

3rd International Conference Advanced Mechanics: Structure, Materials, Tribology

Forced Vibrations of a Rod Mounted on an Elastic Base

AIPCP25-CF-AMSMT2025-00064 | Article

PDF auto-generated using **ReView**

Forced Vibrations of a Rod Mounted on an Elastic Base

Askar Khasanov^{a)}, Zokir Khudoyberdiyev^{b)}, Alisher Kushanov^{c)},
Jakhongir Khasanov^{d)}

Samarkand State University, Samarkand, Uzbekistan

^{a)} khasanova@mail.ru
^{b)} Corresponding author: xudoyberdiyevz@mail.ru
^{c)} kushanovalisher@gmail.com
^{d)} xasanovjaxongir089@gmail.com

Abstract. In this work, the problem of investigating the forced vibration of a rod with its lower end rigidly fixed and a load applied to its upper end was addressed. The equations of forced vibration were derived using classical theories for the load applied to the end of the rod, and their solutions were obtained. Using the obtained solutions, the oscillatory motion trajectory of the load was graphically illustrated with the help of the Maple software. During the laboratory process, the forced vibration of a rod mounted on a similar elastic base is studied. In this case, the lower end of the rod is rigidly fixed. A body with mass is placed on the other end. A load-sensitive sensor is installed on the upper end of the rod. The sensor is connected to a monitor, and the obtained results are compared with those obtained analytically, after which appropriate conclusions are drawn.

Keywords. Beam, rod, deflection, graph, elastic force.

INTRODUCTION

Nowadays, in the field of engineering, studying the dynamic state of devices, determining their vibration characteristics, and assessing in advance the resonance conditions that occur under the influence of external forces have great practical importance. The stable operation of elements encountered in mechanical engineering, construction, and various micromechanical systems depends on their resistance to vibrations. Therefore, an in-depth study of the forced vibrations of structural elements, including rods, is considered one of the urgent scientific problems today [1–3]. A vertically positioned rod system, with one end clamped and a load applied to the other end, is a widely used dynamic system. Such rods are found in various types of structures. In these kinds of systems, external forces cause forced vibrations. If the vibration frequency of these external forces coincides with the natural frequency of the rod, a resonance phenomenon occurs. As a result, excessive deformation and mechanical failures appear in the structure [4]. To prevent such phenomena, that is, to reduce the vibration amplitude of the system, numerous research studies have been conducted [5–7]. Currently, the forced vibrations of rods mounted on elastic foundations are analyzed using various numerical and experimental methods. Initially, S. Timoshenko and J. Goodier [8] analyzed the bending vibrations of rods based on classical theory, while later Meirovitch [9] generalized the vibration theory of mechanical systems. Today, finite element and analytical-asymptotic methods are widely applied [10–12].

In this study, the forced vibrations of a vertically positioned rod, with its lower end rigidly clamped and a load with mass attached to the upper end, are investigated. The work examines the interaction of the rod with an elastic foundation, as well as the effects of the load mass and the frequency of external forces on the vibration amplitude. Analytical and experimental results are compared, and recommendations are provided to ensure the stability of the structure under resonance conditions [13–17].

FORMULATION OF THE PROBLEM

When an earthquake occurs, tall buildings undergo forced oscillatory motion in the horizontal direction. Schematically, such a building can be modeled as an elastic rod of length l . The lower end of the rod is clamped, while a load of mass m is attached to its upper end. A horizontal force of magnitude $F(t)$ acts on the load (see Fig. 1). We study the problem of determining the forced oscillatory motion of the load under the action of this horizontal force.

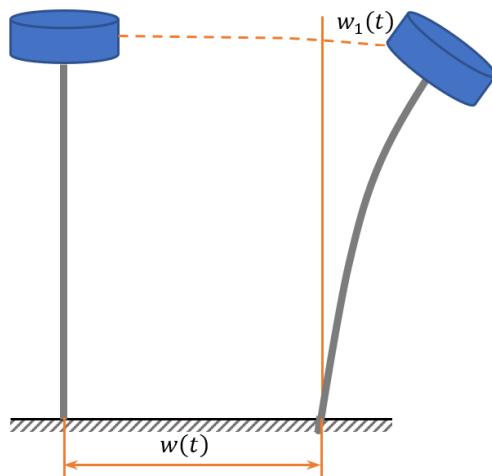


FIGURE 1. Research object

RESEARCH RESULTS

The load is subjected to a disturbing force $F_0(t)$, which initiates motion, and a restoring force $F_1 = -cw$, which tends to return it to the equilibrium position. In addition, the load is also affected by the gravitational force $P = mg$. In this case, the fundamental differential equation of motion for the load can be written in the following form.

$$m \frac{d^2 w}{dt^2} + cw = F_0(t); \quad (1)$$

The differential equation of forced oscillatory motion written for the rod in equation (1) can be expressed in the following form:

$$\frac{d^2 w}{dt^2} + \omega^2 w = F(t); \quad (2)$$

here,

$$\omega = \sqrt{\frac{c}{m}}; \quad F(t) = \frac{F_0(t)}{m}.$$

The general solution of the differential equation of forced oscillatory motion (2) consists of the sum of the general solution of its homogeneous part and a particular solution obtained by taking into account the right-hand side of the equation. The general solution of the homogeneous part of equation (2) can be written in the following form:

$$w = A \sin(\omega t + \alpha); \quad (3)$$

Here, A is the vibration amplitude, and α is the initial phase. They are determined from the initial conditions.

The particular solution of the forced oscillatory motion equation caused by the action of the force $F_0(t)$ is given as follows:

$$w(t) = \frac{1}{m\omega} \int_0^t F_0(\tau) \sin \omega(t - \tau) d\tau; \quad (4)$$

Thus, the motion of the load placed on the elastic rod under the action of the exciting force $F_0(t)$ is expressed as follows:

$$w(t) = A \sin(\omega t + \alpha) \frac{1}{m\omega} \int_0^t F_0(\tau) \sin \omega(t-\tau) d\tau; \quad (5)$$

The first term of this equation determines the free vibration of the point, while the second term represents the forced vibration caused by the action of the force $F_0(t)$.

Practical issue. For the purpose of solving a practical problem, we take the value of the exciting force $F_0(t)$ in the form $5 \cdot e^{-10t}$. The mass of the load is assumed to be 1.84 kg . The vibration frequency is taken as 0.5 s^{-1} . Then, the oscillatory motion of the load over a 20-second interval is plotted in a graph (Fig. 2). To verify the accuracy of the obtained graph, an experiment is conducted using the “Alisher 2025” laboratory setup (Fig. 3).

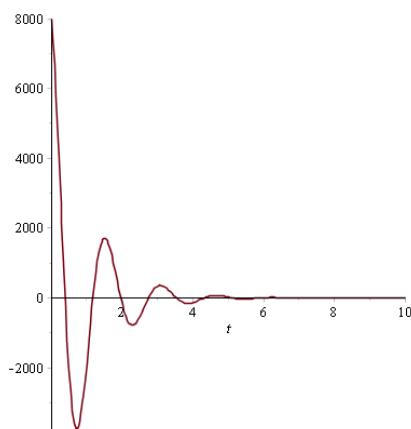


FIGURE 2. Analytical solution

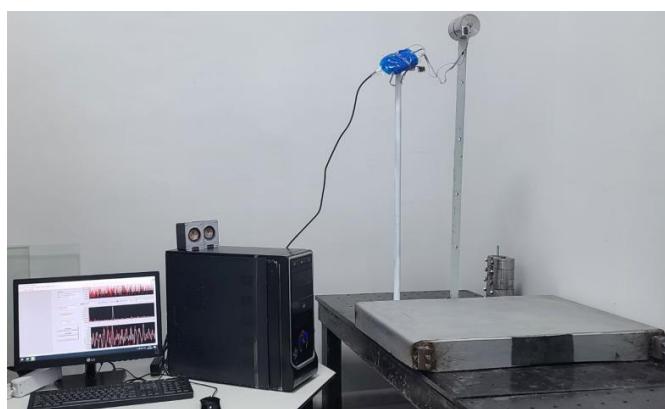


FIGURE 3. Alisher 2025 laboratory equipment

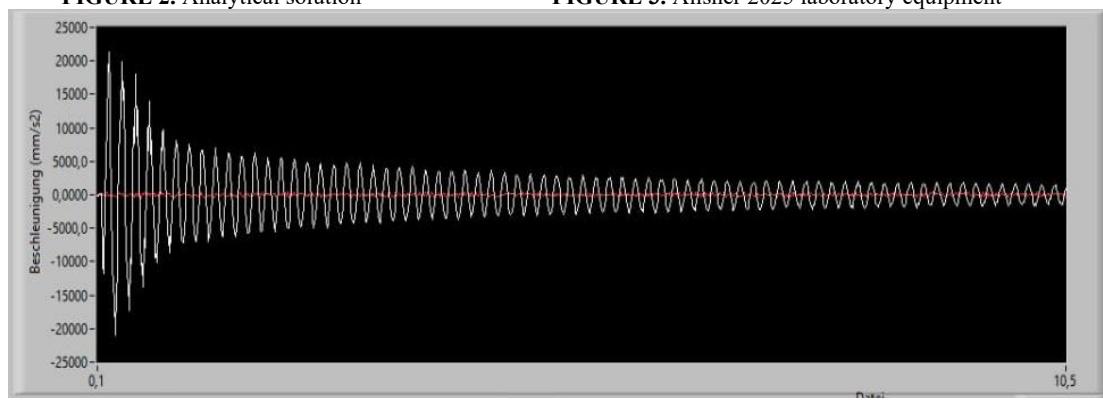


FIGURE 4. Vibrational motion of the load obtained on the Alisher 2025 laboratory equipment

CONCLUSION

The “Alisher 2025” laboratory setup has the following structure: a rigid base, a rod firmly fixed to the base, and a mass stone attached to the end of the rod. Initially, a sensor is installed on the load shown in Fig. 3. Then, a horizontal impulse is applied to the load. Using the sensor, the oscillation graph is transmitted to the monitor. Figure 4 shows the vibration graph of the load obtained from the monitor. As can be seen from Fig. 4, the vibration graph of the load replicates the graph obtained theoretically in Fig. 2. In conclusion, it can be stated that the solution obtained theoretically is a reliable solution.

REFERENCES

1. S. S. Rao, Mechanical Vibrations, 6th ed., (Pearson Education, 2017).
2. W. T. Thomson, , & M. D. Dahleh, Theory of Vibration with Applications, 5th ed., (Prentice Hall, 1998).
3. J. P. Den Hartog, Mechanical Vibrations, (Dover Publications, 1985).
4. L. Meirovitch, Elements of Vibration Analysis, (McGraw-Hill, 1986.)
5. S. P. Timoshenko, , & J. M. Gere, Theory of Elastic Stability, (McGraw-Hill, 1961).
6. G. V. Rao, , & S. Srinivasan, Vibration of Continuous Systems, (John Wiley & Sons, 2007).
7. G. Genta, Vibration Dynamics and Control, (Springer, 2009).
8. S. P. Timoshenko, , & J. N. Goodier, Theory of Elasticity, 3rd ed., (McGraw-Hill, 1970).
9. L. Meirovitch, Analytical Methods in Vibrations, (Macmillan, 1967).
10. A. H. Nayfeh, , & D. T. Mook, Nonlinear Oscillations, (Wiley, 2008).
11. J. N. Reddy, Energy Principles and Variational Methods in Applied Mechanics, (John Wiley & Sons, 2017).
12. K. J. Bathe, Finite Element Procedures, (Prentice Hall, 2014).
13. E. Winkler, Die Lehre von der Elastizität und Festigkeit, (Prague, 1867).
14. A. P. Filippov, , & N. D Kuznetsov, "Dynamic stability of elastic rods on Winkler foundation under periodic load," Journal of Applied Mechanics, vol. **86**, no. 4, pp. 041007, (2019).
15. Z. B. Khudoyberdiyev, Sh. R. Yaxshiboyev, Bending of a Cantilever Beam Under the Influence of a Force Applied to its Tip. AIP Conference Proceedings (2024). 060014, 3244(1); <https://doi.org/10.1063/5.0241681>
16. Z. Khudoyberdiyev, Sh. Khudayberdiyeva, Sh. Yakhshiboyev, A. Begjanov, AIP Conf. Proc. 3177, 050010 (2025) <https://doi.org/10.1063/5.02944897>
17. Z. Khudoyberdiyev, Z. Suyunova, A. Begjanov, J. Khasanov, AIP Conf. Proc. 3177, 050012 (2025) <https://doi.org/10.1063/5.029489>

LICENSE TO PUBLISH AGREEMENT FOR CONFERENCE PROCEEDINGS

This License to Publish must be signed and returned to the Proceedings Editor before the manuscript can be published. If you have questions about how to submit the form, please contact the AIP Publishing Conference Proceedings office (confproc@aip.org). For questions regarding the copyright terms and conditions of this License, please contact AIP Publishing's Office of Rights and Permissions, 1305 Walt Whitman Road, Suite 300, Melville, NY 11747-4300 USA; Phone 516-576-2268; Email: rights@aip.org.

Article Title ("Work"):

Forced vibrations of a rod mounted on an elastic base

All Author(s):

Askar Khasanov, Zokir Khudoyberdiyev, Alisher Kushanov

Jakhongir Khasanov

Title of Conference: AMSMT2025

Name(s) of Editor(s) Valentin L. Popov

All Copyright Owner(s), if not Author(s):

(Please list **all** copyright owner(s) by name. In the case of a Work Made for Hire, the employer(s) or commissioning party(ies) are the copyright owner(s). For large groups of copyright owners, attach a separate list to this form.)

Copyright Ownership and Grant of Rights

For the purposes of this License, the "Work" consists of all content within the article itself and made available as part of the article, including but not limited to the abstract, tables, figures, graphs, images, and multimedia files, as well as any subsequent errata. "Supplementary Material" consists of material that is associated with the article but linked to or accessed separately (available electronically only), including but not limited to data sets and any additional files.

This Agreement is an Exclusive License to Publish not a Transfer of Copyright. Copyright to the Work remains with the Author(s) or, in the case of a Work Made for Hire, with the Author(s)' employer(s). AIP Publishing LLC shall own and have the right to register in its name the copyright to the proceedings issue or any other collective work in which the Work is included. Any rights granted under this License are contingent upon acceptance of the Work for publication by AIP Publishing. If for any reason and at its own discretion AIP Publishing decides not to publish the Work, this License is considered void.

Each Copyright Owner hereby grants to AIP Publishing LLC the following irrevocable rights for the full term of United States and foreign copyrights (including any extensions):

1. The exclusive right and license to publish, reproduce, distribute, transmit, display, store, translate, edit, adapt, and create derivative works from the Work (in whole or in part) throughout the world in all formats and media whether now known or later developed, and the nonexclusive right and license to do the same with the Supplementary Material.
2. The right for AIP Publishing to freely transfer and/or sublicense any or all of the exclusive rights listed in #1 above. Sublicensing includes the right to authorize requests for reuse of the Work by third parties.
3. The right for AIP Publishing to take whatever steps it considers necessary to protect and enforce, at its own expense, the exclusive rights granted herein against third parties.

Author Rights and Permitted Uses

Subject to the rights herein granted to AIP Publishing, each Copyright Owner retains ownership of copyright and all other proprietary rights such as patent rights in the Work.

Each Copyright Owner retains the following nonexclusive rights to use the Work, without obtaining permission from AIP Publishing, in keeping with professional publication ethics and provided clear credit is given to its first publication in an AIP Publishing proceeding. Any reuse must include a full credit line acknowledging AIP Publishing's publication and a link to the Version of Record (VOR) on AIP Publishing's site.

Each Copyright Owner may:

1. Reprint portions of the Work (excerpts, figures, tables) in future works created by the Author, in keeping with professional publication ethics.
2. Post the Accepted Manuscript (AM) to their personal web page or their employer's web page immediately after acceptance by AIP Publishing.
3. Deposit the AM in an institutional or funder-designated repository immediately after acceptance by AIP Publishing.

4. Use the AM for posting within scientific collaboration networks (SCNs). For a detailed description of our policy on posting to SCNs, please see our Web Posting Guidelines (<https://publishing.aip.org/authors/web-posting-guidelines>).
5. Reprint the Version of Record (VOR) in print collections written by the Author, or in the Author's thesis or dissertation. It is understood and agreed that the thesis or dissertation may be made available electronically on the university's site or in its repository and that copies may be offered for sale on demand.
6. Reproduce copies of the VOR for courses taught by the Author or offered at the institution where the Author is employed, provided no fee is charged for access to the Work.
7. Use the VOR for internal training and noncommercial business purposes by the Author's employer.
8. Use the VOR in oral presentations made by the Author, such as at conferences, meetings, seminars, etc., provided those receiving copies are informed that they may not further copy or distribute the Work.
9. Distribute the VOR to colleagues for noncommercial scholarly use, provided those receiving copies are informed that they may not further copy or distribute the Work.
10. Post the VOR to their personal web page or their employer's web page 12 months after publication by AIP Publishing.
11. Deposit the VOR in an institutional or funder-designated repository 12 months after publication by AIP Publishing.
12. Update a prior posting with the VOR on a noncommercial server such as arXiv, 12 months after publication by AIP Publishing.

Author Warranties

Each Author and Copyright Owner represents and warrants to AIP Publishing the following:

1. The Work is the original independent creation of each Author and does not infringe any copyright or violate any other right of any third party.
2. The Work has not been previously published and is not being considered for publication elsewhere in any form, except as a preprint on a noncommercial server such as arXiv, or in a thesis or dissertation.
3. Written permission has been obtained for any material used from other sources and copies of the permission grants have been supplied to AIP Publishing to be included in the manuscript file.
4. All third-party material for which permission has been obtained has been properly credited within the manuscript.
5. In the event that the Author is subject to university open access policies or other institutional restrictions that conflict with any of the rights or provisions of this License, such Author has obtained the necessary waiver from his or her university or institution.

This License must be signed by the Author(s) and, in the case of a Work Made for Hire, also by the Copyright Owners. One Author/Copyright Owner may sign on behalf of all the contributors/owners only if they all have authorized the signing, approved of the License, and agreed to be bound by it. The signing Author and, in the case of a Work Made for Hire, the signing Copyright Owner warrants that he/she/it has full authority to enter into this License and to make the grants this License contains.

1. The Author must please sign here (except if an Author is a U.S. Government employee, then please sign under #2 below):

Zokir Khudoyberdiyev 24.11.2025

Author(s) Signature

Print Name

Date

2. The Copyright Owner (if different from the Author) must please sign here:

Name of Copyright Owner

Authorized Signature and Title

Date

3. If an Author is a U.S. Government employee, such Author must please sign below. The signing Author certifies that the Work was written as part of his/her official duties and is therefore not eligible for copyright protection in the United States.

Name of U.S. Government Institution (e.g., Naval Research Laboratory, NIST)

Author Signature

Print Name

Date

PLEASE NOTE: NATIONAL LABORATORIES THAT ARE SPONSORED BY U.S. GOVERNMENT AGENCIES BUT ARE INDEPENDENTLY RUN ARE NOT CONSIDERED GOVERNMENT INSTITUTIONS. (For example, Argonne, Brookhaven, Lawrence Livermore, Sandia, and others.) Authors at these types of institutions should sign under #1 or #2 above.

If the Work was authored under a U.S. Government contract, and the U.S. Government wishes to retain for itself and others acting on its behalf, a paid-up, nonexclusive, irrevocable, worldwide license in the Work to reproduce, prepare derivative works from, distribute copies to the public, perform publicly, and display publicly, by or on behalf of the Government, please check the box below and add the relevant Contract numbers.

Contract #(s) _____

[1.16.1]

LICENSE TERMS DEFINED

Accepted Manuscript (AM): The final version of an author's manuscript that has been accepted for publication and incorporates all the editorial changes made to the manuscript after submission and peer review. The AM does not yet reflect any of the publisher's enhancements to the work such as copyediting, pagination, and other standard formatting.

arXiv: An electronic archive and distribution server for research article preprints in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, and statistics, which is owned and operated by Cornell University, <http://arxiv.org/>.

Commercial and noncommercial scholarly use: *Noncommercial* scholarly uses are those that further the research process for authors and researchers on an individual basis for their own personal purposes. They are author-to-author interactions meant for the exchange of ideas. *Commercial* uses fall outside the author-to-author exchange and include but are not limited to the copying or distribution of an article, either in hard copy form or electronically, for resale or licensing to a third party; posting of the AM or VOR of an article by a site or service where an access fee is charged or which is supported by commercial paid advertising or sponsorship; use by a for-profit entity for any type of promotional purpose. Commercial uses require the permission of AIP Publishing.

Embargo period: The period of time during which free access to the full text of an article is delayed.

Employer's web page: A web page on an employer's site that highlights the accomplishments and research interests of the company's employees, which usually includes their publications. (See also: Personal web page and Scholarly Collaboration Network).

Exclusive License to Publish: An exclusive license to publish is a written agreement in which the copyright owner gives the publisher exclusivity over certain inherent rights associated with the copyright in the work. Those rights include the right to reproduce the work, to distribute copies of the work, to perform and display the work publicly, and to authorize others to do the same. The publisher does not hold the copyright to the work, which continues to reside with the author. The terms of the AIP Publishing License to Publish encourage authors to make full use of their work and help them to comply with requirements imposed by employers, institutions, and funders.

Full Credit Line: AIP Publishing's preferred format for a credit line is as follows (you will need to insert the specific citation information in place of the capital letters): "Reproduced from [FULL CITATION], with the permission of AIP Publishing." A FULL CITATION would appear as: Journal abbreviation, volume number, article ID number or page number (year). For example: Appl. Phys. Lett. 107, 021102 (2015).

Institutional repository: A university or research institution's digital collection of articles that have been authored by its staff and which are usually made publicly accessible. As authors are encouraged and sometimes required to include their published articles in their institution's repository, the majority of publishers allow for deposit of the Accepted Manuscript for this purpose. AIP Publishing also allows for the VOR to be deposited 12 months after publication of the Work.

Journal editorial office: The contact point for authors concerning matters related to the publication of their manuscripts. Contact information for the journal editorial offices may be found on the journal websites under the "About" tab.

Linking to the Version of Record (VOR): To create a link to your article in an AIP Publishing journal or proceedings, you need to know the CrossRef digital object identifier (doi). You can find the doi on the article's abstract page. For instructions on linking, please refer to our Web Posting Guidelines at <https://publishing.aip.org/authors/web-posting-guidelines>.

National Laboratories: National laboratories are sponsored and funded by the U.S. Government but have independent nonprofit affiliations and employ private sector resources. These institutions are classified as Federally Funded Research and Development Centers (FFRDCs). Authors working at FFRDCs are not

considered U.S. Government employees for the purposes of copyright. The Master Government List of FFRDCs may be found at <http://www.nsf.gov/statistics/ffrdclist/>.

Personal web page: A web page that is hosted by the author or the author's institution and is dedicated to the author's personal research interests and publication history. An author's profile page on a social media site or scholarly collaboration network site is *not* considered a personal web page. (See also: Scholarly Collaboration Network; Employer's web page).

Peer X-Press: A web-based manuscript submission system by which authors submit their manuscripts to AIP Publishing for publication, communicate with the editorial offices, and track the status of their submissions. The Peer X-Press system provides a fully electronic means of completing the License to Publish. A hard copy of the Agreement will be supplied by the editorial office if the author is unable to complete the electronic version of the form. (Conference Proceedings authors will continue to submit their manuscripts and forms directly to the Conference Editors.)

Preprint: A version of an author's manuscript intended for publication but that has not been peer reviewed and does not reflect any editorial input or publisher enhancements.

Professional Publication Ethics: AIP Publishing provides information on what it expects from authors in its "Statement of ethics and responsibilities of authors submitting to AIP Publishing journals" (<http://publishing.aip.org/authors/ethics>). AIP Publishing is also member of the Committee on Publication Ethics (COPE) (<http://publicationethics.org/>), which provides numerous resources and guidelines for authors, editors, and publishers with regard to ethical standards and accepted practices in scientific publishing.

Scholarly Collaboration Network (SCN): Professional networking sites that facilitate collaboration among researchers as well as the sharing of data, results, and publications. SCNs include sites such as Academia.edu, ResearchGate, and Mendeley, among others.

Supplementary Material: Related material that has been judged by peer review as being relevant to the understanding of the article but that may be too lengthy or of too limited interest for inclusion in the article itself. Supplementary Material may include data tables or sets, appendixes, movie or audio clips, or other multimedia files.

U.S. Government employees: Authors working at Government organizations who author works as part of their official duties and who are not able to license rights to the Work, since no copyright exists. Government works are in the public domain within the United States.

Version of Record (VOR): The final published version of the article as it appears in the printed journal/proceedings or on the Scitation website. It incorporates all editorial input, is formatted in the publisher's standard style, and is usually viewed in PDF form.

Waiver: A request made to a university or institution to exempt an article from its open-access policy requirements. For example, a conflict will exist with any policy that requires the author to grant a nonexclusive license to the university or institution that enables it to license the Work to others. In all such cases, the Author must obtain a waiver, which shall be included in the manuscript file.

Work: The "Work" is considered all the material that comprises the article, including but not limited to the abstract, tables, figures, images, multimedia files that are directly embedded within the text, and the text itself. The Work does not include the Supplementary Material (see Supplementary Material above).

Work Made for Hire: Under copyright law, a work prepared by an employee within the scope of employment, or a work that has been specially ordered or commissioned for which the parties have agreed in writing to consider as a Work Made for Hire. The hiring party or employer is considered the author and owner of the copyright, not the person who creates the work.