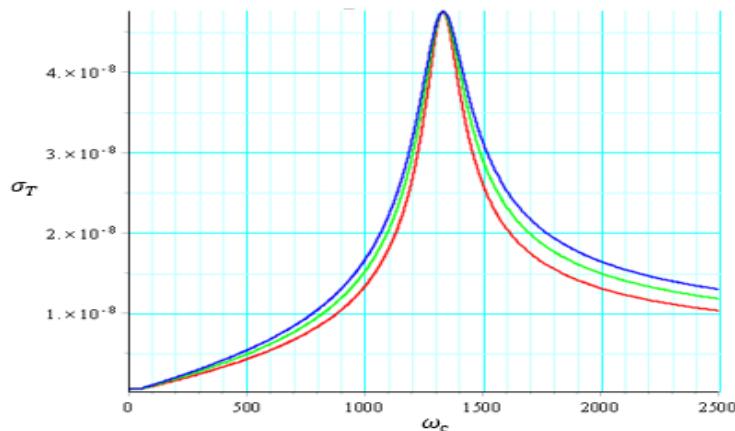


FIGURE 1. Graph of the root mean square expression (7)

In Fig. 1 the graphs of the expression of the mean square values (7) are presented for the values of the parameter characterizing the width of the vibration spectrum $\alpha = 0.01; 0.015; 0.02$ (red, green, blue). From these graphs, it can be concluded that a change in the parameter characterizing the width of the vibration spectrum does not lead to a change in the mean square value around the resonant frequency. However, increasing this parameter leads to an increase in the mean square values due to the broadening of the vibration spectrum at frequencies not around the resonant frequency.

The graphs of the expression of the stability condition (9) for different values of the parameter α are depicted in Fig. 2.

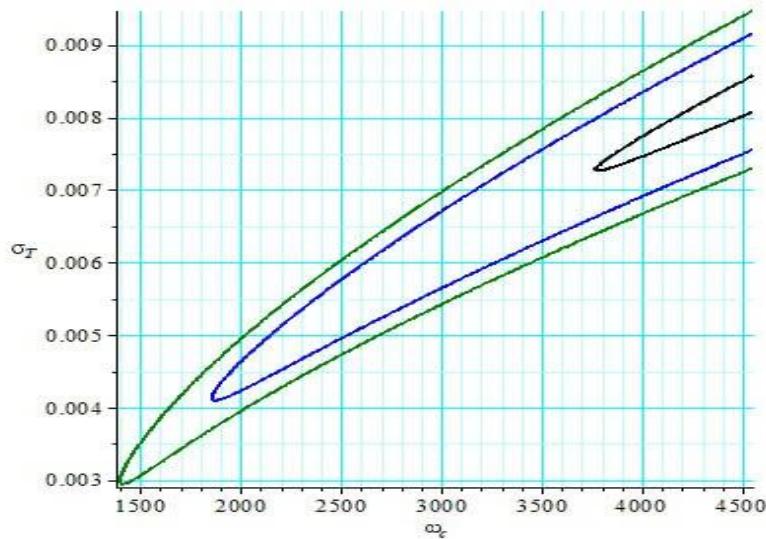


FIGURE 2. Graph of the expression for the stability condition (9)

In Fig. 2, the change in the stability boundaries and areas determined by the stability condition (9) is analyzed by changing the parameter characterizing the spectrum width $\alpha = 0.1; 0.2; 0.25$ (green, blue, black). From these graphs, we can see that when $\alpha = 0.1$, the unstable areas in the given intervals $\omega_c \in [800; 4500]$ and $\sigma_T \in [0.001; 0.01]$ are larger than in the remaining cases $\alpha = 0.2$ and $\alpha = 0.25$. The largest stability area in the given intervals is formed when $\alpha = 0.25$.

CONCLUSION

Analytical expressions for the root mean square values of the displacements in transverse vibrations of a circular plate under the influence of random excitations were obtained. Expressions for the mean square values were determined for the complex representation of the spectral density of the fundamental acceleration. The mean square values and analytical expressions for the stability spheres determined depending on the structural parameters of the system allow us to evaluate the dynamics of transverse vibrations of the imperfectly elastic circular plate under random excitations and to verify the stability. A change in the parameter characterizing the width of the vibration spectrum does not lead to a change in the mean square value around the resonant frequency. However, an increase in this parameter leads to an increase in the mean square value due to the expansion of the vibration spectrum at frequencies not around the resonant frequency. As a result, the disappearance of stability movements can be observed.

The presented methodology allows us to check the stability of the base accelerations in random processes in terms of their parameters, taking into account the nonlinear dissipative characteristics of the plate in different forms of spectral density.

REFERENCES

1. J. B. Roberts, P. D. Spanos, Random vibrations and statistical linearization. (Dover publications press, New York, 2003), p.476.
2. Z. Antonio, I. Giovanni, P. Francesco, Sh. Tetyana, Vibrations of plates with complex shape: experimental modal analysis, finite element method, and R-functions method. Shock and Vibration, Volume 2020, Article ID 8882867, pp. 1-23. <https://doi.org/10.1155/2020/8882867>
3. P. Xu, P. Wellens, Effects of static loads on the nonlinear vibration of circular plates. Journal of Sound and Vibration **504** (2021) 116111. <https://doi.org/10.1016/j.jsv.2021.116111>
4. S. Javed, F. H. H. Al Mukahal, Free vibration of annular circular plates based on higher-order shear deformation theory: a spline approximation technique. International Journal of Aerospace Engineering. Volume 2021, Article ID 5440376, 12 pages <https://doi.org/10.1155/2021/5440376>
5. J. Han, X. Gong, Ch. Lian, H. Jing, B. Huang, Y. Zhang, J. Wang, An Analysis of Nonlinear Axisymmetric Structural Vibrations of Circular Plates with the Extended Rayleigh–Ritz Method. *Mathematics*, **13**(8), pp. 1340-1356, (2025); <https://doi.org/10.3390/math13081356>
6. J. Wang The extended Rayleigh–Ritz method for an analysis of nonlinear vibrations. *Mech. Adv. Mater. Struct.* **29**, 3281–3284, (2022).
7. Y. Li, Y. Gao, Axisymmetric free vibration of functionally graded piezoelectric circular plates. *Journal crystals*, **14**, 1103, (2024). <https://doi.org/10.3390/cryst14121103>
8. L. B. Rao, C. K. Rao, Vibrations of circular plates resting on elastic foundation with elastically restrained edge against translation. *The Journal of Engineering Research (TJER)*, Vol. **15**, No. 1 (2018) 14-25. <https://doi: 10.24200/tjer.vol15iss1pp14-25>
9. L. B. Rao, C. K. Rao, Vibrations of a circular plate supported on a rigid concentric ring with translational restraint boundary. *Engineering Transactions January* **64**(3) pp. 259–269, (2016). <https://www.researchgate.net/publication/307902036>
10. G. Yao, F.-M. Li, Stability and vibration properties of a composite laminated plate subjected to subsonic compressible airflow. *Journal of Meccanica*, Volume **51**, p. 2277–2287, (2016).
11. Y. Meng, X. Mao, H. Ding, L. Chen, Nonlinear vibrations of a composite circular plate with a rigid body, *Applied mathematics and mechanics*, **44**(6), pp. 857–876 (2023). <https://doi.org/10.1007/s10483-023-3005-8>
12. H. Zhang, Zh. Wu, Y. Xi, Exponential stability of stochastic systems with hysteresis switching, *Journal of Automatica*. Volume **50**, pp.599-606, (2014).
13. J. Wang; R. Wu, The extended Galerkin method for approximate solutions of nonlinear vibration equations. *Appl. Sci.*, **12**, 2979, (2022).
14. Y. Sompornjaroensuk, P. Chantarawichit, Vibration of Circular plates with Mixed Edge Conditions. Part I: Review of Research, Vol.**14**, №.2, pp. 136-157 (2020).
15. Z. Khudoyberdiyev, J. Khasanov, Z. Suyunova, A. Begjanov, The longitudinal and transverse vibrations of a three-layered plate. AIP Conf. Proc.3177, 050012 (2025). <https://doi.org/10.1063/5.0294898>
16. Y. Wang, H. Wu, F. Yang, Q. Wang, An efficient method for vibration and stability analysis of rectangular plates axially moving in fluid. *Applied Mathematics and Mechanics*, Volume 42, pp. 291–308, (2021).

17. M. M. Mirsaidov, O. M. Dusmatov, M. U. Khodjabekov, Stability of Nonlinear Vibrations of Elastic Plate and Dynamic Absorber in Random Excitations E3s Web Conferences, 410, 03014, (2023). <https://doi.org/10.1051/e3sconf/202341003014>
18. M. M. Mirsaidov, O. M. Dusmatov, M. U. Khodjabekov, Mode Shapes of Hysteresis Type Elastic Dissipative Characteristic Plate Protected from Vibrations Lecture Notes in Civil Engineering, **282**, pp. 127-140, (2023). doi:10.1007/978-3-031-10853-2_12
19. O. Dusmatov, M. Khodjabekov, B. Toshov, Determination of Modal Mass and Stiffness in Longitudinal Vibrations of the Rod. Aip Conference Proceedings, 3244(1), 060023, (2024). DOI:10.1063/5.0241687
20. M. M. Mirsaidov, O. M. Dusmatov, M. U. Khodjabekov, Mathematical modeling of hysteresis type elastic dissipative characteristic plate protected from vibration. International Conference on Actual Problems of Applied Mechanics - APAM-2021, AIP Conf. Proc. 2637, 060009-1–060009-7; <https://doi.org/10.1063/5.0118289>
21. O. Dusmatov, J. Khasanov, Vibrations of hysteresis type dissipative characteristic circular plate. AIP Conf. Proc. 3177, 080003 (2025). <https://doi.org/10.1063/5.0295351>
22. O. Dusmatov, J. Khasanov, Transverse vibrations of a circular plate taking into account the imperfect elasticity of the material. Samarkand university scientific bulletin, №1, pp. 91-95 (2025).
23. M. A. Pavlovsky, L. M. Ryzhkov, V. B. Yakovenko, O. M. Dusmatov, Nonlinear problems of vibration protection system dynamics. (Kyiv: Technique, 1997) 204 p.
24. G. S. Pisarenko, O. E. Boginich Vibrations of kinematically excited mechanical systems taking into account energy dissipation. (Kiev, Dumka, 1981), 219 p.
25. G. S. Pisarenko, A. P. Yakovlev, V. V. Matveev, Vibration-absorbing properties of structural materials reference book. (K.: Science Thought 1971). 210 p.

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this license, please contact AIP Publishing's Office of Rights and Permissions, 1205 Walt Whitman Road, Suite 300, Melville, NY 11747-4300 USA. Phone 516 576-2268. Email: permissions@aip.org

Article Title (Work)

Stability of Random Vibrations of an Imperfectly Elastic Circular Plate

All Author(s)

Olimjon Dusmatov, Muradjon Khodjabelev, Jakhongir Khasanov

Title of Conference: AMSMT2025

Name(s) of Editor(s) Valentin L. Popov

All Copyright Owner(s), # not Author(s):

(Please list all copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(ies) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections edited by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript file.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approved of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #3 below):

Jakhongir Khasanov

Author(s) Signature Print Name Date

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner Authorized Signature and Title Date

3. If an Author is a U.S. Government employee, such Author must please sign below. The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature Print Name Date

PLEASE NOTE NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract # (s) 11161

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University. (<http://arxiv.org>)

Commercial and noncommercial scholarly use: Noncommercial scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. Commercial uses fall outside the author-to-author exchange and include, but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusively over certain inherent rights associated with the copyright in the work. These rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.dod.gov/statistics/ffrds.html>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is not considered a personal web page. (See also: Scholarly Collaboration Network, Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also a member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.